Chapter 9
Adapting graph visualization techniques for
the visualization of RDF data

9.1 Introduction

The foundation language for the Semantic Web is Resource Description
Framework (RDF). RDF is intended to describe theb\Whetadata so that the Web
content is not only machine readable but also nmechinderstandable. In this way
one can better support the interoperability of Wagplications. RDF Schema
(RDFS) is used to describe different RDF vocabetafschemas), i.e., the classes
and properties associated to a particular appdicatiomain. An instantiation of
these classes and properties form an RDF instériseémportant to note that both
an RDF schema and an RDF instance have RDF grppesentations.

Realizing the advantages that RDF offers, in ttst tmuple of years, many
tools were built in order to support the browsimgl &diting of RDF data. Among
these tools we mention Protégé (Noy et al., 200hjpEdit (Sure et al., 2003nd
RDF Instance Creator (RIC) (Grove, 2002). Mosth# text-based environments
are unable to cope with large amounts of dataenstinse of presenting them in a
way that is easy to understand and navigate (Caatl,€1999). The RDF data we
have to deal with describes a large number of Vésburces, and can thus easily
reach tens of thousands of instances and attribWesadvocate the use of visual
tools for browsing RDF data, as visual presentagioth navigation enables users to
effectively understand the complex structure artdrielationships of such data.
Existing visualization tools for RDF data are: Isa{Pietriga, 2002), OntoRAMA
(Eklund et al., 2002), and the Protégé visualizaptugins like OntoViz (Sintek,
2004) and Jambalaya (Storey et al., 2001).

The most popular textual RDF browser/editor is RyétéNoy et al., 2001). The
generic modelling primitives of Protégé enable ¢xport of the built model in

different data formats among which is also RDF/XMerotégé distinguishes
between schema and instance information, allowamgf incremental view of the
instances based on the selected schema elemergsofChe disadvantages of
Protégé is that it displays the information in arhichical way, i.e., using a tree
layout (Sugiyama et al., 1981), which makes itidift to grasp the inherent graph
structure of RDF data.

In this paper, we advocate the use of a highly aroitable, interactive
visualization system for the understanding of ddfe RDF data structure®Ve

implemented an RDF data format plugin for GViz (Bekt al., 2002), a general
purpose visual environment for browsing and editgrgph data.The largest
advantage that GViz provides in comparison witreotfRDF visualization tools is
the fact that it is easily and fully customizab&Viz was architected with the
specific goal in mind of allowing users to definewn operations for data
processing, visualization, and interaction to supppplication specific scenarios.
GViz also integrates a number of standard operstifo¥ manipulation and
visualization of relational data, such as data eiesywgraph layout tools, and data
format support. This combination of features hadkthus to produce, in a short
time, customized visualization scenarios for angwgeiseveral questions about
RDF data. We demonstrate our approach to RDF dstialization by using a real
dataset example of considerable size.

In the next section, we describe the real-worldaskett we use, and show the
results obtained when visualizing it with severafisetng RDF tools. Our
visualization tool, GViz, is presented in SectiaB.%ection 9.4 presents several
visualization scenarios we built with GViz for thieed RDF dataset, and details
various lessons learnt when building and using siglmalizations. Finally, Section
9.5 concludes the chapter proposing future dirastidor visualizing RDF
information.

9.2 Background

Throughout this paper, we will use an example basectal data made available
by the Rijksmuseum in Amsterdam, the largest ad history museum in the
Netherlands. In the example there is a museum szthesed to classify different
artists and their artefacts. The museum instaneserittes more than 1000 artists
and artefacts. For comparison purposes, we cluosgptesent the same museum
RDFS schema in several browsing tools.

Figure 9.1 depicts the museum schema in ProtégéaAde noticed from this
figure such a text-based representation cannolynilepict the structure of a large
amount of data. More exactly, a text-based disptayery effective fordata
mining, i.e., posing targeted queries on a dataset oneeknows what structure
one is looking for. However, text-based displayse awot effective fordata
understandingi.e., making sense of a given (large) datasewtith the global
structure is unknown to the user.

Elltopia Protégs 3.0 beta {files\H:\www\Projects'viz\input\topia\topia,pprj, ROF Schema) B [=[3]
Project Edit Window Help

i R) B ® <gprotégé

[Classes | = Slats | = Forms | 4 Instances |~ Queries | Ontaviz |

FORPROJECT: ® topia

FORCLASS: © topiaifrtist N X
DISPLAY:
Class Hierarchy - 5 ¢ ® X | name DOCUMENTATION: RN
THING =] | fiopiacartist
© © SYSTEM-CLASS
topia:Artefact ROLE:
topiacArtist CEEER e
topiacAtlas
topiaAtlasindex e T T SGTE R OR = e -
topia EroaderTerm Hame [Type | cardinalty | Other Facets
topia:Continent = fopia:artistFamilyName Instance single classes=(pe_system:String}
topia:Land = topia:atistFirstiame Instance single classes=(type_systern:String}
topiaPlace = fopia:artisthliddlename Instance single classes=(type_systern:String}
topia:Region = topia:artistEynonytn Instance single classes=(type_systern:String}
topiaTerm =] || topia:artistrearomith Instance single classes=(type_systemintegert
g || topia:artistrearoeath Instance single classes=(type_systentints gert
= topia;creator Instance multiple classes=(topia.Artefact)
SUPERCLASSES OF SELECTED CLASS: ¢
THING

Figure 9.1 Museum schema in Protégé (text-based).

In order to alleviate the above limitation, Protégffers a number of built-in
visualization plugins. Figure 9.2 shows the graphresentation generated by the
OntoViz plugin for two classes from the museum stheThe weak point of

OntoViz is the fact that it is not able to prodyg®d (understandable) layouts for
graphs that have more than 10 nodes.

~=1of x|
i =g= FF B A @R <protége
CONFIG: i 4 & 5llop = =
__ftame [sutl sup b ex[_sit[ste[ins[s :
opia:Atetaet | (el | 1| L1 (1| Jel | 121] 1o afeRit
topiacaist | 1| 0| (1|1 | & (][] topia [Instance | topiahtlas
topiaariefactBeginVear | Instance | type systemInteger
topiaartefactBroader Term | Instance® | topiaBroaderTerm
topiaartefactEndVear | Instance | type systemInteger
topiaartefactExpostionPlace | lnstance | type_systemiStrng
RS (topiaartefactMainCreator vtupﬁ.crﬁtur*
O THING
© O SYSTEM-CLASS topiaArtist
piaAe e (S topiaartisiFamilyName | Instance | type system:String
¥ topiaAttist (265) topiaantistFirstName | Instance ‘ type_system:String
topiazAtlas (261) [Tostance | type eystem tring
® topiaAtlasindex (1) [nstance | type_systemSting
topiaiBroaderTerm (114) topiaartistVearOfirth | Instance | type_systemmeger
@ topizContinent (5)
topiacLand
topiaPlace
topiazRegion (113)
‘ Kl | vl |

Figure 9.2 Museum schema in Protégé (with OntoViz plugin).

IsaViz (Pietriga, 2002) is a visual tool for bronglediting RDF models. IsaViz
uses AT&T's GraphViz package (North and Koutsofio896) for the graph
layout.

Figure 9.3 shows the same museum schema usingzlsevé layout produced by
the tool is much better than the one generated @ittoViz. However, the directed
acyclic graph layout used (Sugiyama et al., 198%omes ineffective when the
dataset at hand has roughly more than hundred nadesn be seen from Figure

9.3. IsaViz has a 2.5D GUI with zooming capabiditiand provides numerous
operations like text-based search, copy-and-peditng of the geometry of nodes
and arcs, textual attribute browsing, and grapligaion.

=0l x| | T =loix
b

Figure 9.3 Museum schema in IsaViz.

For all these reasons, we believe that IsaViz istae of the art tool for
browsing/editing RDF models. However, its rigidtatecture makes it difficult to
define application-dependent operations others thanstandard ones currently
provided by the tool. Experience in several comitiesiinterested in visualizing
relational data in general, such as software eeging and web engineering, and
our own experience with RDF data in particular, slaswn that tool customization
is extremely important. Indeed, there is no ‘silbetlet’ or best way to visualize
large graph-like datasets. The questions to be arsgwthe data structure and size,
and the user preferences all determine the ‘vigatidin scenario’, i.e., the kind of
(interactive) operations the users may want togoerfto get insight in the data and
answers to their questions. It is not that eaclarseép application domain demands
a specific visualization scenario. Users of the esalomain and/or even the same
dataset within the same domain may require diftesmenarios. Building such
scenarios often is responsible for a large parthef complete time spent in
understanding a given dataset (Telea, 2004). Thislgleequires the visualization
tool in use to be highly (and easily) customizable.

9.3 GViz

In our attempt to understand RDF data through Vise@esentations, an existing
tool was used. We implemented an RDF data formagiplfor GViz (Telea et al.,

2002), a general purpose visual environment fowbiag and editing graph data.
The largest advantage that GViz provides in comparisvith other RDF

visualization tools is the fact that it is easilydaquickly customizable. One can
seamlessly define new operations to support afjgitapecific scenarios, making
thus the tool more amenable for the user needshelpast, GViz was successfully

used in the reverse engineering domain, in ordedetine application specific
visualization scenarios.

Figure 9.4 presents the architecture of GViz baseébur components: selection,
mapping, editing, and visualization. In the nexdtes we describe the data model
used in GViz. Next, we outline the operation modescribing the tasks that can
be defined on the graph data. We finish the desonpof the GViz architecture
with the visualization component which we illus&raising the museum schema
dataset.

The GViz core implementation is done in C++ whilee thser interface and
scripting layer were implemented in Tcl (Raines, 8)9® take advantage of the
run-time scripting and weak typing flexibility th#tis language provides. All the
GViz customization code developed for the RDF Jigation scenarios presented
in this chapter was done in Tcl.

i Operations ——— !
Mapping :

read Glyph Mappe f write
Splat Mapper i
Y

Viewin
Meraph Datde_eference Selectlon Dat%qume i Visual Data |¢-"¢29 andg

Interaction)
Graph Editing

Graph Layout
: selection/editing events

read

Figure 9.4 GViz architecture.
9.3.1 Data Model

The data model of GViz consists of three elements:

« graph data this is the RDF graph model, i.e., a labelleckclied multi-graph
in which no edges between the same two nodes lareeal to share the same
label. Nodes stand for RDF resources/literals amiges denote properties.
Each node has fype attribute which states if the node ifNResour ce
(named resource), aiResour ce (anonymous resource), orlateral .
The label associated to a node/edge is given by #ieaie attribute. The
labels forNResour ce nodes and edges are URIs. The labelLfarer al s is
their associated string. The value of AResour ce is an internal identifier
with no RDF semantics. Note that thgpe andval ue attributes are GViz
specific attributes that should not be confused Mliteir RDF counterparts.
Since GViz's standard data model is an arbitranybated graph, with any
number of (name, value) type of attributes per nade edge, the RDF data
model is directly accommodated by the tool.

« selection dataselections are subsets of nodes and edges igrépd data.
Selections are used in GViz to specify the inputs @utputs of its operations;
their use is detailed in Section 9.3.2.

« visual data this is the information that GViz ultimately dlags and allows
the user to interact with. Since GViz allows custng the mapping
operation, i.e., the way graph data is used toygredisual data, the latter may
assume different look-and-feel appearances. Se#tiillustrates this in the
context of our application.

9.3.2 Operation Model

As shown in Figure 9.4, the operation model of GW&s three operation types:
selection, graph editing, and mapping. Selectioarapons allow users to specify
subsets of interest from the whole input graphthen RDF visualization scenarios
that we built with GViz, we defined different corepl selections based on the
attributes of the input model. These selectionspsform tasks like: “extract the
schema from an input set of RDF(S) data (which misehema and instance
elements)”. Custom selections are almost alwaysdeteewhen visualizing
relational data, since a) the user doesn’t usualint to look at too many data
elements at the same time, and b) different sulifetie input data may have
different semantics, thus have to be visualizedifierent ways. A basic example
of the latter assertion is the schema extractitec8en mentioned above.

Graph editing operations enable the modificatiomeation, and deletion of
nodes/edges and/or their attributes. For our RBkalization scenarios, we did
not create or delete nodes or edges. However, dverdate new data attributes, as
follows. One of the key features of GViz is thasé@parates the graph layout, i.e.,
computing 2D or 3D geometrical positions that sfyesihereto draw nodes and
edges, from the graph mapping, i.e., specifyiog/to draw nodes and edges. The
graph layout is defined as a graph editing opematidich computes position
attributes. Among the different layouts that GVimpports we mention the spring
embedder, the directed (tree), the 3D stacked taymd the nested layout (Telea
et al., 2002). Although based on the same Graph#®ikage as IsaViz, the layouts
of GViz are relatively more effective, as the usan customize their behaviour in
detail via several parameters.

Mapping operations, or briefly mappers, associattes/edges (containing also
their layout information) to visual data. The latie implemented using the Open
Inventor 3D toolkit, which delivers high qualityffieient rendering and interaction
with large 2D and 3D geometric datasets (Wernetf83). GViz implements two
mappers: the glyph mapper and the splat mappergiyipd mapper associates to
every node/edge in the input selection a graphamai (the glyph) and positions
the glyphs based on the corresponding node/edgetiagtributes. Essentially, the
glyph mapper produces the ‘classical’ kind of grdphwings, e.g., similar to those
output by IsaViz. However, in contrast to many drapsualization tools, the glyph
mapper in GViz allowdull customization of the way the nodes and edges are
drawn. The user can specify, for example, shapess,sand colors for every
separate node and edge, if desired, by writingallsral script of 10 to 20 lines of
code on the average. We used this feature extéypsiseproduce our RDF
visualizations described in Section 9.4. The spilapper produces a continuous
two-dimensional splat field for the input selectidfor every 2D point, the field
value is proportional to the density of nodes p#t area at that point. Essentially,

the splat mapper shows high values where the degiut used has placed many
nodes, and low values where there are few nodeenGhat a reasonably good
layout will cluster highly interconnected nodesdthger, the splat mapper offers a
quick and easy way to visually find the clustersthie input graph (Figure 9.9,
Section 9.4). For more details on this layout, (& Liere and De Leeuw, 2003).

A final way to customize the visualizations in GMi& to associate custom
interactionto the mappers. These are provided in the formobfcallback scripts
that are called by the tool whenever the user acterely selects some node or
edge glyph with the mouse, in the respective mappetdows. These scripts can
initiate any desired operation using the selectiments as arguments, for
example showing some attributes of the selectednaegts. Examples of this
mechanism are discussed in Section 9.4.

As explained above, GViz allows users to easilymefiew operations. For the
incremental view of RDF(S) data, we defined operetias: extract schema, select
classes and their corresponding instances, seistetnices and their attributes. As
for the glyph mappers, these operations have lepleinented as Tcl scripts of 10
to 25 lines of code. The usage of the custom setectayout, and mapping
operations for visualizing RDF(S) data is detailethe remainder of this chapter.

9.3.3 Visualization

Figure 9.5 presents the museum data schema in GYézuse here a radial tree
layout, also available in the GraphViz packageteiad of the directed tree layout
illustrated in Figure 9.3 for IsaViz. As a consegce, the structure of the schema
is easier to understand now.

Wl Viewer: viewerl

%

RoiX RotY IR 7T 0 Zoom

Figure 9.5 Museum schema in GViz (2D).

In the above picture the edges with the latdf : t ype are depicted in blue.
There are two red nodes to which these blue edgesect one with the label
rdf s: Cl ass and the other with the labeldf : Property, shown near the
nodes as balloon pop-up texts. We chose to ddmgbtoperty nodes (laid out in a
large circular arc around the upper-left red nadeprange and the class nodes
(laid out in a smaller circle arc around the lowigiit red node) in green. As it can
be noticed from the picture there are a lot of geanodes which is in accordance
with the property-centric approach for defining RDgchemas. In order to express
richer domain models we extended the RDFS prinstiwéth the cardinality of
properties, the inverse of properties, and a miggia system. These extensions are
showed in yellow edges (see also below) and yelpheres (positioned at the
right end of the image). The yellow edges that cohi® orange nodes represent
the inverse of a property. The yellow edges thaheohan orange node with the
yellow rectangle labeled “multiple” (positionedthe middle of the figure bottom)
state that this property has cardinality one-toyndie default cardinality is one-
to-one. Note that there are not many-to-many ptEselas we had previously
decomposed these properties in two one-to-manyepiiep. The three yellow
spheres represent the media types: String, Integerimage. The light gray thin
edges denote the domain and the range of propeas that only range edges
can have a media node at one of its ends. As tdgges are a) not so important for
the user and b) quite numerous and quite hard/touawithout many overlaps, we

chose to represent them in a visually inconspicweas, i.e., make them thin and
using a background-like, light gray color.

The tailoring of the graph visualization presentédwe is only one example.
One can define some other visualizations dependin@nes needs. Figure 9.6
presents a 3D view of the same museum schema exahiple, we used a spring
embedder layout, also available from the Graph\diekage, to position all schema
nodes in a 2D plane. Next, we designed a customatipe that selects the two
rdf s: Gl ass andrdf: Property nodes and offsets them away from the 2D
layout plane, in opposite directions. This creat8®dayout, which allows the user
to better distinguish the different kinds of edgesr example, the edges labeled
r df : t ype (colored in blue) are now clearly separated, ag teach out of the 2D
plane to the offset nodes.

RotX Roty Zoom

Figure 9.6 Museum schema in GViz (3D).

9.4 Applications

In order to better understand the context in whiehdeveloped our visualization
applications we now briefly describe the Hera pbj&dovjak et al., 2003). Hera
is a methodology for designing and developing Wabrimation Systems (WISSs)
on the Semantic Web. All the system specificatiares represented in RDFS. For
the scope of this paper it is important to havedk lat two of these specifications:
the conceptual model (domain model) and the apgitamodel (navigation
model).

The conceptual model describes the types of tharines that need to be
presented. An example of the conceptual model weady saw in Figure 9.5. A
conceptual model is composed of concepts and compeeperties. There are two
kinds of concept properties: relationships (prdpertbetween concepts) and
attributes (properties that refer to media types).

The application model defines the navigation overdhata, i.e., a view on the
conceptual model that contains appropriate nawvigdinks. The application model
is an overlay model over the conceptual modelatufe exploited in the definition

of the transformations of the conceptual modelainses into application model
instances. An application model is composed otsliand slice properties. A slice
contains concept attributes (not necessarily flioensame concept) as well as other
slices. There are two kinds of slice properties: positional properties
(aggregations) and navigational properties (link$je owner relationship is used
to associate a slice to a concept. Each slice Lids attribute related to it.

A conceptual model instance and an application nindéance are represented
in RDF (which should be valid according to the esponding RDFS
specifications, i.e., the conceptual model andaghglication model, respectively).
In the WIS application it is only the applicatiorodel instance that will be visible
to the user.

We consider now four types of RDF(S)-related vigadion scenarios that are
relevant in the support of the WIS application dasr:

e conceptual model visualization
« conceptual model instance visualization
e application model visualization
e application model instance visualization

In Section 9.3.3 we already showed how one caralimi conceptual models.
A second similar scenario for the conceptual medelalization is described next.

9.4.1 Conceptual Model Visualization

The conceptual model visualization enables one ttebanderstand the structure
of the application’s domain. It answers questidke: what are the concepts?, what
are the properties?, what are the relationshipwdst concepts and properties?
what are the most referenced concepts?, what a&ramibst referenced media
types?, etc.

Figure 9.7 shows the extracted schema from an RBRhat contains both the
schema and its associated instance. The extraistidane by a custom selection
operation, as described in Section 9.3.2. The mdtivery similar to the one from
Figure 9.5. However, there are two differences betwthis picture and the one
from Figure 9.5. First, we now use a different latya.e., a spring embedder
instead of a radial tree. Secondly, we now degdsn ¢hedirection of the edges.
The edges are fading out towards the start noddre&tibn effect is created: the
edges get brighter as they approach the end noddoWid this representation of
the edge direction much more effective than thevarrepresentation when
visualizing large graphs, as the drawing of arrpwsluces too much visual clutter
in this case. Moreover, the edge fading glyph &efato render than an arrow
glyph, as it involves a single (shaded) line priveit

From Figure 9.7 we can deduce that the most uselibrygpe isSt ri ng (the
text-based descriptions are the most popular fierdbmain specification) and the
most referenced concept is tAet ef act (it has the most relationships). Each
artefact is classified by some museum terms (8aj.f Portraits). Thereis a
hierarchy of museum terms, terms are grouped inad®o terms (e.g.,
Portraits), and broader terms are grouped in top terms, @ag.nt i ngs).

Il Yiewer: new_viewer 3

s W
i

|] it e w3 .0r 2000001 Kdf —schemnad Class
[] []

Rotx Roty I T Zoom

Figure 9.7 Museum extracted conceptual model.

9.4.2 Conceptual Model Instance Visualization

The conceptual model instance visualization answeestions like: what are the
instances of a certain concept?, what are theiorfatbetween two selected
concept instances?, what are the most referenstghtes?, what are the attributes
of a selected instance?, etc.

In most of the encountered situations, there argclinmore concept instances
than concepts. For example, our museum dataseginentens of thousands of
instances. It is easy to imagine other applicatiwhgre this number goes up to
hundreds of thousands, or even more. Dravailhghese instances simultaneously
is neither efficient nor effective. Indeed, no drdayout we were able to test could
produce anunderstandableéimage of an arbitrary, relatively tightly connette
graph with tens of thousands of nodes neasonableamount of time (e.g., tens of
seconds). In order to keep the instance visuatizatianageable, we decided for an
incremental view scenario on the RDF(S) data. Fingt user selects the subpart of
the schema for which he wants the correspondirtgriass to be visualized. Next,
we use a custom interaction script (Section 9.8f2about ten lines of code to
separately visualize the instances of the selétgets. For example, when the user
selects theArti st and Art ef act concepts from Figure 9.7, the GViz tool
automatically shows the instances of these conaaptstheir relations in another

window, using a spring embedder layout (Figure .98)Figure 9.8 we used a
custom glyph mapper to depict the artefacts witlhehlectangles and the artists
with green rectangles. The relations between thestances are represented by

fading white edges. One can note that there aree mdefacts than artists, as
expected.

Il viewer: viewZ =181]

0
@
&
[
I
&

RotX RotY Zoom

Figure 9.8 Artists/artefacts properties in the conceptual hadgance.

Figure 9.9 shows the same selected data (artistarefacts) but using a splat
mapper instead of the classical glyph mapper. Thésdensity function (splat
field) is constructed as outlined in Section 9.3\& visualize the splat field using
a blue-to-red colormap that associates cold hukes)(lto low values and warm
hues (yellow, red) to medium and high values. FBganQ (left) shows the splat
field as seen from above. Figure 9.9 (right) shéfres same splat field, this time
visualized using an elevation plot that shows hdghsity areas also by offsetting
these points in the Z (vertical) direction. A redliye color (Figure 9.9 left and
right) or a high elevation point (Figure 9.9 riglngdicate that there are a lot of
relations for a particular instance or group otanses. In this way one can notice
from Figure 9.9 which are the artists with the madefacts. The artists with the
most artefacts are the unknown artists (potterdgrolth, bronzesmith, etc.) that
show up as the singular peak in the left of Figuge(left). On the average, these
artists have several tens (up to 60) artefacts. Eneyollowed by Rembrandt and
the unknown painters, who show up as the otherhigher peaks to the right of
Figure 9.9 (left). This can be explained by the fiett in the 1% century, for

which the Rijksmuseum has a special focus, theme wdot of artefacts done by
unknown artists.

Zoom|RotX RotY

RotX RotY
Figure 9.9 Conceptual model instance splatting (left: 2D; tigthevation plot).

We have further customized our visualization sdenars follows. When the
user selects one instance of Figure 9.8, we usestaro interaction script on the
mapper of Figure 9.8 to pop up another window spldiy the instance attributes.
The selected instance is shown as having the bapjoprup label in Figure 9.8.
Figure 9.10 shows the attributes of the selectsthinte, in this case Rembrandt:

the painter’s year of birth, year of death, firatre, etc.

W Yiewer: view3

m’m

.__ artistYearOfBirth —_ﬂm
A |'t|5t_|D1 2024 artistYearOfDeath

=
e LN
)

Rembrandt Harmensz,

Rotx Roty Zoom

Figure 9.10 Attributes of a selected concept instance.

9.4.3 Application Model Visualisation

The application model visualization enables onesetiteld understand the navigation
structure of a hypermedia presentation. It answeesstions like: what are the
application model slices?, what are their linksBatvare the slice owners?, what
are the slice titles?, what slices are navigationsR, what are possible navigation
paths from a certain slice?, etc.

Figure 9.11 depicts the application model for theseum example. We chose
to present here the top-level slices (slices tlatespond to web pages) and the
links between them in order to decrease the cortplekthe picture. A new glyph
shape was designed in order to represent the plizzashape for slices (as defined
in the application model's graphical representat&orguage). The blue thick edges
represent links between slices. Each slice has iassdavith it two attributes. We
use a custom layout to place these nodes righteathm/top of the slice node. The
slice nodes themselves are laid out using the gg@inbedder already discussed
before. The two attributes of each slice are vigedliby using two custom square
glyphs, as follows: the yellow glyph (left) stands the name of the slice and the
green glyph (right) denotes the concept owner ef glice (remember that the
concept owner is a concept from the conceptual fhddethe center of the picture
is theSl i ce. art ef act. mai n slice which has the most links associated with
it, i.e., it is a navigation hub. The figure als@gis the designer’s choice to present
the museum information based of the terms hierartdyy terms, broader terms,
and terms.

=
] w®
{0

&
[
9|

Slice.termindex.main

Rotx Roty [T T Zoom

Figure 9.11 Museum application model.

9.4.4 Application Model Instance Visualisation

The application model instance visualization ansvgemsstions like: what are the
instances of a certain slice?, what are the sfistances reachable from a certain
slice instance?, what are the most referenced $fiseances?, what are the
attributes of a selected slice instance?, etc.

As there are more slice instances than slicesrdardo keep the visualization
manageable we used the same visualization scemarifor conceptual model
instances, i.e., to use incremental views. The oaarselect from the mapper in
Figure 9.11 the slices for which he wants the amoading instances to be
visualized. For example, after selecting th8lice.topterm main,
Slice.broadertermmain, andSlice.term main slices from Figure
9.11, we use the same mechanism of a custom ititaraxript (Section 9.3.2) to
pop up another window that shows the instanceledet slices and their associated
links. Figures 9.12 and 9.13 show the correspondiing instances, as described
below.

Rotx Roty [T T T Zoom

Figure 9.12 Broader term slice instances accessible fronPtient i ngs slice instance (one step).

For the visualizations in Figures 9.12 and 9.13uae yellow sphere glyphs for
nodes labelledsl i ce. t opt er m mai n, green sphere glyphs for nodes labelled
Sli ce. broaderterm nmai n, and blue rectangle glyphs for nodes labelled
Sli ce.term mai n. The chosen colors and shapes are motivated hyetbe to

produce an expressive, easy to understand pictoes wresenting a large number
of instances coming from three slices linked iniexdrchical way, as follows. We
did give up the pizza slice glyph for these viszations as we found out that this
glyph produces too much visual clutter for largapirs. Next, we chose colors of
increasing brightness (blue, green, and yellow)digplay items of increasing
importance (terms, broader terms, and top ternspecively). The size of the
glyphs used for these items also reflects theiritgmce (the top term glyphs are
the largest, whereas the term glyphs are the ssbalke final significant cue is the
shape: the more important top and broader termdrargn as3D shadedspheres,
whereas the less important terms are drawr2@dsflat squares For the edges
connecting these glyphs in the visualization, wedua varying color and size
scheme that varies both line color and line thisknalong the edge between the
end nodes’ colors and sizes respectively. Summpghe combination of above
choices produces a visualization where the ovestalicture of top terms and
broader terms ‘pops’ into the foreground, wherdwes less important terms and
their links ‘fade’ into the background. As a comipan, we were unable to get the
same clear view of the structure by just varying ltyout parameters and using the
same glyph for all nodes.

After selecting the slice instance correspondingh®Pai nt i ngs top term,
we obtain in Figure 9.12 the broader term slicéginses accessibldter one step
showed in red. By this, we mean the terms thateax o the web site (whose
design our dataset captures) can access afteramigation step. This translates to
nodes which are directly connected (via an edgédhdoselected slice instance in
our RDF dataset. In Figure 9.13 we visualize thentslice instances accessible
from the samdPai nt i ngs top term instance slicafter two stepsalso drawn in
red. These correspond to web pages that the usbeafieb site can access after
two navigation steps. An example for the secong &ehe navigation from the
broader termPortrai ts. Using such a visualization scenario one can view
which are the slice instances reachable from ategleslice instance after a certain
number of navigation steps.

Ix

g4

ElBEY=

Al

Portraits
Rotx Roty Zoom

Figure 9.13 Term slice instances accessible fromRaé nt i ngs slice instance (two steps).

9.5 Future Work

In the future, we would like to explore the G\3D visualization capabilities for
RDF data, possibly getting an even better insighd the data structure. Another
research direction would be to use GViz in conjiamctvith a popular RDF query
language (like RQL for example). Our purpose is hermfold: to use the RDF
query language as a selection operation implenientédr GViz when visualizing
RDF data and to support the RDF query language thighvisualization of the
input and resulted set of RDF data. Finally, as fplanned in the Hera project to
use OWL instead of RDF for the future input datafglespecifications we would
like also to conduct visualization experiments loa nore semantically rich OWL
data.

9.6 Summary

In this chapter we have shown how a general purgosph visualization tool,
GViz, can be used for the visualization of largeFR@raphs produced from real-
world data. All experiments were performed in tlomtext of the Hera project, a
project that investigates the designing and dewedppf Web Information Systems
on the Semantic Web. The visualization of large @am® of RDF input data and
RDF design specifications enabled us to answer aguestions about this data
and to give an effective insight into its structure

Several ingredients were crucial for obtaining ghessults. First, the amount of
customizability of the GViz tool (layouts, selectdy node and edge drawing,
choice between glyph and splat mappers, and custsen interaction) was
absolutely necessary to produce the desired visualn scenarios. We found all
these elements to be necessary to create the dlessalts. We have actually
experimented with customizing just the layout buatt the glyphs and/or the
interaction. In all cases, the results were notilile enough to give the users the
desired look-and-feel that would make the scenaffective for answering the
relevant questions. Secondly, the script-basedomization mechanism of GViz
allowed a user experienced with Tcl scripting todoree the scenarios described
here (which were imagined by a different user, pegienced with Tcl) in a matter
of minutes. Thirdly, we found that using severalmiscues (shape, color, size, and
shading) together to enhance a single attributéyrasxample described in Section
9.4.4, is much more effective than using a single. d=inally, we mention that
none of the investigated RDF visualization tooledi®n 9.2) showed the high
degree of customization of GViz needed for our ages.

9.7 Acknowledgements

The authors would like to thank the Rijksmuseum mmsterdam for their kind
permission to use copyrighted data in our runnixepn®le. We also wish to thank
our colleagues Lloyd Rutledge and Lynda Hardman, f@il, Amsterdam, for
helpful discussions.

9.8 References

Card S, Mackinlay J, Shneiderman B (19B@adings in Information Visualizationlorgan Kaufmann.

Eklund P W, Roberts N, Greéh P (2002)OntoRama: Browsing RDF Ontologies using a Hypécbol
style BrowserThe First International Symposium on CyberWorldgv@D02) pp.405-411, Theory
and PracticedEEE CS Press

Grove M (2002) RDF Instance Creator (RIC) for théNR-SWAP Project. Available online from
http://www.mindswap.org/~mhgrove/RIC/RIC.shtml

North S C, Koutsofios E (1996pOT and NEATO User’'s GuidAT&T Bell Labs Reports.

Noy N F, Sintek M, Decker S, Crubezy M, FergersoWRMusen M A (2001) Creating Semantic Web
Contents with Protege-200EEE Intelligent System46(2):60—71.

Pietriga E (2002) Isaviz: a Visual Environment Byrowsing and Authoring RDF Model$he Eleventh
International World Wide Web Conference (WWW20D2yeloper's Day

Raines P (1998)cl/Tk Pocket Referenc®!Reilly & Associates.

Sintek M (2004) OntoViz Tab: Visualizing Protégé t@lngies. Available online from
http://protege.stanford.edu/plugins/ontoviz/ontdwizl

Storey M-A D, Musen M, Silva J, Best C, Ernst Nrg@son R, Noy N (2001) Jambalaya: Interactive
visualization to enhance ontology authoring andvkedge acquisition in Protég&/orkshop on
Interactive Tools for Knowledge Captufi¢-CAP-2001).

Sugiyama C, Tagawa S, Toda M (1981) Methods foualidJnderstanding of Hierarchical Systems.
IEEE Transactions of System, Man, and Cybernetit€):109-125.

Sure Y, Angele J, Staab S (2003) OntoEdit: Multtaed Inferencing for Ontology Engineering.
Journal on Data SemantickNCS 2800, pp. 128-152, Springer.

Telea A, Maccari A, Riva C (2002) An Open Toolldt Prototyping Reverse Engineering
Visualization.|IEEE EG Symposium on Visualization (VisSym'@p) 241-250, The Eurographics
Association.

Telea A (2004) An Open Architecture for Visual Resee Engineering.Managing Corporate
Information Systems Evolution and Maintengrge 211-227, Idea Group Inc.

Van Liere R, De Leeuw W (2003) GraphSplatting: \4izing Graphs as Continuous FieltBEE
Transactions on Visualization and Computer Graph®§g):206-212, IEEE CS Press.

Vdovjak R, Frasincar F, Houben G J, Barna P (2@®)ineering Semantic Web Information Systems
in Hera.Journal of Web Engineering (JWE(1-2):3-26, Rinton Press.

Wernecke J (1993he Inventor Mentor: Programming Object-Oriented Gbaphics Addison
Wesley.

