
Single Pattern Generating Heuristics for Pixel
Advertisements

Alex Knoops1, Victor Boskamp1, Adam Wojciechowski2, and Flavius
Frasincar1

1 Econometric Institute
Erasmus University Rotterdam

PO Box 1738, NL-3000
Rotterdam, the Netherlands

{alex.knoops, victorboskamp}@gmail.com, frasincar@ese.eur.nl
2 Institute of Computing Science
Poznan University of Technology

ul. Piotrowo 2, 60-965 Poznan, Poland
adam.wojciechowski@put.poznan.pl

Abstract. Pixel advertisement represents the presentation of small ad-
vertisements on a banner. With the Web becoming more important for
marketing purposes, pixel advertisement is an interesting development.
In this paper, we present a comparison of three heuristic algorithms for
generating allocation patterns for pixel advertisements. The algorithms
used are the orthogonal algorithm, the left justified algorithm, and the
GRASP constructive algorithm. We present the results of an extensive
simulation in which we have experimented with the sorting of advertise-
ments and different banner and advertisement sizes. The purpose is to
find a pattern generating algorithm that maximizes the revenue of the
allocated pixel advertisements on a banner. Results show that the best
algorithm for our goal is the orthogonal algorithm. We also present a Web
application in which the most suitable algorithm is implemented. This
Web application returns an allocation pattern for a set of advertisements
provided by the user.

Key words: pixel advertisements, allocation patterns, heuristic algo-
rithms

1 Introduction

With the Web usage still growing, Web advertising becomes a more dominant
form of marketing every year. According to the Interactive Advertising Bureau,
Web advertising revenues for 2008 are totaled $23.4 billion in the U.S. only [1].
Banner advertisements have a 22 percent share in these figures.

A special form of Web advertising is pixel advertisement. Pixel advertisement
originated in 2005 from the English student Alex Tew’s “Million Dollar Home-
page” [2]. The homepage holds a 1000 by 1000 pixel grid from which blocks of 10
by 10 pixels could be bought for 1 dollar per pixel. Buyers could place an image

on their pixels and let the image link to their website. The general idea of pixel
advertising is to have a banner with several small advertisements in pixel blocks
(i.e., multibanner), instead of just one advertisement occupying the banner.

In [3] the success of the “Million Dollar Homepage” and the failure of the
many copycats that arose is analyzed. Since visitors do not return to the “Million
Dollar Homepage” the paper proposes some improvements to the concept of
pixel advertisement in Web pages. In [4] the authors extend the idea of pixel
advertisement to placing small ads in banners. In this paper, we build upon
their results, generalizing and thoroughly evaluating the proposed solutions.

Fig. 1. Sample from “Million Dollar Homepage”

The research question tackled in this paper can be defined as follows: how to
arrange rectangular pictures of different sizes and different prices for advertise-
ment on a banner, in order to maximize revenue? An important assumption we
make is that we have a predefined set of advertisements that can be placed on
the banner. This differs from the “Million Dollar Homepage” approach, where
buyers just select free pixel blocks they want to purchase. In that case, there is
no arrangement necessary and the problem tackled in this paper is nonexistent.
Another assumption is that the banner size is given and that the set of advertise-
ments should contain more advertisements than would fit on the banner. Note
that even if the ads fit on the banner, the placement is still a problem. Fur-
thermore, the problem we face is a static allocation problem with no dynamic
dimension like time-sharing of advertisements.

Finding the optimal allocation of advertisements in a banner may be defined
as a two-dimensional, single, orthogonal, knapsack problem [5]. The problem is
NP-hard [6], making it extremely time-consuming to find the optimal solution(s)
using integer programming. In this paper, we focus on applying heuristics to find
adequate solutions.

We use three heuristic algorithms to allocate advertisements. For this, we
experiment with sorting of advertisements and use different banner sizes. Our
main objective is to find a heuristic algorithm that generates advertisement
allocation patterns that maximize profit. Our secondary objective is to create a
Web application. Therefore, a good performance also requires that the execution
time is acceptable (i.e., within 30 seconds) to users of the Web application.

Related work on the placement of Web advertisements has been focusing on
the ad placement problem, introduced in [7] as a variant of the bin packing prob-
lem. Despite the name, the most important feature of the ad placement problem
is time scheduling of advertisements on a banner in time slots. Furthermore, it

is concerned only with the placement of one advertisement on a banner or some
advertisements side-by-side, whereby the height of the advertisements is equal
to the height of the banner.

In [7], a distinction is made between the offline and online scheduling of
advertisements. In the offline problem, we have a predefined set of advertisements
to be scheduled. In the online problem, requests for placement arrive sequentially
and we have to decide whether to accept requests without knowledge of future
ones.

Another distinction made concerns the MINSPACE and MAXSPACE prob-
lems. The MINSPACE problem minimizes the banner size required for allocating
a given set of advertisements in a fixed amount of time slots. The MAXSPACE
problem maximizes the total profit given a fixed banner size and a fixed amount
of time slots, which provide not enough free space for allocating all advertise-
ments. For both problems, several solutions are available using polynomial time
approximation algorithms [8,9,10], Lagrangian decomposition [11,12], column
generation [12], and a hybrid genetic algorithm [13]. The approach presented in
this paper is different from the ad placement problem, since we do not take into
account time scheduling and we allocate advertisements not only side-by-side
but also two-dimensional. Based on the previous classifications we are dealing
here with an offline and MAXSPACE problem.

The rest of the paper is organized as follows: In Sect. 2 and 3 the simulation
variables and allocation algorithms are defined. An analysis of the results is
presented in Sect. 4. Section 5 discusses the implementations of our approach in
a Web application. Section 6 concludes the paper and identifies future research
directions.

2 Simulation

In order to obtain unbiased results in finding the most suitable environment for
our purposes, we tested the allocation algorithms in a simulation using different
configuration parameters, which defined the properties of each simulation cycle.
These parameters consisted of 9 different banner sizes, 120 different sortings of
the set of advertisements, and 6 different maximum sizes of the advertisements
for each of the 3 algorithms. Each combination of configuration parameters rep-
resents a single simulation cycle. Altogether this resulted in 19440 simulation
cycles. The details of these configuration parameters are described in the next
few paragraphs. During each simulation cycle, one set of advertisements was
allocated to one banner. The complete simulation was implemented in Matlab
and run as a single batch file. All simulations were done on a Intel Core 2 Duo
CPU P8400 at 2.26 GHz.

Size of the banner. Five standard banner sizes [14], commonly used in Web
advertising, have been selected to be used for each of the simulation cycles.
The width W and height H of the banners are shown in Table 1. During the
simulation the widths and the heights of the banners are also reverted to avoid

bias towards particular sorting of the set of advertisements or banner dimensions.
In total this amounts to 9 different banners (the square banner need not be
reverted).

Table 1. Standard banner sizes

W ×H Banner

728× 90 Leader board
234× 60 Half Banner
125× 125 Square Button
120× 600 Skyscraper
336× 280 Large Rectangle

Price of the banner. In practice, an existing banner may already generate
revenue. One of the attributes of the banner is its price. This price however,
will be set to a single fixed price during the simulations. This is done in order
to avoid ambiguous results, in which it may not be clear if profit comes from
the original banner or the allocated advertisements. During the simulations the
price per pixel for the banner has been set to 4 which is much lower than the
price range per pixel of the advertisements. This is done in order to avoid that
no advertisements are allocated, when the banner generates more revenue than
any of the advertisements.

Size of the advertisements. For our simulation the advertisements where
pseudo-randomly generated. The minimum width and height are 10 pixels, like
the implementation on the “Million Dollar Homepage”. In our experiment we
allow the dimensions of the advertisement to vary between a minimum of 10
pixels and a variable maximum. The maximum width wmax and height hmax

are defined as fraction of the banner width and the banner height. For this
simulation the combinations of the maximal width and the maximal height are:

{wmax, hmax} ∈ {{1/5, 1/2}, {1/2, 1/2}, {1/3, 1/3}, {1/5, 1/5}, {1/2, 1/5}, {1, 1}}

Sorting of advertisements. The heuristic algorithms iterate through the set of
advertisements sequentially. The sorting of the set influences the generated pat-
tern and is part of the heuristics. The simulation uses the following attributes of
the advertisements to sort the set: (1) price per advertisement pixel p, (2) width
w, (3) height h, (4) total area w × h, (5) flatness w/h, and (6) the proportional-
ity | log(w/h)| , the last attribute refers to how much the rectangle resembles a
square. A value of 0 for this attribute means that the rectangle is a square. Any
higher value signifies that the rectangle is flat or tall. The sorting can be done
in either ascending or descending order.

Once the set has been sorted based on the values of the attributes, a sec-
ondary sort is executed using one of the remaining attributes. The secondary
sort has a minor influence on the resulting ordered set. Altogether the set of

advertisements is sorted in 120 different ways, (12!
10! − 12 = 120, since we want

to exclude the situations were the primary sort equals or is opposite of the sec-
ondary sort).

The prices of the advertisements are proportional to their dimensions. The
price per pixel of an advertisement is set to 10 with random value between −1
and 1 added to this value, resulting in a uniform distribution between 9 and 11.
The price of the advertisement is calculated by multiplying this price per pixel
with its area.

During each cycle of the simulation, the configuration parameters are regis-
tered. For each cycle the waste rate (ratio of unallocated space over the total
space in the banner) and the total profit of the generated allocation pattern are
calculated. The execution time and the number of advertisements placed are also
registered.

3 Heuristic algorithms

We implemented three different heuristic algorithms: the left justified, the or-
thogonal algorithm, and the GRASP constructive algorithm.

The initialization step is identical for all algorithms. The algorithms assume
a banner B with width wB and height hB . First the values of the primary and
secondary sort, s1 and s2 are checked. Their values correspond to the attributes
described in Sect. 2 and may be either positive or negative corresponding to an
ascending and descending sorting order. There is a set A with n advertisements
ai where, 1 ≤ i ≤ n. Sorting A according to s1 and s2 yields A0. This is the
ordered set of advertisements through which we iterate in each algorithm. Fur-
thermore, the iterator i for the ordered set of advertisements A0 is initialized at
1. The initiation step is given in Alg. 1.

Algorithm 1 Heuristic algorithm initialization
Ensure: s1 6= s2 & s1 6= −s2 {Avoid duplicate sorting in either direction}

Sort all ai in A first by s1 and then by s2

A0 {Ordered set A}
i := 1 {Iterator for A0}

Left justified algorithm. The left justified algorithm iterates through the
ordered set of advertisements A0. For each advertisement ai it scans through
the columns of the banner B from top to bottom. If the end of the column
is reached, the iterator continues at the next column on the first row, and so
on. When an available field is found and the advertisement fits on the empty
location, it is placed in the banner. Advertisements are placed with the top left
corner at the current field. When the end of ordered set A0 is reached or when
the banner is completely filled, the allocation pattern is returned. The details of
this algorithm are shown in Alg. 2.

Algorithm 2 Left justified algorithm
for i = 1 to n do

Select ai from A0

finished := false
r := 1 {Current row in B}
c := 1 {Current column in B}
while finished = false do

if ai fits on Br,c then
{Allocate ai on Br,c}
for p = c to c + xi do

for q = r to r + yi do
Bp,q := i

end for
end for
finished := true

else if r + yi > hB then
if c < wB then

c := c + 1
r := 1

else
finished := true

end if
else if r + xi > wB then

finished := true
else

if r < hB then
r := r + 1

else
if c < wB then

c := c + 1
r := 1

else
finished := true

end if
end if

end if
end while

end for
return B

Orthogonal algorithm. The orthogonal algorithm looks for new free locations
for the current advertisement by moving diagonally from the top left corner
(r, c) = (1, 1) of banner B.

At each step, the algorithm searches for the next free space where the ad-
vertisement can be allocated at the location (r, i) , i ∈ {1 . . . c} and (i, c) , i ∈
{1 . . . r}. At the first free location closest to the border of the banner the adver-
tisement ai is allocated. When there is a tie we choose the one on the vertical

Algorithm 3 Orthogonal algorithm
for i = 1 to n do

select ai from A0

r := 1, c := 1
verticalfound := false, horizontalfound := false
verticalplace := (0, 0), horizontalplace := (0, 0)
colscomplete := false, rowscomplete := false
while (colscompl && rowscompl) = false do

if colscomplete = false then
for p = 1 to r do

if ai fits on Bc,p then
store (c, p) in verticalplace, verticalfound := true, break

end if
end for

end if
if rowscomplete = false then

for q = 1 to c do
if ai fits on Bq,r then

store (q, r) in horizontalplace, horizontalfound := true, break
end if

end for
end if
if horizontalfound = true or verticalfound = true then
{Select location closest to left or upper border}
{Assume selected location is Bk,l: allocate ai on this location}
for p = k to k + xi do

for q = l to l + yi do
Bp,q := i

end for
end for

end if
if r < hB then

r := r + 1
else

rowscomplete = true
end if
if c < wB then

c := c + 1
else

colscomplete = true
end if

end while
end for
return B

search path. When we fail to allocate an advertisement for a certain (r, c) we
continue to walk diagonally down-right by increasing both r and c by one. When
the final row is reached, but there are still columns left, we only increase the

column. When the final column is reached, but there are still rows left, we only
increase the row. This means that after we start walking diagonally, we will
eventually switch to walking either right or down, except for the situation when
the banner B is a square.

When ai is allocated, we start again in the top left corner of the banner and
try to allocate the next advertisement from A0. The details of this algorithm are
shown in Alg. 3.

GRASP constructive algorithm. The GRASP constructive algorithm, is
based on the constructive phase of the greedy randomized adaptive search proce-
dure (GRASP) for the constrained two-dimensional non-guillotine cutting prob-
lem [15]. Since the algorithm was produced for the cutting stock problem, it
has a somewhat different approach. We have adapted the algorithm to fit our
problem.

In the GRASP algorithm, besides an ordered set of advertisements A0, a list
of empty rectangles L is maintained. Empty rectangles are parts of the banner
where no advertisement is allocated yet. Initially, list L contains only the full
banner. To allocate advertisements, the following procedure is followed.

First, we take the smallest rectangle of L in which an advertisement from
list A0 can fit. Then, we place an advertisement ai from ordered set A0 that
fits in the free rectangle. Whenever an advertisement is placed in a rectangle,
new empty rectangles are formed and added to L, while the original rectangle is
removed from L. We always place the advertisement in a corner of the rectangle
which is closest to a corner of the banner, and cut the empty space left in such a
way that it yields optimal new free rectangles. In Fig. 2 the empty rectangles 1,
2, and 3 are formed by placing an advertisement. In order to obtain the optimal
new empty rectangles we merge either empty rectangles 1 and 2, or 2 and 3. We
choose the combination which yields the largest area for the merged rectangle.
When there are no empty rectangles left (L is empty, the full banner is allocated)
or no advertisements from list A0 fits the rectangles in L, the algorithm stops.

1 2

3

Fig. 2. Empty rectangles in GRASP algorithm

4 Analysis

The analysis of the simulation results was done with the tool R. This statistical
software package allows all tasks to be automated in scripts. After the results
are prepared, we normalized the profit and execution time by adding two extra
columns with the profit per banner pixel Ppixel = Ptotal

BW×BH and the execution
time per banner pixel Epixel = Etotal

BW×BH . Ptotal is the total profit of the allocated
pattern, Etotal is the total execution time for the allocated pattern, BW is the
banner width, BH is the banner height and w is the waste rate.

We are primarily interested in the profit per banner pixel of the allocation
pattern Ppixel. The execution time is only relevant for the implementation of
the algorithm. Since the same set of advertisements is used for all heuristic
algorithms, we can evaluate their performance by comparing the normalized
profits and execution times.

In Table 2 the distribution of the profit per banner pixel Ppixel is displayed
for each of the algorithms. The orthogonal algorithm has resulted in a higher
average profit per banner pixel and has been selected to be implemented in the
Web application described in Sect. 5.

Table 2. Five point summary of the profit per banner pixel per algorithm

Algorithm Minimum 1st Quartile Median Mean 3rd Quartile Maximum

Orthogonal 6.079 8.585 9.082 8.887 9.427 10.620
Left justified 5.748 8.155 8.626 8.509 9.042 10.540
GRASP 4.730 6.978 8.044 7.962 9.083 10.600

As expected there is a strong correlation between the waste rate and the
profit per banner pixel (Ppixel). The obtained value −0.9802 shows that a lower
waste rate will result in a higher profit per banner pixel.

Banner size. From the dot chart in Fig. 3 the average profit per banner pixel
is categorized by the dimensions of the banner. Besides the obviously better
performance of the orthogonal algorithm, the graph shows that the banner size
influences the performance of the algorithm. There is no solid evidence that a
particular banner size benefits the performance of the algorithms.

Sorting. The preliminary sorting of the advertisements influences the final al-
location pattern. From the dotchart in Fig. 4 it shows that sorting the adver-
tisements based on their dimensions is of greater influence than sorting them
based on their price. For each of the three algorithms, allocating the highest, the
widest, or the advertisements with the largest total area first, yields the highest
profit per banner pixel. This can be explained by the strong negative correlation
between the waste rate and the profit per banner pixel. Furthermore, the figure
shows that the orthogonal algorithm is less sensitive to the preliminary sorting

of the advertisements, showing that the algorithm is more robust than the other
ones.

90 x 728
336 x 280
280 x 336
728 x 90
120 x 600
600 x 120
60 x 234
234 x 60
125 x 125

90 x 728
728 x 90
336 x 280
600 x 120
280 x 336
120 x 600
234 x 60
60 x 234
125 x 125

90 x 728
120 x 600
728 x 90
60 x 234
280 x 336
336 x 280
600 x 120
125 x 125
234 x 60

GRASP

Left justified

Orthogonal

7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2

Profit per pixel

Fig. 3. Dotchart: profit per banner pixel for each banner size per algorithm

Execution times. The main interest in the execution time of the algorithm is a
practical one. Though the GRASP algorithm shows the lowest execution times,
the main issue is not to find the fastest algorithm, but merely one that is usable
within the context of a Web application. Usable patterns of allocated advertise-
ments should not come at the cost of waiting for more than 30 seconds for a
result. In Table 3 the main characteristics of the execution times are displayed.

Though it is clear that the orthogonal algorithm has the highest execution
times, its outliers are only around 20 seconds of execution time. During the
migration to Java for the implementation of the Web application, the execution
times decreased remarkably.

Table 3. Five point summary of the CPU time per algorithm in seconds

Algorithm Minimum 1st Quartile Median Mean 3rd Quartile Maximum

Orthogonal 0.016040 0.432000 2.632000 3.151000 4.745000 20.49000
Left justified 0.008244 0.156200 0.571000 0.956600 1.203000 17.25000
GRASP 0.003904 0.025610 0.072310 0.071180 0.099090 0.320000

Total area Desc
Height Desc
Width Desc
Price/pix Desc
Proportionality Desc
Price/pix Asc
Flatness Asc
Flatness Desc
Proportionality Asc
Width Asc
Height Asc
Total area Asc

Height Desc
Width Desc
Total area Desc
Price/pix Desc
Flatness Desc
Proportionality Asc
Flatness Asc
Proportionality Desc
Height Asc
Width Asc
Price/pix Asc
Total area Asc

Width Desc
Total area Desc
Height Desc
Price/pix Desc
Proportionality Desc
Flatness Asc
Flatness Desc
Price/pix Asc
Proportionality Asc
Height Asc
Total area Asc
Width Asc

GRASP

Left justified

Orthogonal

7.0 7.5 8.0 8.5 9.0

Profit per pixel

Fig. 4. Dotchart: profit per banner pixel for each primary sorting order per algorithm

5 Software

The implementation of the orthogonal heuristic algorithm as a Web application
is available at http://headshredder.homelinux.net:8080/java/. It provides
an allocation pattern for a set of advertisements using the orthogonal algorithm.
A screenshot of the frontpage is displayed in Fig. 5.

Users can upload their own set of advertisements in the form of a comma
separated values file and a zip file containing the pictures. The comma sepa-

Fig. 5. Advertisement allocator frontpage

rated values file holds information on every advertisement in the format id;
filename; price; URL;. The filename corresponds to a picture from the zip
file, belonging to the advertisement. Furthermore, the user has to set parame-
ters for the banner and the sorting criteria used. The user can select a standard
banner size, manually set the dimensions, or upload an existing banner. For
sorting, the user can specify the primary and secondary sorting criteria in either
ascending or descending order.

The advertisement allocator provides the allocation results with some statis-
tics. It returns the allocated banner as a single image and gives a corresponding
imagemap in HTML. An imagemap is a list of coordinates relating to a picture.
On the coordinates the specified URL is set. This makes it easy for Webmasters
to implement their pixel advertisement banner. An example of such an result is
displayed in Fig. 6.

6 Conclusion

Our main objective was to find a heuristic algorithm that generates advertise-
ment allocation patterns that maximize profit. The best algorithm for our pur-
poses is the orthogonal algorithm. Sorting the advertisements based on the width,
height, and total area in descending order yields the best results. This algorithm

Fig. 6. Advertisement allocator result

was able to generate the patterns with the highest profit. It did not have the low-
est execution times, but these were still well within the predefined time bound-
aries. The Java implementation showed that its performance did not influence
the Web application’s responsiveness.

This research also uncovers possible future work directions. Our research is
limited to the allocation algorithms we have used. Better results may be achieved
when using more intelligent algorithms. These algorithms should consider a few
steps ahead and reach a better allocation while keeping revenue in mind. The
GRASP algorithm showed great promise as an efficient algorithm with its low
execution times. The implementation of the improvement phase as suggested in
the original paper [15] may prove worth the effort in the future. It may also
be more realistic to give different positions on a banner different prices. In our
research we have a predefined set of advertisements with different prices regard-
less of the position they get allocated. The Eyetrack III [16] research investigates
people’s eye movements over Web pages. More frequently watched areas in the
banner may be assigned a higher price.

In [3] is described that the “Million Dollar Homepage” concept has some
weak points. The major problem of the original concept is that visitors do not
return, because the content is never changed. Making the content dynamic will
increase the effectiveness of pixel advertisement. Therefore, we propose further

research adding time constraints to the pixel advertisement problem. Until now,
related work only focused on scheduling advertisements side-by-side. Instead, it
may be interesting to schedule pixel advertisement banners. This will make the
present, static pixel advertisements more dynamic and increase user attention.

References

1. Interactive Advertising Bureau: Internet Advertising Revenue Report 2008, http:
//www.iab.net/insights/_research/530422/adrevenuereport

2. Tew, A.: Million Dollar Homepage, http://www.milliondollarhomepage.com/
3. Wojciechowski, A.: An Improved Web System for Pixel Advertising. In: Bauknecht,

K., Pröll, B., Werthner, H. (eds.) EC-Web 2006. LNCS, vol. 4082, pp. 232–241.
Springer, Heidelberg (2006)

4. Wojciechowski, A., Kapral, D.: Allocation of Multiple Advertisement on Limited
Space: Heuristic Approach. In: Mauthe, A., Zeadally, S., Cerqueira, E., Curado,
M. (eds.) FMN 2009. LNCS, vol. 5630, pp. 230–235. Springer, Heidelberg (2009)

5. Wäscher, G., Haußner, H., Schumann, H.: An Improved Typology of Cutting and
Packing Problems. European Journal of Operational Research 183(3), 1109–1130
(2007)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

7. Adler, M., Gibbons, P.B., Matias, Y.: Scheduling Space-Sharing for Internet Ad-
vertising. Journal of Scheduling 5(2), 103–119 (2002)

8. Dawande, M., Kumar, S., Sriskandarajah, C.: Performance Bounds of Algorithms
for Scheduling Advertisements on a Web Page. Journal of Scheduling 6(4), 373–394
(2003)

9. Freund, A., Naor, J.S.: Approximating the Advertisement Placement Problem.
Journal of Scheduling 7(5), 365–374 (2004)

10. Dawande, M., Kumar, S., Sriskandarajah, C.: Scheduling Web Advertisements: A
Note on the Minspace Problem. Journal of Scheduling 8(1), 97–106 (2005)

11. Amiri, A., Menon, S.: Efficient Scheduling of Internet Banner Advertisements.
ACM Transactions on Internet Technology 3(4), 334–346 (2003)

12. Menon, S., Amiri, A.: Scheduling Banner Advertisements on the Web. INFORMS
Journal on Computing 16(1), 95–105 (2004)

13. Kumar, S., Jacob, V.S., Sriskandarajah, C.: Scheduling Advertisements on a Web
Page to Maximize Revenue. European Journal of Operational Research 173(3),
1067–1089 (2006)

14. Interactive Advertising Bureau: Ad Unit Guidelines, http://www.iab.net/iab/
_products/_and/_industry/_services/1421/1443/1452

15. Alvarez-Valdes, R., Parreño, F., Tamarit, J.M.: A GRASP Algorithm for Con-
strained Two-Dimensional Non-Guillotine Cutting Problems. The Journal of the
Operational Research Society 56(4), 414–425 (2005)

16. Outing, S., Ruel, L.: The Best of Eyetrack III: What We Saw When We
Looked Through Their Eyes. Poynter Institute, http://poynterextra.org/

eyetrack2004/main.htm

