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Abstract—In order to effectively and efficiently disclose the
ever-growing amount of widely distributed RDF data to demand-
ing users in real-time environments, RDF query engines need
to optimize the join order of partial query results. For this, a
two-phase optimization (2PO) algorithm and a genetic algorithm
(GA) have already been proposed. We propose an alternative
approach – an ant colony system (ACS). On a large RDF data
source, our approach significantly outperforms both 2PO and
the GA in terms of execution time and solution quality for RDF
chain queries consisting of up to about ten joins. For larger
queries, our novel ACS delivers solutions of better quality than
2PO does, while realizing a solution quality that is comparable to
the solution quality of the GA method. However, the GA approach
offers the best trade-off between execution time and solution
quality for such larger queries.

Index Terms—RDF chain query optimization, ant colony
system.

I. INTRODUCTION

With the rise of the Semantic Web [1], an ever-growing
amount of data is stored in many heterogenous, yet intercon-
nected sources. This data is typically represented by means of
the Resource Description Framework (RDF), a World Wide
Web Consortium (W3C) framework for describing and inter-
changing meta-data [2], which enable machine-interpretability
by describing the context of data. Due to the interconnectivity
of data rather than pages, the Semantic Web has the potential
of addressing today’s typical users’ complex information needs
in a more effective and efficient way than the current Web.

Semantic Web technologies allow exploration of many
different RDF data sources in order to address very specific in-
formation needs. Queries can be executed by means of W3C’s
SPARQL Protocol and RDF Query Language (SPARQL) [3].
Fast RDF query engines are crucial in order for SPARQL
queries to disclose the ever-growing amount of widely dis-
tributed RDF data to demanding users in real-time environ-
ments. One of the problems here is the optimization of the join
order of partial query results, i.e., query paths. The total query
execution time depends on such query paths. A good algorithm
for join order optimization in a query path can hence contribute
to efficient querying. As the number of possible query paths
grows exponentially with the query size, the optimization of
RDF query paths is challenging. Several methods have already
been proposed to address this problem. One of these methods
is a two-phase optimization (2PO) algorithm [4], consisting of

an iterative improvement (II) method followed by simulated
annealing (SA). More recently, a genetic algorithm (GA) has
been shown to be a promising alternative [5].

As their design has been inspired by methods for query path
optimization in traditional databases, existing approaches to
RDF query path optimization have essentially been designed
for more or less static environments – changes in the environ-
ment typically require the optimization to be run all over again.
However, in the dynamic Semantic Web, data changes, sources
come and go, and latency between sources may be volatile,
which has inspired recent research into adding robustness to
the Semantic Web [6]. In this light, an ant colony optimization
(ACO) [7] approach in the form of an ant colony system
(ACS) [8] is a good alternative to existing approaches in an
RDF environment. ACO is a technique inspired by the foraging
behavior of ant colonies. Its nature allows the algorithm to be
run continuously and to adapt to changes in the environment
in real time. Moreover, ACO has been shown to outperform
GAs in solving complex problems such as scheduling [9] and
sequential ordering [10].

As its characteristics make an ACS an attractive alternative
to existing RDF query optimization approaches, we explore its
applicability to query path optimization in an RDF environ-
ment and we compare its performance with the performance
of existing RDF query optimization methods. In this work, we
focus on the performance of the considered algorithms when
optimizing a specific type of SPARQL queries, the so-called
RDF chain queries, on a single source.

The remainder of this paper is organized as follows. First,
Section II provides a short introduction to RDF, chain queries,
and chain query optimization. We then discuss and evaluate
our novel ACS approach to RDF chain query optimization in
Sections III and IV, respectively. Last, we draw conclusions
and propose directions for future work in Section V.

II. RDF AND CHAIN QUERY OPTIMIZATION

In an RDF model, facts are declared as a collection of
triples, each of which consists of a subject, a predicate, and
an object. RDF triples can be visualized in a graph, which
can be described as a node and directed-arc diagram, where
each triple is represented as a node-arc-node link [2]. An arc,
denoting a predicate, is used to define the relationship between
a subject node and an object node.



When querying RDF sources, RDF triples are essentially
matched with a series of patterns specified in a SPARQL query.
A specific type of patterns is a so-called chain query, where
the WHERE statement only contains a set of node-arc-node
patterns which are chained together such that the object of one
predicate is the subject of the next predicate. Such RDF chain
queries, which are the focus of our current endeavors, resemble
chain queries in traditional relational databases, where a query
path is followed by performing joins between its subpaths of
length 1 [4]. Randomized and genetic algorithms have proven
to outperform heuristic methods in optimizing these types of
queries in relational databases [11].

For an example of an RDF chain query, let us consider
an RDF model of the CIA World Factbook [12], containing
over 100,000 triples capturing data about approximately 250
countries. Suppose a financial risk analyst wants to identify
the export partners of the Netherlands that have dependent
areas (i.e., areas not possessing full political independence or
sovereignty) that are involved in an international conflict. This
can be expressed in a SPARQL chain query, as shown in Fig. 1.

1 PREFIX c: <http://daml.org/2001/09/countries/fips#>
2 PREFIX o: <http://daml.org/2003/09/factbook/factbook-ont#>
3 SELECT ?partner
4 WHERE { c:NL o:exportPartner ?expPartner .
5 ?expPartner o:country ?partner .
6 ?partner o:dependentArea ?area .
7 ?area o:internationalDispute ?conflict .
8 }

Fig. 1. Example RDF chain query in SPARQL.

This SPARQL chain query can be subdivided into four
subqueries. The first subquery is a query for information on the
export partners of the Netherlands (line 4). Other subqueries
are a query for countries actually associated with other coun-
tries as export partners (line 5), a query for dependent areas
(line 6), and a query for international disputes (line 7). In order
to resolve the complete query, the results of the subqueries
can be joined in any order. In this process, the number of
statements resulting from a join (between two triple patterns)
equals the number of statements compliant with the constraints
of both operands. Irrespective of the order of the joins of
partial query results, the result of a query will always be the
same. However, the total execution time of a query depends on
the order of joins, i.e., the query path. Therefore, query path
optimization is crucial in today’s real-time RDF environments.

A. Solution Space

The order of joins in a query path is variable and affects
the time needed for executing the query. In this context, the
join-order problem arises. The challenge is to determine the
order in which the joins between partial query results should
be made, while minimizing the overall execution time of the
query. Typical methods for this problem involve exploring a
solution space in an attempt to find low-cost solutions.

A sequence of joins in an RDF chain query can be visualized
as a tree. The leaf nodes of an RDF query tree typically
represent inputs, whereas the internal nodes represent algebra

operations, enabling a user to specify basic retrieval requests
on these inputs [13]. In our current endeavors, we consider the
leaf nodes of a query tree to be matches with the individual
patterns of triples constituting an RDF chain query. The
internal nodes represent join operations.

The nodes in a query tree can be ordered in many different
ways, which are referred to as query paths. In an RDF
context, bushy and left-deep query trees can be considered.
In bushy trees, base relations (containing matches with one
triple pattern) as well as results of earlier joins can be joined.
Left-deep trees require the right-hand join operands to be base
relations. Figure 2 depicts a bushy tree and a left-deep tree for
our example query. In these trees, matches with triple patterns
{t1, t2, t3, t4} – corresponding with lines 4 through 7 of our
query, respectively – are joined, with ◃▹ representing a join.

Each solution in the solution space represents a query path.
For n base relations, and hence n− 1 joins, n! different left-
deep query tree solutions exist. However, when also consider-
ing bushy query trees,

(
2(n−1)
(n−1)

)
(n− 1)! solutions exist, which

may outperform left-deep solutions in quality for seven in
ten chain queries, as shown in a collection of 100 five-join
chain queries [11]. Solutions are located in the solution space
such that their neighbors are similar solutions. We consider
solutions to be neighbors of a solution if they can be obtained
by transforming the latter solution into an equivalent solution
by applying one out of four transformation rules once to a
part of the solution query tree, i.e., join commutativity, join
associativity, left join exchange, or right join exchange [14].

B. Solution Costs
In the solution space, each solution is associated with

execution costs, typically constituted by the costs of data
transmission from the source to the processor and the costs
of processing this data [4]. As in this paper, we focus on a
single source, we omit the (constant) data transmission costs
and only consider data processing costs, i.e., the sum of costs
associated with all joins within a solution.

The costs of a join are typically influenced by the cardi-
nalities of the operands and the join method used. Several
methods can be used for implementing (two-way) joins [15].
We assume that no index or hash key exists a priori for sources
used in a dynamic Semantic Web environment (making single-
loop and hash joins unfeasible) and that the source data
is unsorted (requiring the sort-merge join algorithm to sort
the data first, which would take up precious running time).
Therefore, we consider only nested-loop joins in this paper.
When performing a nested-loop join, all elements in both join
operands need to be compared with one another. In this light,
when joining the first operand osj1 and the second operand
osj2 for each join j in a solution s with n base relations, we
define the total execution costs cs as

cs =
n−1∑
j=1

∣∣osj1∣∣ ∣∣osj2∣∣ , (1)

where
∣∣osj1∣∣ and

∣∣osj2∣∣ represent the cardinalities of the first
and second join operands of join j for solution s, respectively.



(a) Left-deep tree. (b) Bushy tree.

Fig. 2. Examples of query trees for an RDF chain query with three joins.
Yellow (light gray) nodes represent matches with triple patterns, whereas blue
(dark gray) nodes represent joins.

For base relations, cardinalities can be derived from the
data, i.e., by counting the number of triples associated with a
predicate. The cardinality of the result of an arbitrary join is
a function of the cardinalities of its operands. In the worst-
case scenario, the result of a two-way join equals the Cartesian
product of the two operands. However, as some join selectivity
may take place, we define the cardinality

∣∣osj ∣∣ of join j for
solution s as ∣∣osj ∣∣ = ∣∣osj1∣∣ ∣∣osj2∣∣σsj , (2)

with σsj representing the selectivity of join j for solution s.
The join selectivity of partial results may not be known in
real-time without actually performing the join. Therefore, we
need to approximate this selectivity. To this end, we use a rule
of thumb stemming from the field of traditional databases by
assuming the join selectivity to be 10% [16]. In a real-time
environment, such an estimation could of course be updated
over time.

C. Existing Approaches to RDF Chain Query Optimization

The challenge in RDF query path determination lies in
minimizing query execution costs in often large solution
spaces. Queries on RDF sources could be translated into
algebraic expressions [5], which can subsequently be opti-
mized by applying transformation rules for relational algebraic
expressions [13], [15]. Yet, such heuristics are not sufficient
in complex solution spaces. Several methods have been shown
to yield better results in traditional query execution environ-
ments [11]. Inspired by these results, a small body of work has
been dedicated to applying some of these methods to query
optimization in the context of the Semantic Web [4], [5].

One of the first methods for exploring the solution space
of RDF query paths is the 2PO algorithm [4]. In the first
phase of this approach, an II algorithm randomly generates
a set of initial solutions, each of which is used as a starting
point for a walk in the solution space. In each walk, every
step is a move towards a better neighbor. When in a walk
a solution is reached for which no better neighbor can be
found in a limited number of tries, the current solution is
considered to be a local optimum. In the second phase of the
2PO approach, a SA algorithm takes the best local optimum
thus found as a starting point for another walk, yet of a
different nature, in the solution space, while simulating a
continuous temperature reduction of a system until the system

is considered to be frozen. The probability of the algorithm to
accept moves not yielding improvement is direct proportional
to the system’s temperature and is inversely proportional to the
absolute difference in costs between a current solution and an
arbitrary neighboring solution. The algorithm thus searches the
proximity of possibly suboptimal solutions, hereby reducing
the risk for a local optimum [5].

A GA has recently been proposed as an alternative to
2PO for optimizing (large) RDF chain queries [5]. A GA
is an optimization approach in which biological evolution
according to the principle of survival of the fittest is simulated.
A population of chromosomes – representing solutions – is
exposed to evolutionary operations, consisting of selection
(where individual chromosomes are selected for proliferation
in the next generation), crossovers (creating offspring by
combining chromosomes), and mutations (randomly altering
chromosomes). Evolution is simulated until the maximum
number of iterations is reached or several generations have
not yielded any improvement. The fitness of a chromosome
determines the chances of its survival and is inversely propor-
tional to the execution cost of the associated solution. Initial
results demonstrate a promising performance compared to 2PO
in terms of both execution time and solution costs, in particular
for larger queries [5].

III. OPTIMIZING RDF CHAIN QUERIES USING
ANT COLONIES

As existing RDF chain query path optimization approaches
have been inspired by methods for optimization of query paths
in traditional databases, their nature renders these approaches
most applicable to more or less static environments. When
something in the environment changes, existing optimization
techniques typically need to be run all over again. Yet, in a dy-
namic Semantic Web environment, data continuously changes,
data sources come and go, and transmission costs between
sources may vary over time. Therefore, we propose to optimize
RDF chain queries by using ant colonies, as ACO-based
approaches can be run continuously and can adapt to changes
in the environment in real time. Moreover, such approaches
typically outperform GAs in solving complex problems such
as scheduling [9] and sequential ordering [10].

A. Ant Colony Optimization

ACO is an optimization method inspired by ant colonies’
foraging behavior [7], i.e., ants walk between their nest and
a food source marking their paths with pheromone traces.
Foraging ants make use of these traces, as they tend to follow
paths where the pheromone concentration is highest. Over
time, shorter paths attract an increasing number of pheromone
deposits, as they are traversed with increasing frequency
because of their length as well as the pheromone traces on
these paths. The ant colony thus converges to using a relatively
short path.

ACO is essentially a population-based meta-heuristic where
each encountered solution is represented by a path of an
ant in a solution space. Prototypical applications for ACO



are problems of which the solution space can be represented
as a graph, with artificial ants trying to find a shortest path
through the graph. A classic example of such a problem is the
Traveling Salesman Problem (TSP), where the goal is to find
the shortest closed tour between a set of cities, such that each
city is visited exactly once. In a graph representation of TSP,
vertices typically represent cities, whereas edges connecting
two vertices are associated with between-city distances. ACO
can be applied in order to let some artificial ants construct
tours. After completing a tour, each ant deposits a pheromone
trace on the edges of its tour, proportional to the length of the
solution found.

Typically, each iteration of the ACO algorithm consists of
two steps. First, every ant in the colony constructs a path
from a start vertex to an end vertex in the graph. Second,
when all ants have reached the end vertex, the edges of each
path are marked with a pheromone quantity proportional to
the observed quality of the path.

In the classic Ant System [7], an ant k constructs a path
by iteratively moving from its most recently visited vertex
x to another vertex y that the ant has not visited yet. The
probability pkxy (i) for an ant k to move from vertex x to an
unvisited vertex y at iteration i of the algorithm is defined as

pkxy (i) =


[τxy(i−1)]α[ηxy ]

β∑
z∈Vk(x)

[τxz(i−1)]α[ηxz ]
β , z ∈ Vk (x) ,

0, z ̸∈ Vk (x) ,
(3)

where τxy (i− 1) quantifies the global pheromone quantity on
the edge joining vertices x and y at iteration i − 1, ηxy is a
local heuristic measure capturing the inverse of the (estimated)
distance between vertex x and vertex y, and Vk (x) represents
the unvisited vertices of ant k after visiting vertex x. The
α and β parameters control the relative importance of the
information conveyed by global pheromone traces and local
heuristics, respectively.

Based on the latest experience of all m ants, the pheromone
quantity τxy (i) associated with an edge joining vertices x and
y is updated at iteration i as

τxy (i) = (1− ρ) τxy (i− 1) +
m∑

k=1

∆τkxy (i) , (4)

where ρ represents an evaporation rate helping the colony not
to converge to a local optimum and ∆τkxy (i) captures the
pheromone quantity deposited at iteration i by ant k on an
edge wxy joining vertices x and y. This quantity is defined as
a function of a constant Q and the length Lk of path Tk (i)
taken by ant k at iteration i, i.e.,

∆τkxy (i) =

{
Q
Lk

, wxy ∈ Tk (i) ,

0, wxy ̸∈ Tk (i) .
(5)

B. Ant Colony System

The classic Ant System has known several successors, each
with its specific focus. One of these variants is the Ant Colony
System (ACS) [8], which is typically faster converging and
more efficient than the classic Ant System. The ACS algorithm
differs from the Ant System in three ways.

First, the probability distributions used by ants when walk-
ing through the graph are changed with a probability 0 ≤ q ≤
1 in such a way that ants occasionally simply select the edge
with the highest probability, i.e.,

pkxy (i) =

 as in (3), rks (i) > q,
1, rks (i) ≤ q, y = y∗,
0, rks (i) ≤ q, y ̸= y∗,

(6)

where rks (i) is a random number between 0 and 1 for step s
of ant k at iteration i, and where y∗ is the vertex connected
with the edge with the highest probability, i.e.,

y∗ = argmax
z∈Vk(x)

(
[τxz (i− 1)]

α
[ηxz]

β
)
. (7)

This pushes the algorithm to faster convergence. In order to
find a balance between fast convergence to known solutions
on the one hand, and exploration of other parts of the solution
space on the other hand, the parameter q representing the
probability of an ant selecting the best edge can be adjusted.

Additionally, ACS differs from the Ant System in that ants
only deposit traces of pheromone on the edges that constitute
the best-so-far solution, rather than on all edges visited by ants
in the latest iteration. This also stimulates faster convergence
of the ant colony to the best solution encountered so far.

A final difference between ACS and the Ant System lies
in the pheromone evaporation process. In ACS, pheromone
evaporation only takes place on those edges that have been
visited by ants, rather than on all edges. This stimulates ants
to find their way into unexplored parts of the solution space.

C. Problem Representation

Because the classic design of the Ant System enables ants
to find their way around changes in the graph, and the ACS
variant has been designed as a faster converging and thus more
efficient variant, the application of ACS to RDF chain query
optimization is an attractive alternative to the existing 2PO
and GA approaches. Therefore, we propose an ACS-based
algorithm utilizing a graph representation of an ordinal number
encoding scheme [11], enabling ants to explore the solution
space by iteratively constructing solutions, partly guided by
global pheromone traces signaling good solutions and partly
guided by their own local cost estimations of every next join.

The encoding scheme iteratively joins two operands in an
ordered list of operands, the result of which is saved in the
position of the first appearing operand. The sequence of pairs
of indices of operands thus obtained is used to encode the
solution. Because of this, for a chain query with n base
relations, the first pair of numbers consists of two unique
integers ranging from 1 to n, the second pair consists of two
unique integers ranging from 1 to n− 1, etc.

This encoding scheme can be illustrated by means of the
bushy query tree for our example chain query, presented in
Fig. 2(b). First, consider the ordered list of matches with triple
patterns {t1, t2, t3, t4}. An initial join between the fourth and
second triple pattern yields the list {t1, t4t2, t3}. A subsequent
join between the second and third operand in this new list



yields {t1, t4t2t3}. A final join between the first and second
operand in the latter list results in {t1t4t2t3}. This join order
would be encoded as ((4, 2) , (2, 3) , (1, 2)).

As Fig. 3 shows for the bushy query tree presented in
Section II, the ants find their way through a directed graph.
They walk from a start vertex, representing a situation in which
no matches with triple patterns have been joined, to an end
vertex, representing a situation in which all joins have been
made. Each path represents a join sequence, with each step
representing a join.

For an arbitrary join (visualized as a node column in Fig. 3),
the vertices in the graph represent all valid combinations
of indices of join operands, in accordance with our applied
ordinal encoding scheme [11]. An ant’s observed distance
associated with an arbitrary edge connecting a vertex from one
join with a vertex from the next join depends on the path taken
up until the former join and represents the estimated additional
costs of performing the next join – i.e., by applying (1) and (2).
The observed distances associated with edges, as well as the
pheromone traces on these respective edges guide the ants’
decisions in accordance with (6).

At every iteration, new pheromone traces, which are in-
versely proportional to the associated paths’ total execution
costs, are deposited on the best-so-far path and pheromone
traces on all visited paths evaporate to a certain extent. When
the ants have not encountered a better path in some number of
iterations, the algorithm is considered to have been converged.

Fig. 3. Graph representation of the join ordering problem, as used in
our proposed ACS approach to RDF chain query optimization. A colony of
artificial ants iteratively traverses this graph from a starting vertex to an end
vertex, both marked yellow (light gray). At each step, an ant selects one join
from all possible alternatives, represented as columns of blue (dark gray)
vertices, in accordance with an ordinal number encoding scheme. The width
of an edge reflects the pheromone quantities on this edge. This graph is a
representation for an RDF chain query with 3 joins. The path representing
the bushy query tree example presented in Fig. 2(b) is marked red (dark gray).

Our approach can aid RDF query path optimization by
means of iteratively constructing solutions, partly guided by
encountered low-cost solutions and partly guided by local
heuristics. A strength of our approach is in that – when run
continuously – ants could theoretically compensate on the
fly for changes in the graph’s configuration as well as for
changes in the costs associated with making an arbitrary join,
possibly caused by updated data sources (yielding changes
in cardinalities) or latency differences (affecting transmission
costs in a distributed setting), which are not uncommon
in a Semantic Web setting [6]. Yet, assessing this type of
robustness is not the focus of our current work, as we aim to
compare the performance of our novel method with existing
RDF chain query optimization methods in a setting that allows
for easy comparison of the considered approaches in terms of
execution time and solution quality, without noise introduced
by (different reactions to) changes in the environment.

IV. EVALUATION

Because of its characteristics described in Section III, our
ACS algorithm appears to be an attractive alternative to the
existing 2PO and GA methods for RDF chain query optimiza-
tion. In order to assess its potential, we evaluate our approach
and compare it to the performance of existing techniques in a
Semantic Web environment.

A. Experimental Setup

The performance of our considered approaches is assessed
on a 32-bit 2.66 GHz Intel Core 2 Duo machine with 2
GB physical memory. We evaluate the performance of RDF
chain query optimization by means of 2PO (RCQ-2PO), a
GA (RCQ-GA), and our novel ACS (RCQ-ACS) on an RDF
version of the CIA World Factbook [12]. We evaluate our con-
sidered methods on RDF chain queries varying in length from
3 to 20 predicates, i.e., 2 to 19 joins. For each query length, we
evaluate each method’s execution times until convergence and
costs of found solutions over 100 random chain queries on our
RDF data. We consider the complete solution space with bushy
query trees. Statistical significance of observed differences is
assessed by means of a paired, two-sided Wilcoxon signed-
rank test, evaluating the hypothesis that these differences are
symmetrically distributed around a median equal to 0.

For RCQ-2PO, we adopt the settings proposed in [11]. We
hence start the II phase of the process with 10 random starting
points for random walks in the solution space. The number
of times the algorithm tries to find a better neighbor for a
solution during such a walk is limited to that solution’s number
of neighbors. In the SA phase, the system’s temperature is
initialized at 10% of the costs associated with the best local
optimum obtained in the II phase. The number of times the
algorithm tries to move to a neighboring solution is limited
to 16 times the number of joins in the query. After 16 tries,
the system’s temperature is reduced with 5%. The system is
considered to be frozen when the temperature drops below 1
or when the best solution so far has not been improved in four
consecutive temperature reductions.



RCQ-GA is configured in accordance with the settings
suggested in [5]. As such, solutions are encoded into chro-
mosomes by means of an efficient ordinal encoding scheme
which facilitates easy evolutionary operations [11]. A set of 64
chromosomes is exposed to a process of simulated evolution
with a crossover rate of 0.65 and a mutation rate of 0.05, while
applying fitness-based selection. In each generation, the best
chromosome is always selected for proliferation in the next
generation. The GA is considered to have been converged after
30 consecutive generations without any improvement in terms
of fitness of the best solution.

Our proposed RCQ-ACS algorithm has its roots in the
classic Ant System [7] and the related ACS [8]. Following
these classic approaches, we propose to use a number of
ants equal to the problem size, i.e., the number of joins.
Additionally, we propose to stimulate quicker convergence
to relatively good solutions by relying as heavily on the
information conveyed by global pheromone traces as on local
heuristics. In this light, we propose α and β to equal 1, with
an evaporation rate ρ equal to 0.25 and the probability q of
an ant selecting the best edge equal to 0.7. Additionally, the
constant Q is set to 10. Finally, we consider the colony to
have been converged after 30 consecutive iterations without
any improvement in solution quality.

B. Experimental Results

Their nature renders some of the considered methods more
suitable for RDF chain query optimization than others. Sup-
ported by Table I, Figures 4 and 5 clearly demonstrate that
on average, some methods are suitable for a distinct range of
queries. Additionally, observed relative differences in solution
costs appear to be rather small, which is caused by our
considered cost function. Apparently, our cost function yields
a solution space in which the considered approaches find local
optima which are relatively close together with respect to
solution costs, even though absolute differences may be vast.
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Fig. 4. Mean and standard deviations of costs of optimized solutions for
queries of various lengths, in terms of improvement with respect to RCQ-2PO.

For RDF chain queries consisting of up to about ten joins,
RCQ-2PO yields solutions of a similar quality as RCQ-GA.
RCQ-ACS on the other hand significantly outperforms both
RCQ-2PO and RCQ-GA in terms of solution quality, albeit
while obtaining relatively small improvements in solution
costs. For RDF chain queries consisting of two and three joins,
all considered algorithms produce solutions of similar quality.

In terms of execution time, RCQ-GA is typically signif-
icantly outperformed by both RCQ-2PO and RCQ-ACS for
the smaller RDF chain queries consisting of up to about ten
joins. RCQ-GA needs up to approximately 120% more time
to converge than RCQ-2PO. In turn, compared to RCQ-2PO,
our novel ACS-based RDF chain query optimization approach
needs up to about 80% less time to converge. Moreover,
RCQ-ACS converges in up to approximately 90% less time
than RCQ-GA. As the query size increases, the differences in
mean execution times tend to decrease. All in all, for smaller
RDF chain queries consisting of up to approximately ten
joins, RCQ-ACS is typically the fastest performing algorithm,
yielding the best solutions.

Yet, for RDF chain queries consisting of more than approx-
imately ten joins, our results exhibit a different pattern. On
our considered set of larger RDF chain queries, RCQ-2PO
typically yields solutions of a significantly inferior quality,
when compared to the solutions produced by both RCQ-GA
and RCQ-ACS. Furthermore, for increasing query sizes, the
solution quality of RCQ-GA moves towards the quality of
solutions found by our novel ACS, leaving no significant
difference for queries constituted by more than 12 joins.

However, for RCQ-ACS, the performance improvements
compared to RCQ-2PO in terms of solution quality come at a
cost of significantly less favorable execution times for larger
queries. Compared to RCQ-2PO, the relative difference in
execution time needed in order to reach convergence amounts
to approximately 55% for queries consisting of 19 joins. In
turn, RCQ-2PO needs on average up to over 80% more time
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Fig. 5. Mean and standard deviations of execution times until convergence
of the optimization algorithms for queries of various lengths.



TABLE I
RELATIVE PERFORMANCE DIFFERENCES IN TERMS OF MEAN COSTS OF OPTIMAL SOLUTIONS FOUND (COLUMNS 2 TO 4) AND MEAN EXECUTION TIMES

OF THE OPTIMIZATION PROCESS (COLUMNS 5 TO 7) FOR RDF CHAIN QUERIES OF VARIOUS LENGTHS (COLUMN 1). COLUMNS 2 AND 5 REPRESENT
PERFORMANCE DIFFERENCES BETWEEN RCQ-ACS AND RCQ-GA RELATIVE TO THE PERFORMANCE OF RCQ-GA, COLUMNS 3 AND 6 REPRESENT

PERFORMANCE DIFFERENCES BETWEEN RCQ-ACS AND RCQ-2PO RELATIVE TO THE PERFORMANCE OF RCQ-2PO, AND COLUMNS 4 AND 7 EXPRESS
THE DIFFERENCES BETWEEN RCQ-GA AND RCQ-2PO RELATIVE TO THE PERFORMANCE OF RCQ-2PO, WHERE ∗ , ∗∗ , AND ∗∗∗ DENOTE RESPECTIVE

SIGNIFICANCE LEVELS OF 0.01, 0.001, AND 0.0001.

Relative differences in solution costs Relative differences in execution times
Joins ACS/GA ACS/2PO GA/2PO ACS/GA ACS/2PO GA/2PO

2 0.0E+00 0.0E+00 0.0E+00 -0.823∗∗∗ -0.615∗∗∗ 1.169∗∗∗
3 0.0E+00 0.0E+00 0.0E+00 -0.888∗∗∗ -0.803∗∗∗ 0.760∗∗∗
4 -3.5E−06∗ -1.3E−05∗ -9.4E−06 -0.867∗∗∗ -0.818∗∗∗ 0.373∗∗∗
5 -4.9E−06∗∗ -5.5E−06∗∗ -5.6E−07 -0.828∗∗∗ -0.774∗∗∗ 0.312∗∗∗
6 -5.8E−06∗∗∗ -1.6E−05∗∗∗ -9.7E−06 -0.765∗∗∗ -0.691∗∗∗ 0.315∗∗∗
7 -1.9E−07∗∗∗ -2.4E−07∗∗∗ -5.5E−08 -0.639∗∗∗ -0.580∗∗∗ 0.161∗
8 -1.4E−08∗∗∗ -7.2E−08∗∗∗ -5.8E−08 -0.456∗∗∗ -0.450∗∗∗ 0.011
9 -5.5E−09∗∗∗ -8.7E−09∗∗∗ -3.2E−09 -0.325∗∗∗ -0.331∗∗∗ -0.009

10 -1.9E−10∗∗ -7.4E−09∗∗∗ -7.3E−09∗ -0.052 -0.122∗∗∗ -0.074
11 -4.2E−09∗ -8.2E−08∗∗∗ -7.8E−08∗∗∗ 0.026 -0.076∗ -0.099∗∗
12 -3.7E−10∗∗∗ -1.7E−09∗∗∗ -1.3E−09∗∗∗ 0.317∗∗∗ 0.123∗ -0.147∗∗∗
13 -2.6E−12 -1.4E−09∗∗∗ -1.4E−09∗∗∗ 0.357∗∗∗ 0.107 -0.184∗∗∗
14 -6.8E−12 -1.7E−09∗∗∗ -1.7E−09∗∗∗ 0.753∗∗∗ 0.244∗∗∗ -0.291∗∗∗
15 -9.2E−12 -1.4E−09∗∗∗ -1.4E−09∗∗∗ 1.057∗∗∗ 0.373∗∗∗ -0.333∗∗∗
16 -8.8E−13 -2.2E−10∗∗∗ -2.2E−10∗∗∗ 1.325∗∗∗ 0.399∗∗∗ -0.398∗∗∗
17 6.3E−13 -1.4E−10∗∗∗ -1.5E−10∗∗∗ 1.404∗∗∗ 0.529∗∗∗ -0.364∗∗∗
18 8.6E−12 -3.8E−11∗∗∗ -4.6E−11∗∗∗ 1.811∗∗∗ 0.561∗∗∗ -0.445∗∗∗
19 3.0E−12 -2.5E−12∗∗∗ -5.5E−12∗∗∗ 1.852∗∗∗ 0.557∗∗∗ -0.454∗∗∗

to converge for large RDF chain queries than RCQ-GA, thus
resulting in RCQ-ACS being up to approximately 180% slower
than RCQ-GA for larger queries. As such, even though starting
out with comparably high execution times for smaller queries,
RCQ-GA exhibits almost linear time complexity for increasing
query sizes, whereas RCQ-ACS and, to a lesser extent, RCQ-
2PO exhibit more of a polynomial time complexity.

Hence, for RDF chain queries constituted by more than
approximately ten joins, RCQ-GA offers the best trade-off
between execution time and solution quality. The larger a
query, the more the solution quality of RCQ-GA approaches
the superior solution quality of RCQ-ACS. While doing so,
RCQ-GA needs significantly less time than any other of
the considered approaches. This confirms the observations
in existing literature of RCQ-GA being particularly useful
for optimizing larger RDF chain queries [5]. As such, our
results contribute to existing work by exhibiting the potential
of our novel ACS of delivering significantly better solutions in
significantly less execution time than existing approaches for
smaller RDF chain queries consisting of up to approximately
ten joins, the optimization of which is not trivial due to the
complexity of the solution space.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated how an ACS approach
can facilitate effective and efficient querying in a Semantic
Web environment, by having artificial ants iteratively construct
RDF chain query paths, partly guided by encountered low-
cost solutions, and partly guided by local heuristics. On a
large RDF source, our ACS for RDF chain query optimiza-
tion significantly outperforms both the existing 2PO and GA
approaches in terms of execution time and solution quality for
RDF chain queries consisting of up to approximately ten joins.

For larger queries, our ACS delivers solutions of better quality
than the 2PO method, but needs comparably much time to
converge, whereas the GA is the fastest algorithm yielding
solutions of a quality comparable to the solutions produced
by our ACS. Hence, for larger queries, a GA offers the best
trade-off between execution time and solution quality, thus
rendering our novel ACS particularly useful for optimizing
smaller RDF chain queries.

As future work, we aim to explore how our algorithm
can best adapt to changes in the environment. In this light,
we also consider real-time updating of our join selectivity
estimation. Another direction for future work lies in optimizing
the parameters of our ACS approach to RDF chain query
optimization and performing a parameter sensitivity analysis.
Finally, we also aim to investigate how to devise a more
scalable graph representation of the join ordering problem in
RDF chain query optimization, as we envisage a more scalable
graph representation to improve the performance of our ACS
approach even further.
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