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ABSTRACT
Content-based semantics-driven recommender systems are often

used in the small-scale news recommendation domain. These rec-

ommender systems improve over TF-IDF by taking into account (do-

main) semantics through semantic lexicons or domain ontologies.

Our work explores the application of such recommender systems

to other domains, using the case of large-scale movie recommenda-

tions. We propose new methods to extract semantic features from

various item descriptions, and for scaling up the semantics-driven

approach with pre-computation of the cosine similarities and gradi-

ent learning of the model. The results of the study on a large-scale

dataset of user ratings demonstrate that semantics-driven recom-

menders can be extended to more complex domains and outperform

TF-IDF on ROC , PR, F1, and Kappa metrics.

CCS CONCEPTS
• Information systems→ Recommender systems; Ontologies;
Personalization.
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1 INTRODUCTION
Since the introduction of the World Wide Web vast amounts of

information have become available with an accelerating increase

[26], emerging in the prodigious scale of 44 trillion gigabytes in

2020 [22]. However, this abundance of choice of content (articles,

movies, music, etc.) comes at the price of information overload, and

finding the right content has become exceedingly time consuming.

Recommender systems (RS) [17, 18] have emerged as a solution

to this problem, filling the need to filter and deliver relevant content

to the user by sorting through large amounts of information and
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presenting the most interesting selection in the form of recommen-

dations. This goes beyond plain information retrieval systems such

as search engines because RS incorporate the user’s preferences,

interests, and needs captured in user profiles, e.g., by using domain

models [19]. Two different approaches to RS [17] can be distin-

guished: collaborative filtering, which provides recommendations

based on similarities between preferences of one user and pref-

erences of others, and content-based filtering, which recommends

items according to their content, differing in the data and underly-

ing assumptions they use for their predictions. A combination of

the two latter is known as hybrid RS [4]. Here, our focus will be on

content-based RS operating on similarities between content items.

Content-based RS [15] vary in the features they consider and how

they use these to calculate similarities among items. The features

that are available to the RS depend on the item type and dataset. For

instance, the director, cast, genre, plot, etc. are typically available

to movie recommenders. Yet, text (e.g. descriptions, summaries,

reviews, etc.) is a common form of information about the contents

of various on-line items from which features can be extracted for

measuring similarity. Awidely used technique to estimate similarity

between texts or documents is Term Frequency - Inverse Document

Frequency (TF-IDF) [13], which constructs for each document a

feature vector out of the frequency counts of terms in the document,

and multiplies these frequencies by the inverse frequency that these

terms occur in all documents. The resulting vectors can then be

directly compared using measures such as cosine similarity [11].

Several RS building upon TF-IDF, like for example CF-IDF(+),

SF-IDF(+), have been established, mainly for the recommendation

of news articles [3, 5, 8, 11], using concepts from domain ontologies

or synsets from semantic lexicons for features instead of terms.

These methods have further been extended [6, 14, 23] by adding

semantically related synsets or concepts to the vector, or incorpo-

rating named-entity similarities using Bing page counts. These RS

make use of weight vectors to optimize the relative importance of

the different features in the calculation of the similarities. Inspired

by the promising results of these semantics-driven news articles RS,

we want to explore the application of SF/CF-IDF(+) to large-scale

recommendation and choose movies as the domain.

In this paper, we show that the previously mentioned semantics-

driven RS used for small-scale news recommendations can be ex-

tended to more complex domains, and are able to make high-quality

recommendations on an extremely large scale. We specifically focus

on one of the domains that is largely different from news articles

– movie recommendations – and that could largely benefit from

scalable RS as information on thousands of movies and millions

of user ratings is available. This leads us to the following research

questions:

https://doi.org/10.1145/3486622.3493963
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RQ1: Whether and how can semantics-driven recommenders be
applied to a large-scale (movie) recommendation problem?

RQ2: How to scale the existing proven approach to large datasets?

To answer RQ1 and RQ2, we propose new methods to scale up the

semantics-driven approach and its optimization procedure, extract

semantic features from publicly available movie-level information,

and find related concepts without the need for an external domain

ontology. A challenge is the extraction of semantic features from in-

formation of different nature – data available for movies is encoded

differently and the items are more complex than just collections of

texts used for news recommendation. Thus, we extend semantics-

driven RS to the problem of large-scale (movie) recommendations,

which can pose substantial challenges to traditional recommender

systems. The main contributions of this paper are:

• First, a method for extraction of semantic features from com-

plex domain information for semantics-driven RS. We em-

ploy the example of movies for the case, where variable data

exists in large scale.

• Second, we establish a method to efficiently devise a domain

ontology for the selected complex dataset when an external

ontology is not available.

• Third, we propose a method to scale up existing semantics-

driven recommendation methods (proven for news recom-

mendation) for large-scale variable data with pre-computa-

tion of the cosine similarities and gradient learning of the

model, delivering an approach of scalable RS for complex

domains. We show that semantics-driven RS can be scaled

up to millions of user profiles and thousands of features

by rewriting the similarity model as a function of the dot-

products between the feature vectors of individual items,

which can be pre-computed before optimization.

The remainder of this paper is organized as follows. Section 2

discusses related work on content-based RS. Section 3 discusses

data used for the research, while Section 4 describes the proposed

recommender. Sections 5 and 6 deliver method evaluation and con-

clusions respectively.

2 RELATEDWORK
Let us start with a review of the semantics-driven recommenders.

The RS we focus here were originally designed for news recom-

mendation by extracting features from article text but can be used

to predict similarity between any two texts. We will consider the

following recommenders: TF-IDF, CF-IDF, SF-IDF, and their exten-

sions CF-IDF+, SF-IDF+, and Bing-SF-IDF+.

The TF-IDF is of interest as SF-IDF and CF-IDF build on the

mathematical concept provided by it. The Term Frequency - Inverse

Document Frequency (TF-IDF) [20] recommender consists of two

parts, where the TF indicates how often a term occurs in a given

document (higher frequencies linked to higher relevancies), and the

IDF captures the importance and uniqueness of a term in a collection

of documents. Frequent terms are considered to be common and

less important. The resulting feature vector represents terms with

scores, which can be compared to user vectors using similarity

functions, e.g., the cosine distance. The TF-IDF score is large for

terms that occur frequently in single document but not often in

all other documents. A certain specified threshold value decides

whether an item and the user’s interest are considered similar.

The Concept Frequency - Inverse Document Frequency (CF-

IDF) [11] is a variant of TF-IDF, which uses concepts instead of

terms. The text is processed by a natural language processing (NLP)

engine that performs word sense disambiguation, part-of-speech

(POS) tagging, and tokenization to transform the text into a collec-

tion of concept candidates. A domain ontology containing concepts

and their relationships is checked for each candidate, and if a match

is found, a count is added to that concept. Using concepts instead

of terms represents the domain semantics better as only words rele-

vant to the specific domain are considered, resulting in an observed

performance improvement over TF-IDF in [11]. CF-IDF+ extends

this method further by including directly related concepts in the

domain ontology [8]. Each type of relationship (superclass, subclass,

or instance) is given a weight to vary the overall importance of the

found concepts and their related concepts. These three weights are

then optimized by grid search.

The Synset Frequency - Inverse Document Frequency (SF-IDF)

[5] is another variation of TF-IDF, which in addition to all terms

looks at synonyms and ambiguous terms using a semantic lexi-

con (WordNet). Terms having the same meaning will be subsumed

in one single concept, and therefore, word sense disambiguation

(WSD) is needed. For terms with multiple meanings, corresponding

word senses are to be counted separately. This generally results in a

longer vector than CF-IDF becausemorematches are found asWord-

Net is much larger than a typical domain ontology. SF-IDF+ [14]

outperforms SF-IDF by including synsets that are directly related

over the 27 types of semantic relationships present in WordNet,

where each type has a weight optimized by a genetic algorithm.

Bing-SF-IDF+ [6] extends SF-IDF+, which in addition to words in

the semantic lexicon also considers the similarity between named

entities frequently occurring on the Web through a separate simi-

larity measure – Bing distance, based on the number of page counts

originating from the Bing search engine. This measure is a func-

tion of three search result page counts: two counts for each entity

separately and one for a combination of the two. An optimized

weight is used to combine the Bing distance and the SF-IDF+ cosine

similarity, leading to improved performance over SF-IDF+ [6].

Recommenders for (multi)media are of interest for researchers

due to the large variable information available, and different ap-

proaches have been taken to provide recommendations. Multime-

dia recommendations over social media streams using a graphical

model and signature-tree-based scheme over Youtube and Movie-

Lens data is explored in [28]. The possibility to derive the context

from social media for context-aware social media recommendations

is studied in [27], where the work, as ours, also advantages from

TF-IDF. An ontology based RS for online social network data is

proposed in [1] with experiments carried out on MovieLens data

for which new ontology is created, unlike in our work, this is done

manually. Large-scale ontology is used to provide fiction content

recommendations and mitigate the item cold-start problem in [21].

In [16] the applicability of Bidirectional Encoder Representations

from Transformers (BERT) [10] in the context of conversational RS

is explored, experimenting with movies, books and music recom-

mendation and showing its suitability especially for content-based

knowledge. In [25] on the other hand Word2Vec algorithm is used
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Table 1: Research data descriptive statistics (movies).

Data type N Missing Mean Min Max

(ML=MovieLens) [%]

Title (ML) 27,278

Genres (ML)* 27,278 1.99 1 10

Genres (OMDb)* 27,207 0.26 2.21 1 5

Directors (OMDb)* 27,003 1.01 1.11 1 41

Plot (OMDb)** 26,327 3.49 63.49 3 1,471

Writers (OMDb)* 25,831 5.30 2.41 1 35

Actors (OMDb)* 26,925 1.29 3.93 1 4

* Multi-class variable, statistics reported for number of classes.

** Full text, statistics reported for number of words.

to recommend movies based on metadata (e.g., directors, actors)

information. A comprehensive overview of recommender systems

for multimedia content is provided in [9], and a survey on the usage

of knowledge graphs for RS in [12].

3 LARGE-SCALE RECOMMENDATION DATA
To study scalability of semantics-driven RS, we choose large-scale

recommendation of movies, using the datasets available through

the GroupLens Research Project
1
. We gather user ratings from

the largest dataset available (MovieLens 20M
2
) describing 5-star

user rating activity from an on-line movie recommendation service

MovieLens
3
. It contains a total of 20,000,000 user ratings on a scale

of 1 to 5 across 27,278 movies over a ten-year period from the

ratings given by 138,493 users, who had all rated at least 20 movies.

Semantics-driven RS are content-based and thereby require item-

level information as input for feature extraction. The MovieLens

data contains the title, year of release, genre labels, and identifica-

tion numbers for The Internet Movie Database (IMDB)
4
for each

movie. In addition we use the Open Movie Database (OMDb)
5
over

IMDB ids to query movie plots, available for 96.51% of the movies in

the MovieLens data, containing 63 words on average (substantially

shorter than typical news articles). The plots (storyline descriptions

without revealing any ‘spoilers’, similar in their intent to a movie

trailer) are the only texts in our data from which semantic features

can be extracted. We discard the 3.49% of movies for which no

plot is available. Out of the combined data with many movie-level

variables we retain only those containing substantial semantic in-

formation valuable for semantics-driven recommendations – the

names of persons involved in the movie (the actor(s), director(s),

and writer(s)), the genre(s), and the plot. Table 1 describes the differ-

ent variables, their quantity, and characteristics (e.g. mean number

of words in plot, % of missing variables, max number of genres, etc.)

we use in this research.

Variables such as genres and persons provide additional (domain-

specific) information, and do not have to be extracted from text. The

relationships between actors, directors, and other persons could be

1
https://grouplens.org/

2
http://grouplens.org/datasets/movielens/20m/

3
https://movielens.org/

4
http://www.imdb.com/

5
http://www.omdbapi.com/

extracted from the available information and used to construct a

domain ontology. Each movie is additionally labelled with one or

more genres obtained from both MovieLens and OMDb. As these

genre labels vary between the two sources both are retained to

ensure no valuable information is lost. We discard (affects only

0.83% of collected user ratings) any movie without at least one

director, actor, writer, and genre, leaving us with the final dataset

of 25,138 movies for this research.

We notice that named entities in the plots are generally fictional

characters, which would rarely provide substantial information in

Bing distance evaluations, while persons and titles could be used as

named entities to calculate Bing distance metrics. Considering that

these entities are covered by the domain ontology in this research,

and that a large number of pair-wise search queries over these

would not be feasible, we decide to exclude Bing distances from our

recommender system, and in further focus on semantics from terms,

concepts, and synsets, in line with TF-IDF [11], CF-IDF(+) [8, 11],

and SF-IDF(+) [6] recommender systems.

4 RECOMMENDATION METHODOLOGY
We start with extraction of semantic features from the plots and how

to find related concepts without the need for an external domain

ontology, followed by the definition of the similarity model, where

we show how a small modification enables massive scalability. The

approach builds on the existing TF/CF/SF-IDF(+) recommenders.

4.1 Feature Extraction
Some concepts (e.g., persons, genre labels) are readily obtainable

for each movie. In addition, we extract both terms and synsets from

the plots using natural language processing (NLP) techniques that

can filter out noise from the plots and exploit known regularities

in natural language. Using the NLTK
6
package in Python 2.7 for

these NLP techniques, each plot is split up into a set of sentences

and processed separately. Further, tokenization is applied to split

sentences up into a list of words (tokens) using known properties

of words, such as they usually occur in the English dictionary, and

separated by spaces or commas. Using part-of-speech (POS) tagging,

we add to eachword the POS (e.g., noun, verb, adjective). Stopwords,

containing negligible semantic information, are removed. We then

apply the Porter [24] stemming algorithm to each word to reduce

the words to their roots and extract the terms.

To extract synsets, we apply the Adapted Lesk [2] word sense

disambiguation (WSD) algorithm to each word. WSD addresses the

problem of identifying the sense of a word – the meaning in its

context. Only senses that have the same POS tag as the word from

the text are considered. If no sense can be found, all senses with

any POS are considered. The synset containing the identified sense

of the word is extracted.

4.2 Domain Ontology
Domain ontologies are considered resources that are external to the

dataset fromwhich the concepts are derived, and subsequently have

to either be obtained or manually constructed for the purpose of the

RS. We now propose a general method as an alternative to external

domain ontologies, solely based on the dataset itself, allowing to

6
http://www.nltk.org/
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find concepts related through a common item by a series of matrix

multiplications of binary matrices.

Our dataset has 25,138 movies, covering 12,231 directors, 45,393

actors, 27,415 writers, all 19 MovieLens genres (mlд), and 27 OMDb

genres (omд). Based on the average number of these concepts per

movie (Table 1) we have an estimated 292,857 bidirectional movie-

concept relations that implicitly form a virtual domain ontology,

which can be used to find related concepts.

Let the set of existing concept classes classes = {director , actor ,
writer ,mlд, omд}, its size k and the number of concepts (instances)

in class c ∈ classes as nc . LetMc be an z × nc binary matrix of the

occurrences of concepts of class c in each of the z items, where

the (i, j)-th element is denoted asMc(i, j), and occurrences encoded

such thatMc(i, j) = 1 if concept j is present in item i , andMc(i, j) = 0

otherwise. Thus, the sum of row i is the number of concepts found

in item i , and the sum of column j is the number of items in which

concept i is found. All these sums are at least 1 since all concepts

occur at least once and every movie has at least one concept of

each class. An example of aMc in our case isMdirector , a binary

25, 138 × 12, 231 matrix that encodes the directors found in each of

the movies.

We further denote with conceptc(j) the j-th concept of class c
and the i-th item with itemi . We show that the k matricesMc can

be used to find related concepts for an item through relations of

the form (Eq. 1):

itemu
contains
−−−−−−−−→ concepta(i)

occurs in
−−−−−−−−−→ itemv

contains
−−−−−−−−→ conceptb(j)

∀a,b ∈ classes ∀u,v ∈ [1, z] ∀i ∈ [1,na ] ∀j ∈ [1,nb ]
(1)

Suppose itemu contains a concept of class c . If another itemv
contains that same concept, we say that itemv is related to itemu
through relation c . The number of possible relations is therefore

equal to the number of classesk . For example, if an actor frommovie

u also plays inmoviev , thesemovies are related through the relation

actor . Relations are bidirectional and a movie is always related to it-

self. This existence of a relation c between itemu and itemv is equiv-

alent to the existence of a j ∈ [0,nc ] for whichMc(u, j)Mc(v, j) = 1.

This is the case if and only if (iff)

∑nc
j=1Mc(u, j)Mc(v, j) ⩾ 1. The

expression

∑nc
j=1Mc(u, j)Mc(v, j) is also the definition of the dot-

product between the u-th and v-th rows ofMc . If we calculate the

z ×z symmetric matrix Rc = McM
⊤
c , then Rc(u,v ) is the dot-product

of the u-th row ofMc and thev-th column ofM⊤c . Thev-th column

of M⊤c is also the v-th row of Mc . Therefore Rc(u,v ) ⩾ 1 iff itemu
and itemv are related through relation c .

Consider that Mb(v, j) = 1 iff itemv contains conceptb(j), and
Ra(u,v ) ⩾ 1 iff the itemv is related to itemu through a. Hence
itemu has related conceptb(j) through relation a with the itemv
iff Mb(v, j)Ra(u,v ) ⩾ 1, and itemu has related conceptb(j) through

a with any item iff

∑z
v=1 Ra(u,v )Mb(v, j) ⩾ 1. By the definition of

matrix multiplication, it is the (u, j)-th element of the z ×nc matrix

(RaMb ). We denote this matrix M
b

a
←−

and call it the matrix of

related concepts of class b through relation a. It encodes the related
concepts of all items sinceM

b
a
←−(u, j)

⩾ 1 whenever itemu contains

related concept j of class b (conceptb(j)). As we are only interested

in occurrences of related concepts (not counts), we make M
b

a
←−

Table 2: Characterization of feature types used.

i Feature type ti Source Dataset ni * mi **

1 Directors Variable OMDb 12,231 4

2 Actors Variable OMDb 45,393 4

3 Writers Variable OMDb 27,415 4

4 MovieLens genres Variable MovieLens 19 1

5 OMDb genres Variable OMDb 27 1

6 Terms Plot OMDb 48,083 1

7 Synsets Plot OMDb 69,977 19

* # of Features of feature type ti (i.e., length of feature vector).

** # of Relations between features of type ti .

binary by clipping its values to 1, and can directly obtain related

concepts fromM
b

a
←−
= RaMb = MaM

⊤
a Mb ∀a,b ∈ classes . This

can be expressed as a function of two arbitrary matrices with same

number of rows: дetRelated(A,B) = AA⊤B. Using this function in a

nested way (e.g., дetRelated(дetRelated(Ma ,Mb ),Mc ), denoted as

M
c

ba
←−−

), we can obtain related concepts through any path length.

This shows that we can find related concepts through relations

of the form expressed in Eq. 1 using only matrix multiplications of

the k matricesMc . With this we propose an alternative to external

ontologies that can be used to find related concepts using only

item-concept occurrences from the dataset itself.

4.3 Similarity Model Scaling
The traditional method of scaling of TF-IDF is the Inverse Document

Frequency (IDF), andwe apply the same scaling to terms and synsets

from the plots, in line with SF-IDF(+) [5, 14]. In contrast to CF-

IDF+ [8], the scaling of concepts is slightly different as these are

not extracted from texts but from variables, and we only extract

occurrences of concepts with frequencies in {0, 1}. We do not apply

IDF scaling, as the interpretation of the feature values deviates too

much from their original meaning of relative frequencies in texts

in TF/SF/CF-IDF+.

After the features are extracted from the descriptions and appro-

priately scaled, we prepare them for use in the similarity model. For

each movie, we have a feature vector for each type of feature (Table

2). We widen the parametric freedom compared to CF-IDF+[8] by

placing concepts of each class into separate vectors, so the concepts

(features) of each class are considered a different type of feature,

allowing to learn their relative importance.

Let us denote the number of feature types as k = 7 and the set of

feature types as t , where ti is the i-th type (e.g., t1 = director ). We

represent the feature values of type ti for item д ∈ [1, z] in a matrix

V
д
i ∈ R

mi×ni
with z the total number of items,mi the number of

relations, and ni the number of features. To simplify the notation,

our definition of the set of relations ri includes directly found

features as a relation, so the first relation is ri1 = direct for every
feature type. Since we retrieve 18 relations from WordNet and only

for the plot synsets, it follows thatm7 = 1 + 18 = 19 (Table 2). For

finding related concepts we limit ourselves to single-step paths of

directors, actors, and writers. This meansm1 =m2 =m3 = 1+3 = 4
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and for the genresm4 =m5 = 1. As there are no relations among

terms, we havem6 = 1.

The feature matrices V
д
i are constructed such that the rows

contain feature values from the same relation, and the columns

contain feature values of the same feature. So for the д-th item

the scalar element V
д
i(a,b)

is the value of the b-th feature of type

ti found through relation ria . We define the block matrices Fi =
[(V 1

i )
⊤ (V 2

i )
⊤.. (V z

i )
⊤]⊤ ∀i ∈ [1,k] and calculate the matrix multi-

plications Xi = FiF
⊤
i . It follows that the block Xi(a,b) is equal to the

matrix V a
i (V

b
i )
⊤
.

In order to scale the semantics-driven approach to large datasets,

we have to be able to optimize the recommender’s parameters on

a large number of user profiles. For each of the 138,493 users in

our dataset, one or multiple combinations of liked items can be

used to construct a profile, e.g., if we construct profiles out of a

fixed number of p liked items, the information from a user who

has n items in his training set can be used to construct

(n
p
)
user

profiles; thus the number of observations available to optimize the

parameters can be much larger than the number of users in the

dataset. To be able to scale up semantics-driven recommendations

to millions of user profiles and thousands of features, we rewrite

the similarity model as a function of the dot-products between the

feature vectors of individual items, which can be pre-computed

before optimization.

The semantics-driven RS construct one vector of features (for

CF-IDF+ frequency of concepts in the text and concepts related to

them in domain ontology, and for SF-IDF+ frequency of synsets

and relations from lexical ontology) from the user profile and one

from the unseen item under consideration, and use cosine similarity

to calculate the similarity between those two vectors. The general

similarity (sim) that can describe any semantics-driven RS addresses

similarity between the user profile and a certain unseen item as a

weighted average of a set of k similarity measures, which we call

part-similarities.

We denote the weights as a parameter vector ®w and the part-

similarities as elements of vector ®s , both of length k (the number of

part-similarities), and restrict allwi ⩾ 0 so sim cannot be negatively

related to any si . We assume 0 ⩽ si ⩽ 1, and can therefore achieve

the desired 0 ⩽ sim ⩽ 1 by enforcing

∑k
i=1wi = 1. Thus, for

CF-IDF+ and SF-IDF+, we can simply define k = 1, ®w = 1, and

®s = s1 with s1 a cosine similarity. Further, Bing-SF-IDF+ can also

be expressed alike with k = 2, ®w = [α , 1 − α], s1 a Bing-similarity

and s2 a cosine similarity. Since we do not use Bing-similarity for

our model, any part-similarity si in our model is a cosine similarity,

which we write as cos( ®ui , ®vi ), between some feature vector ®ui of
length ni representing the user profile and another vector of ®vi of
length ni representing the unseen item, where ®ui , ®vi ⩾ 1 to achieve

0 ⩽ si = cos( ®ui , ®vi ) ⩽ 1. This defines sim as (Eq.2):

sim =
k∑
i=1

wi ·si = ®w · ®s =
k∑
i=1

wi · cos( ®ui , ®vi ) (2)

A feature vector ®vi ∈ R
ni

for an unseen item can be seen as a

function fi () of the feature matrixVi ∈ R
mi×ni

of the item’s related

feature values and a trainable relation weights vector ®qi ∈ R
mi

that

is shared across all items. Taking SF-IDF+ as an example (CF-IDF+

is analogous), there exists k = 1 part-similarity s1 = cos( ®u1, ®v1)
(Eq. 2) and therefore one type t1 of feature – synsets. The feature

values in ®v1 are the SF-IDF+ values of the unseen item, so v1j
is the SF-IDF+ value of the j-th synset and n1 is the number of

unique synsets. As we consider directly found features as a specific

case of relation, we can define the first relation as direct and in

the SF-IDF+ model we restrict q11 = 1. This makes the number

of relations m1 = 28 because the remaining relations are the 27

semantic relations found inWordNet. The weights q1l for l ∈ [2, 28]
are then the 27 optimizable weights restricted to [0, 1]. We set our

restrictions less strict than those of the original SF-IDF+, to qil ⩾ 0

and

∑mi
l=1 qil = 1, as we want to allow any weight to be the highest.

We define V1 and f1 by noting that the SF-IDF+ value v1j is
the maximum of the direct SF-IDF value and the SF-IDF values

of synsets related to synset j multiplied by their corresponding

relation weight from q1. In other words, V1(l, j ) is the maximum of

SF-IDF values of all synsets related to synset j by the l-th relation.

Therefore the j-th column of V1, denoted V1(∗, j ) consists of these 28
SF-IDF values from related synsets, one for each type of relation.

Note that the first value in the j-th columnV1(1, j ) is the SF-IDF value
of synset j itself. Now to replicate SF-IDF+ within our framework

we also need to take a maximum over the 28 related SF-IDF values

after they have been multiplied by their corresponding relation

weights from ®q1. We therefore define f1 as follows:

SF -IDF+j = v1j = f1( ®q1,V1(∗, j ) ) = max

1≤l ≤28
q1lV1(l, j ) ∀j ∈ [1,n1]

(3)

If we would follow this CF-IDF+/SF-IDF+ method for all features

in our research we could define fi more generally for any feature

type ti as (Eq. 4):

vi j = fi ( ®qi ,Vi(∗, j ) ) = max

1≤l ≤mi
qilVi(l, j ) ∀j ∈ [1,ni ] (4)

Eq. 4 reveals the computational bottleneck in the SF/CF-IDF+

models: the item vector ®vi used in the cosine similarity consists

of maxima that can be known only by using the full matrix Vi ∈
Rmi×ni

and the parameter vector of weights ®qi ∈ R
mi

. As we want

to separate the dot-products from the parameters, we change fi in
Eq. 4 to calculate vi j by taking the sum instead of the maximum:

vi j = fi ( ®qi ,Vi(∗, j ) ) =

mi∑
l=1

qilVi(l, j ) = ®qi ·V
⊤
i(∗, j ) ∀j ∈ [1,ni ] (5)

We now see (Eq. 5) that the j-th element of vi has become the

matrix multiplication of the row-vector ®qi and the transpose of

column j of Vi . This means that if we represent the vector ®qi as
a 1 × mi matrix, we no longer need fi , as we can perform the

j multiplications that form the elements of ®vi with one matrix

multiplication, using ®qi and the fullmi × ni matrix Vi (Eq. 6):

vi = ®qiVi (6)

Notice that the matrix Vi consists of (related) feature values for an
unseen item, but can be calculated for any item, including those

in the user profiles. We denote V
д
i as the item feature matrix Vi

corresponding to the д-th item in a user profile, which is a set of

p liked items. As the user profile’s features are defined as sums of

the p items’ features and the weights ®qi are the same for each item,
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the user profile feature vector ®ui can be represented as (Eq. 7):

®ui =

p∑
д=1

®v
д
i =

p∑
д=1
®qiV

д
i = ®qi

p∑
д=1

V
д
i = ®qiUi (7)

Now, we can rewrite the sim of our model (Eq. 2) for feature

type i as Eq. 8, considering that the dot-product ®a·®b is equivalent

to the matrix multiplication ®a®b⊤ and the Euclidean distance | | ®a | |2
is equivalent to

√
®a·®a:

sim =
k∑
i=1

wisi =
k∑
i=1

wicos( ®qiUi , ®qiVi ) =
k∑
i=1

wi
( ®qiUi )·( ®qiVi )

| | ®qiUi | |2 | | ®qiVi | |2
=

=

k∑
i=1

wi
®qiUi ( ®qiVi )

⊤√
®qiUi ( ®qiUi )⊤

√
®qiVi ( ®qiVi )⊤

=

k∑
i=1

wi
®qi (UiV

⊤
i ) ®qi

⊤√
®qi (UiU

⊤
i ) ®qi

⊤
√
®qi (ViV

⊤
i ) ®qi

⊤

(8)

Since we have definedUi =
∑p
д=1V

д
i , we can show that (UiV

⊤
i )

and (UiU
⊤
i ) can both be written as sums of matrix multiplications

of the p feature matrices V
д
i of liked items and the feature matrix

Vi of the unseen item:

UiV
⊤
i = (

p∑
д=1

V
д
i )V

⊤
i =

p∑
д=1
(V

д
i V
⊤
i ) (9)

UiU
⊤
i = (

p∑
д=1

V
д
i )(

p∑
д=1
(V

д
i ))
⊤ = (

p∑
a=1

V a
i )(

p∑
b=1

(V b
i )
⊤) =

=

p∑
a=1
(V a
i

p∑
b=1

(V b
i )
⊤) =

p∑
a=1

p∑
b=1

V a
i (V

b
i )
⊤

(10)

Eq. 8 shows how sim is function of (UiV
⊤
i ), (UiU

⊤
i ), (ViV

⊤
i ) ∈

Rmi×mi
and the parameter vectors ®qi ∈ R

mi , ®w ∈ Rk . We know (Eq.

9,10) that UiU
⊤
i and UiV

⊤
i are simply sums of V a

i (V
b
i )
⊤
for some

a,b ∈ [1, z] and as described, we can retrieve them by accessing

Xi(a,b) . This means we no longer need the large-dimensional Vi as

input, and none of theni -dimensional dot-products ( ®ui · ®vi ) from the

original model have to be computed while sampling observations

or while training the weights. The data matrix Xi(a,b) has to be

calculated only once for each feature type ti ∀i ∈ [1,k], in the

preparation stage.

Having generalized the similarity model and increased its scal-

ability by reducing dimensionality from ni tomi , we see that the

restrictions wi ⩾ 0 and

∑k
i=1wi = 1 to achieve 0 ⩽ sim ⩽ 1 of

previous recommenders lead to undesirable properties. Namely,

user likes/dislikes can only be with some loss function over the

deviation of sim, where the restriction makes independent mean-

shifts impossible, neither can si be freely scaled. We avoid these by

adjusting the specification and removing

∑k
i=1wi = 1, and adding a

learnable bias β to the model. Now sim is still linear and increasing

but less restricted. To then bound the model to [0, 1] we apply a

logistic function to the output of the model in Eq. 8:

sim =
1

1 + e−β−
∑k
i=1wi si

(11)

We now relax the previously imposed si ⩾ 0 restriction because

0 ⩽ sim ⩽ 1,∀si ∈ R. As we no longer need si ⩾ 0 we can relax

®ui , ®vi ⩾ 0 for the feature vectors. We still keepwi ⩾ 0 because we

still desire
∂sim
∂si
⩾ 0. Note that sim remains an increasing function

ofwi and si after the transformation of Eq. 11.

In line with classic logistic regression, we can use cross-entropy,

also called logloss, as a loss function over an item’s observed

like/dislike y ∈ {0, 1} and the predicted similarity sim ∈ [0, 1]
between the item and the user-profile:

L = y log(sim) + (1 − y) log(1 − sim) (12)

The similarity can therefore also be interpreted as the probability

of a like given the input data (UiV
⊤
i ), (UiU

⊤
i ), (ViV

⊤
i ) ∀i ∈ [1,k].

5 EXPERIMENTS AND RESULTS
We train the similarity model on pairs of user-profiles and corre-

sponding unseen items, and use the trained similarity model to

recommend items for which the predicted similarity is above a

certain threshold value. Evaluation consists of calculating various

classification metrics between the test users’ actual likes/dislikes

versus the recommendations. To optimize (train) the part-similarity

weights ®w and the relationship weights ®qi we apply stochastic gra-

dient descent (SGD) on the gradient of the similarity model. The

target similarity y ∈ {0, 1} is defined as y = I { user likes item }.
An item is considered liked by a user if the user rates it with a score

≥ 4.5 and disliked otherwise. This results in an average proportion

of 19.12% liked items, and 20.9 liked items per user. We shuffle the

order of users in our dataset and take the first 1,000 as the test

(hold-out) set used for evaluation, the following 1,000 as the valida-

tion set to validate the similarity model for early stopping while

training, and the remaining 136,493 as the training set to optimize

the similarity model.

User-profiles are constructed by sampling p = 5 liked items from

a user. For each observation (a pair of user-profile and unseen item)

the feature matrices UiV
⊤
i ,UiU

⊤
i , and ViV

⊤
i are constructed from

the Xi pre-computed data. The ViV
⊤
i are retrieved as blocks of Xi ,

whileUiV
⊤
i andUiU

⊤
i are constructed from sums of p blocks.

For the train and validation sets, the unseen items are defined as

all items not in the user-profile, which is sampled from a random

user. For each user-profile, we sample a liked item or a disliked

item with equal probability such that we obtain balanced train

and validation sets with E(y) = 0.5. We sample 100 batches of

1,024 validation observations and 1,374 training batches of 1,024

observations, for totals of 102,400 and 1,406,976 respectively. As the

test set should reflect a realistic recommendation setting, we sample

the p = 5 user-profile items by shuffling all rated items and then

iteratively discarding the first item, adding it to the user-profile if

it is liked. We stop as soon as we have obtained p = 5 liked items.

All discarded liked and disliked items are then considered to be

seen – thus, we simulate the situation in time when a recommender

detects that a user has liked p = 5 items. We require the unseen

items to contain at least one liked and one disliked item to able

to measure performance, which leaves us with 809 eligible user-

profiles from the 1,000 test users. We then construct observations

for the user-profile with each unseen item. For each user, we save

these in a separate batch. The test data is therefore composed of

809 batches of varying sizes, namely the number of unseen items.

The similarity model is trained with SGD on the 1,374 training

batches. After each epoch the validation error is measured on the
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Table 3: Models (model C holds 5 concept feature types – Directors, Actors, Writers, and genres from MovieLens and OMDb)
and their optimization results, averages over 10 random restarts. n=102,400 validation and n=1,406,976 train observations.

Model k* θ** Logloss*** Training time****

Valid. Train Epochs Secs/Epoch Minutes

C+S (C and S combined) 6 38 0.6812 0.6822 11.0 22.7 4.2

C (Modified CF-IDF+) 5 18 0.6815 0.6826 11.9 10.3 2.0

T (TF-IDF, benchmark) 1 2 0.6896 0.6900 10.0 6.4 1.1

S (SF-IDF+, synsets from plots) 1 21 0.6912 0.6914 11.0 14.7 2.7

* Number of feature types (part-similarities) ** Number of parameters.

*** Minimum over all epochs. **** Until early stopping.

100 validation batches. If it has improved compared to the last epoch,

the current parameters are saved. Early stopping is activated as soon

as the validation error has not improved over the last 5 epochs. The

order of the training batches is shuffled at every epoch. We anneal

the learning rate at every epoch by dividing the initial learning rate

by the number of elapsed epochs. The stored parameters, those that

led to the lowest validation error while training, are subsequently

used for evaluation. The pseudo-code for this procedure is given in

Algorithm 1.

The optimization procedure is implemented in Python 2.7 using

Keras
7
and Theano

8
libraries. The gradients are calculated automat-

ically by Theano using backpropagation. The calculations are run

on a regular PC equipped with a NVIDIA GTX1060 GPU, enabling

efficient parallel computations of the gradient updates in batches

of 1,024 observations. The results for computational load of the

optimization procedure (Table 3) show that given the separately

pre-trained visual scaling, we can optimize the model with the

scalable approach using pre-computed dot-products in 4-5 min-

utes. Training time (Table 3) is an important factor in the practical

scalability of our approach.

We evaluate our method on the 809 test user-profiles sampled

using the trained model to predict the similarity score for each

unseen item in a batch. For each threshold τ ∈ { i
500

∀i ∈ (0, 500)}
the unseen items for which sim > τ are recommended. We use TF-

IDF (based on the extracted terms) as a benchmark and show the

value of the proposed semantics-driven recommendation through

comparison to other models. Our version of SF-IDF+ is based on

synsets from plots, whereas the modified CF-IDF+ uses the features

directly captured from variables (feature types 1 to 5 in Table 2).

Table 3 describes the models used.

The comparison between the predicted scores and the actual likes

forms the basis of performance measurement, expressed through

area under curve (AUC) for the precision-recall (PR) and receiver

operating characteristic (ROC) curve, F1-measure, and Cohen’s

kappa [7] coefficient κ. Performance metrics are calculated for all

809 test users (Table 4). Even though we do not directly optimize

for these metrics, a lower logloss results in higher test performance.

We obtain an unexpected weak result for SF-IDF+ (S) as it does
not outperform TF-IDF on any metric, although the difference is

not statistically significant. The WSD, additional information in the

7
https://keras.io/

8
https://pypi.org/project/Theano/

Algorithm 1 Optimization

1: procedure Optimize(α , trainBatches,valBatches)
2: Generate β ∼ Normal ▷ Random unrestricted

3: Generatewi , ®qi ∼ Exp ∀i ∈ [1,k] ▷ Random non-negative

4: ®qi ← ®qi/
∑
®qi ∀i ∈ [1,k] ▷ Sum of ®qi restriction

5: θ ← {β , ®w, ®q1.. ®qk } ▷ Parameters

6: epoch ← 1 ▷ Epoch counter

7: stop ← 1 ▷ Stopping counter

8: while stop ⩽ 5 do ▷ Early stopping criterion

9: Shuffle trainBatches
10: αt = α/epoch ▷ Learning rate annealing

11: for B ∈ trainBatches do ▷ Loop over batches

12: θ ← θ − αt
1,024

∑
1,024
obs=1 ∇L(θ ,Bobs ) ▷ Gradient

descent update

13: end for
14: ℓ ← L(θ ,valBatches) ▷ Get average validation loss

15: if epoch = 1 or ℓ < ℓ∗ then
16: ℓ∗ ← ℓ ▷ Update best validation loss

17: θ∗ ← θ ▷ Update best parameters

18: stop ← 1 ▷ Reset stop counter

19: else
20: stop ← stop + 1 ▷ Increment stop counter

21: end if
22: epoch ← epoch + 1 ▷ Increment epoch counter

23: end while
24: return θ∗ ▷ Return best parameters

form of synsets, combined with more parametric freedom appar-

ently do not translate into higher performance. The optimization

procedure could be a factor, but the loss function works to increase

test performance. Regardless, SF-IDF+ also shows a higher train and

validation logloss (Table 3). Our further investigation points to low-

quality WSD as the most likely cause of this under-performance.

Although theoretically disambiguation leads to more accurate se-

mantics, mistakes are also amplified.

Table 4 presents the analysis of performance metrics (averages

are over 10 random runs) over all existing RS models on our so-

lution for addressing scalability, and shows that concepts alone

(C) are more informative than both synsets and terms as model

C substantially improves over the baseline TF-IDF on all metrics.

C+S outperforms the benchmark TF-IDF on all metrics – average
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Table 4: Performance on test set, n = 809 users, averages over
10 random restarts. TF-IDF is the benchmark.

Models AUC F1 κ
ROC PR minr maxr minr maxr

C+S 0.570 0.361 0.419 0.509 0.083 0.251

C 0.567 0.358 0.419 0.507 0.081 0.249

T (TF-IDF) 0.535 0.324 0.413 0.479 0.041 0.200

S (SF-IDF+) 0.531 0.319 0.411 0.477 0.038 0.198

AUC(ROC) improves from 0.535 to 0.570, and AUC(PR) from 0.324

to 0.361, minr (F1) from 0.413 to 0.419, and maxr (F1) from 0.479 to

0.509, Kappa metrics from 0.041 to 0.083 and from 0.200 to 0.251 for

minr (κ) and maxr (κ) respectively. To conclude, we see it is neither
necessary to train the scaling together with the model as a whole,

nor to directly optimize on the final performance metrics.

6 CONCLUSION
In this paper we proposed an extension to previous works on

semantics-driven recommenders. We demonstrated that these sys-

tems are broadly applicable beyond news recommendations, for

instance the complex domain of movies.

We found that rich semantic information can be extracted not

just from articles but item descriptions in a much broader sense,

and when a suitable domain ontology is unavailable our virtual

ontology method can be applied directly requiring only the dataset

itself. In situations where the proper scaling method for feature

vectors is unknown, we showed that effective scales can be found

through direct optimization of the logloss. Through a reformulation

of how related features are combined, we were able to pre-compute

the computationally expensive operations of the cosine similarities

and reduced the dimensionality of the similarity model by several

orders of magnitude.

The semantics-driven recommender we presented strongly out-

performed the benchmark TF-IDF on ROC , PR, F1, and κ, even
though it was not directly optimized on these metrics but on a

cross-entropy loss function that allowed for efficient gradient-based

optimization. The proposed scaling-up of the semantics-driven ap-

proach has allowed us to optimize these models within minutes

on consumer-grade commodity hardware. This research highlights

that semantics-driven recommenders have many unexplored appli-

cations and can be utilized effectively with the proposed approach,

opening the door to further extensions to other domains.
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