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Abstract—Through its interoperability and reasoning capa-
bilities, the Semantic Web opens a realm of possibilities for
developing intelligent systems on the Web. The Web Ontology
Language (OWL) is the most expressive standard language
for modeling ontologies, the cornerstone of the Semantic Web.
However, up until now no standard way of expressing time and
time-dependent information in OWL has been provided. In this
paper, we present a temporal extension of the very expressive
fragment SHIN (D) of the OWL-DL language resulting in the
tOWL language. Through a layered approach we introduce three
extensions: i) Concrete Domains, which allows the representation
of restrictions using concrete domain binary predicates, ii)
Temporal Representation, which introduces timepoints, relations
between timepoints, intervals, and Allen’s 13 interval relations
into the language, and iii) TimeSlices/Fluents, which implements a
perdurantist view on individuals and allows for the representation
of complex temporal aspects, such as process state transitions.
We illustrate the expressiveness of the newly introduced language
by using an example from the financial domain.

Index Terms—machine communication, intelligent systems,
Semantic Web, time representation, OWL, fluents, concrete
domains.

I. INTRODUCTION

THE considerable and increasing need to access the large
volume of data present on the World Wide Web today

motivates a migration from free-text representations of data
to semantically rich representations of information. Endeav-
ors in this direction are being undertaken under a common
denominator: the Semantic Web [1]. The state-of-the-art tools
and languages provided under this umbrella, such as Resource
Description Framework (RDF), RDF Schema (RDFS) [2], [3]
and OWL [4], go beyond the standard Web technology and
provide the means for data sharing and reusing outside this
platform, i.e., in the form of semantic applications.

Focused on the inference of implicit knowledge from ex-
plicitly represented information, Semantic Web approaches
are currently centered around static abstractions of the world.
However, conceptualizations lacking a temporal dimension
are not only rather artificial, but are also impractical in
environments that require temporal awareness. Examples of
such environments are the financial domain, scheduling, mar-
keting, etc. Within the financial domain, for example, one
can envision the need for representing ephemeral knowledge,
contained for instance in news messages (e.g., stock price
and other financial variables), or more fundamental aspects of
the financial domain (e.g., mergers and acquisitions, financial
processes, etc.).
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Consider, for example, the temporary relation between a
person and a company in which that person is the Chief
Executive Officer (CEO) of that company. Such a relation is
described by a temporal interval across which a person fulfills
the function of CEO for a company. For example, until 16
October 2008, Jack Dorsey was the CEO of Twitter. On that
date Jack Dorsey stepped down and Evan Williams became
the new CEO of the company. In the standard Semantic Web
approach based on OWL-DL once the CEO of the company
changes, there is no way to represent both CEOs and the times
associated with them. Furthermore, one would like to reason
with temporal information. For example, assuming that Evan
Williams is only CEO for a limited amount of time, and that
the ending point of him being a CEO of Twitter is known, we
would like to consistently represent all this information in our
temporal language, without any loss of information regarding
the ceoOf relationship. In graphical terms, what we would like
to represent in a temporal Semantic Web language is illustrated
in Figure 1. For this representation, we would like to be able to
define temporal constraints such as that the starting point of a
time interval should be before the ending point of the interval
(in our example t1 < t2 and t2 < t3). Such knowledge and
constraints cannot be be enforced using OWL-DL semantics.
In this paper, we propose a temporal extension to the OWL
language that allows us to represent and reason with temporal
information in the Semantic Web.
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Fig. 1. Change of CEO in the Twitter example.

In general, addressing temporality in abstract representa-
tions of the world requires dealing with the aspect of time.
One aspect is that of reference system - bringing an order into
sequences of events. In this respect, time can be instant-based
or interval-based, with instants denoting basic points in time
with no duration, and intervals being represented as pairs of
distinct instants denoting some period of time.

A second aspect of time regards temporal concepts such as
the ephemeral character of relationships between individuals.
In this context, representations of change should be possible.
These representations include descriptions of individuals that
take variable values for some property at different points
in time and state transitions, enabling the representation of
processes and corresponding transition axioms. In this context,
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time is somewhat implicit to the representation, i.e., the
conceptualization evolves relative to the temporal reference
system and requires the latter.

The main goal pursued in this paper is an extension of
a fragment of OWL-DL with time. The fragment of OWL-
DL considered is SHIN (D), which represents OWL-DL
without the use of nominals. In the remainder of this article,
we shall denote the fragment of OWL-DL based on the
SHIN (D) description logic as OWL-DL−. We focus on this
particular subset due to the fact that it is the most expressive
fragment of OWL-DL extended with concrete domains for
which a terminating, sound, and complete reasoning algorithm
is known [5].

In temporal terms, the extension of OWL-DL− that we
envision addresses time in the sense of a reference system
as well as covering more complex temporal aspects, such as
change and state transitions. This materializes in a syntactic
and semantic extension of OWL-DL− in the form of a
temporal web ontology language (tOWL) [6]–[10]. Hence, the
tOWL language is an extension of OWL-DL− that enables
the representation of and reasoning with time and temporal
aspects.

The extension of OWL that we present in this paper is
mainly aimed at extending the communication between ma-
chines to contexts that require temporality. Building upon the
main goals of Semantic Web languages, tOWL is not only
aimed at enabling the inference of implicit knowledge when
a temporal dimension is involved, but aims at representing
information, especially information that is temporal in nature,
in an unambiguous fashion, in a unified way that ensures the
preservation of meaning across different machines. Due to the
desirable computational properties of the language, which is
based on a decidable description logic extended with concrete
domains, we enable temporal reasoning in tOWL knowledge
bases that extends well beyond the capabilities of any of the
Semantic Web languages developed until now.

Generally speaking, ontologies are separated into a TBox
and an ABox. The TBox contains the terminological knowl-
edge in the ontology, and refers to classes and properties. The
ABox is the assertional part of the ontology, and relates to
individuals - instances of the classes described in the TBox.
The issue of time is also relevant in the context of TBoxes and
ABoxes of ontologies. Rather than focusing on the evolution
of ontologies, i.e., changes at TBox level, we solely focus on
changes in the ABox (we assume that the domain structure is
known).

The outline of the paper is as follows. In Section II we
provide an overview of work related to the current endeavor.
Section III introduces different layers of the tOWL language
built on top of OWL-DL−. An extensive example of how the
expressiveness of tOWL can be employed for the representa-
tion of a financial process is provided in Section IV. We give a
discussion Section V, where we place our proposed language
into a broader context. Finally, we conclude in Section VI.

II. TEMPORAL REPRESENTATIONS

World representations may be synchronic or diachronic
in the way the temporal perspective is considered within

the representation [11]. Synchronic representations consider
a single point in time, with no regard for temporal evolution.
Diachronic representations take into consideration the exis-
tence of a history, and thus take into account change through
time. Regardless of the form of representation chosen, one
must invariably deal with the problem of identity. Synchronic
identity regards identity holding at one single time. Diachronic
representations, which are our current focus, must deal with
the problem of diachronic identity, or put differently, establish
how change affects the identity of entities existing at different
times.

Leibniz provided two principles regarding the issue of iden-
tity [12]. The first one, regarding the identity of indiscernibles,
states that entities for which all properties are common and
identical are, in turn, identical. Additionally, indiscernibility of
identicals states that entities being identical implies that the
entities have all properties in common, and the values thereof
are identical. Such choices are mainly concerned with the
field of logics. As our focus is on the Semantic Web, special
attention is given to approaches related to Description Logics
[13]. The issue of temporality has also been addressed in
this context, presenting several choices regarding the handling
of the temporal dimension. The main distinction separating
approaches in temporal description logics can be made in
terms of whether the temporal language offers explicit time, or
whether the temporal dimension is only implicitly present in
the language by providing the means to talk about an order of
events and/or states. Following [14], these different approaches
are categorized as explicit and implicit, respectively.

Additionally, philosophy presents us with two main theories
regarding the persistence of objects through time: endurantism
and perdurantism. Endurantism refers to the view that objects
are three-dimensional, and persist through time, i.e., are always
present. Perdurantism, or four-dimensionalism, regards objects
as being composed of temporal parts. The identity of a four
dimensional object then consists of all the temporal parts of
that object, i.e., all instances of that object through time. An
approach related to incorporating perdurants through the use
of timeslices and fluents is presented in [15], where the authors
develop a reusable ontology for fluents in OWL-DL. In this
approach, timeslices represent the temporal parts of a specific
entity at intervals in time and the concept itself is then defined
as all of its timeslices. Fluents are properties that hold at
a specific moment in time, or at a specific interval in time.
One of the drawbacks of this approach is the proliferation of
objects in the ontology due to the creation of two timeslices
each time something is changing, which, in turn, must be
associated to the static individuals they represent and linked
to each other by a fluent. Further, no solution is provided
for the temporal equivalent of the cardinality construct, which
cannot be modeled in the case of overlapping timeslices [15].
Finally, the time associated to timeslices relies on the OWL-
Time ontology, rather than on a more expressive approach
based on concrete domains.

The expressiveness of description logics is usually denoted
with a series of letters, such as SHOIN (D), where each
letter stands for a level of expressiveness. A language that
allows functional properties will contain the letter F in its
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name, while S stands for the ALC language (attributive
language with complement) with transitive roles, H stands for
role hierarchy, O for nominals, I for inverse roles, and N
for number restrictions. The SHOIN language thus is the
language that incorporates the expressiveness associated with
each letter as described above, and SHOIN (D) additionally
provides support for data types, as indicated by D.

When logics, and especially description logics, are consid-
ered, concepts such as decidability, concept satisfiability, and
subsumption play an important role. Decidability relates to
whether a method exists such that formulas validity can always
be determined in a finite number of steps. Concept satisfiability
consists of checking whether an assertion has a model, i.e.,
its interpretation is non-empty. Finally, subsumption relates to
being able to determine whether one concept is more general
than some other concept [13]. Decidability is highly relevant,
especially in the context of the Semantic Web, where machines
must be endowed with the capability to reason on the knowl-
edge that is being presented to them. The focus of the Semantic
Web on description logics comes from the fact that the DL
community has always placed emphasis on the decidability
of the logics introduced. As our temporal extension of the
web ontology language is also intended for the Semantic Web,
special attention is given to the decidability of the language.
When considering relevant literature on temporal extensions
to description logics, we also focus on the decidability of the
temporal extension.

The interval-based T L-ALCF description logic [16], [17]
enables the representation of temporal interval networks
through Allen’s interval temporal logic in the context of
the static ALCF description logic. The resulting logic is an
aggregation of a temporal and static logic, thus making this
approach external as the temporal dimension is external to
the ALCF description logic. Returning to our current focus,
OWL-DL− and the very expressive underlying description
logic SHIN (D), it can be concluded that an approach not
moving beyond the expressiveness of ALCF is insufficient
for our goal. This relates mostly to the fact the ALCF
description logic is much less expressive than SHIN (D),
which is our main focus for the temporal extension. In the
temporal language that we propose, role hierarchy (H) and
inverse roles (I) play an important role. For example, the
fluent ceoOf is a more specific variant of the worksFor fluent,
which can only be represented in the knowledge base when
role hierarchy is enabled. Additionally, the inverse of the ceoOf
fluent, hasCEO, can only be represented in the knowledge base
when inverse roles are enabled by the language.

Approaches similar to T L-ALCF , but relying on a point-
based temporal structure rather than an interval-based one,
provide the means to represent temporal dependencies between
entities. An example of one such logic consists of the DLR
description logic extended with the temporal operators Until
and Since, resulting in the DLRUS temporal description logics
[18]. Similarly, the ALCT temporal description logic is an
extension of ALC with the temporal connectives of tense
logic, such as existential and universal future [14]. These
approaches are not sufficient for our current purpose mainly
because extending the expressiveness of the static DL in this

way easily leads to undecidability.
Time can also be incorporated in a formalism by making

it part of the latter, in what constitutes an internal approach.
One such approach consists of extending a DL formalism with
concrete domains. Initially proposed in [19], concrete domains
allow abstract concepts to be related to concrete values through
functional roles (roles that take exactly one value). Description
logics extended with concrete domains maintain decidability,
provided that the concrete domain satisfies the property of
admissibility or ω-admissibility [19], [20]. For a number of
constraint systems, special types of concrete domains based
on binary domain predicates that are jointly-exhaustive and
pairwise disjoint, ω-admissibility has been proved in [20],
such as a constraint system based on a domain consisting
of intervals and Allen’s 13 interval relations that may hold
between pairs of intervals. This constraint system approach to
introducing time in DL-based formalisms is less restricted by
the expressiveness of the static DL which it extends. Indeed,
results are known for SHIQ(C), description logic for which a
terminating, sound and complete reasoning algorithm is known
[5].

Linear time temporal logic (LTL) has also been considered
as a temporal extension of DLs [21], particularly with regard to
the ALC description logic, resulting in the LTLALC temporal
DL. However, extensions of this TDL to more expressive
DLs, such as SHIQ, easily results in undecidability [21],
thus making such an approach unsuitable due to the limited
expressiveness of the underlying language.

Different aspects regarding the representation and manage-
ment of time-varying data have also been addressed within
the broad area of temporal databases. A common way of
regarding time in such a context relates to the type of time
that is addressed by the system. This has resulted in three
types of time [22] that may be considered in a temporal
database: i) valid time, the time when a fact is true in the real
world, ii) transaction time, the time when the fact is known in
the database, and iii) user-defined time, which can represent
any temporal attribute for which the temporal semantics is
only known to the user and has no particular meaning in the
database. Combinations of these types are also possible. When
valid time and transaction time are considered together, this
results in bitemporal data models [22]. Regarding the structure
of the time domain, a further distinction may be made between
linear time - one time flow from past, through present, to future
- and branching time, where the representation of possible,
alternative futures is allowed [23].

In the context of the Semantic Web, a number of ap-
proaches have already been designed, addressing different
temporal aspects in relation to ontology languages. A rather
extensive approach towards extending ontology languages with
a temporal dimension is Temporal RDF [24]. This work is
similar to our approach as it concerns the ability to represent
temporal information in ontologies, but differs in that the
language considered is the Resource Description Framework
(RDF). Another approach is OWL-Time [25], which focuses
on the Web Ontology Language rather than RDF. The initial
purpose behind the design of a time ontology (OWL-Time)
was to represent the temporal content of Web pages and the



4

temporal properties of Web Services (DAML-Time) [25]. This
approach is rather extensive in describing quantitative time
and the qualitative relations that may exist among instants and
intervals. Being based on OWL-DL, it employs the underlying
SHOIN (D) description logic and thus relies on data types
rather than concrete domains for the description of instants
and intervals. Due to this fact, proper intervals, i.e., intervals
for which the starting point is strictly smaller than the end
point, cannot be represented in this approach. Semantic Web
approaches similar to ours also include [26], [27], relating to a
4d fluents approach for representing change, and [28] focusing
on the representation of valid time in RDF and OWL. In the
following, we discuss our proposed temporal extension of the
web ontology language.

III. THE TEMPORAL WEB ONTOLOGY LANGUAGE

Designing a temporal extension of OWL-DL− begins with a
clarification of what is understood under the general, common
denominator time. We consider a couple of fundamental as-
pects hereof, namely: i) temporal infrastructure, and ii) change.
The first aspect, temporal infrastructure, regards the represen-
tation of time in the form of instants and/or intervals. From
this perspective, we aim for an approach that incorporates both
a point-based as well as an interval-based time representation.
Such an approach should provide not only the temporal entities
that constitute the temporal infrastructure of the language, but
also the relations that may hold between these entities, e.g.,
the before relation that may hold between intervals.

Regarding the second aspect, change, we note that there
are two types of changes in OWL ontologies: changes at the
terminological level (TBox), and changes at the assertional
level (ABox). For the tOWL language, the focus is solely
on changes that concern individuals; in other words, tOWL
enables the representation of change at the ABox level. We
allow three types of change: i) change in a concrete attribute
value of an individual, such as a change of hair color, ii)
a change in the relationship between entities, such as a
product that is built by a company, and iii) state transitions
in processes, such as the transition from the liquid state to a
bankruptcy state in the case of companies. In this context, we
refer only to valid time, as known from temporal databases,
rather than transaction time. Therefore, we seek to represent
when certain changes take place in the actual world rather than
the time when they are represented in the ontology.

In the following we discuss the details of our proposed
tOWL language. The design uses the results from temporal
logic, temporal databases, and Semantic Web research where
possible. The design choices are explained in Section III-A.
The individual tOWL layers are presented, one by one, in
Sections III-B through III-D. A discussion on reasoning in the
tOWL language is presented in Section III-E.

A. Design Choices

For the tOWL language there are a number of choices
regarding the most suitable approach(es) for the representation
of the two temporal aspects considered above. At the level
of temporal infrastructure, we seek to enable point-based as

well as interval-based representations. Additionally, we seek
to extend the expressiveness of OWL-DL− and the under-
lying SHIN (D) description logic without constraining the
latter. From the approaches known in the literature, the only
method suitable for our goals is the one based on concrete
domains. The temporal infrastructure then becomes internal
to the language, and covers both the point-based time and the
interval-based time. For a point-based representation of time,
we rely on a concrete domain based on the set Q of rational
numbers and the set of binary concrete domain predicates
{<,≤,=, ̸=,≥, >}. Results are known for such an extension
to the description logic SHIQ, where the concrete domain
is also extended with an additional unary predicate =q for
denoting equality with q ∈ Q, resulting in the SHIQ(C+) [5],
[29]. Introducing such a concrete domain in the language has
the advantage of not only enabling the representation of dates
and times in terms of a translation between the xsd:dateTime
XML data type and rational numbers, but enables also the de-
scription of any numerical attribute through a direct reference
to the concrete domain.

In our approach, we seek to enable an interval-based
representation of time satisfying the previously mentioned
constraints. For this purpose, we aim to add intervals and
Allen’s 13 interval relations [30] to the tOWL language. As
known from [30], all 13 Allen’s interval relations may be
translated in terms of equivalent relations on the intervals’
endpoints. For this reason, the concrete domain based on the
set Q of rational numbers and the set of binary concrete
domain predicates {<,≤,=, ̸=,≥, >} is sufficient for such
representations. Thus, intervals and Allen’s 13 interval rela-
tions are not introduced in the language by means of a concrete
domain, but rather as syntactic sugaring over the concrete
domain Q with the respective relations. By only introducing
one concrete domain into the language, we build upon known
decidability results [19], [29] for description logics extended
with concrete domains and ensure the language decidability.

The representation of change in a temporal ontology lan-
guage poses several problems that need to be addressed.
We consider diachronic representations that take history into
account rather than synchronic ones, and are thus faced with
the problem of diachronic identity, as mentioned in Section II.
The second principle of Leibniz, indiscernibility of identicals,
poses an additional restriction on the choice of representation
and the perspective on identity when change is involved.
Finally, as the temporal language we develop is aimed at the
Semantic Web, one must invariably be able to say what holds
true at a certain moment in time. The Semantic Web, and
OWL-DL− in this context, further restrict the flexibility of
designing an approach for the representation of change due to
the restriction of the underlying SHIN (D) description logic.

The straight-forward approach of associating a valid time
to the binary predicate (similar to solutions from temporal
databases and temporal RDF) is not suited in our case, as
ternary predicates are not directly supported in OWL-DL. The
W3C Semantic Web Best Practices working group provides
three alternative ways of representing n-ary relationships on
the Semantic Web [31], namely: i) representing a relationship
as a class rather than as a property, ii) representing the
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individuals participating in the relation in the form of a
collection or ordered list, and iii) RDF reification. The first two
approaches share the drawbacks of proliferation of objects and
the reduced meaning of the actual representation of instances,
especially in the case of OWL-DL. Regarding the third, it
should be noted that RDF reification is not appropriate when
“the intent is to talk about instances of a relation, not about
statements about such instances” [31]. Besides the fact that
the RDF “reification of a triple does not entail the triple, and
is not entailed by it” [32], reification is not supported at all
in OWL-DL−. Since we are extending OWL-DL−, such an
approach is not suitable.

Another approach for associating valid time with a binary
relation relates to the addition of a meta-logical [33] predicate
that takes as arguments the binary relationship and the time
when this relationship holds. However, as also discussed in
[15], such predicates are not supported in any of the OWL
species. The fluents approach presented in [15] and discussed
in Section II is consistent with the second principle of Leibniz
and enables the maintenance of identity through change by
introducing a 4D view of the world in OWL ontologies.
By moving the temporal argument to the level of timeslices
rather than the fluent itself, it circumvents the issue of n-
ary relationships, while still enabling the determination of
what holds true at a particular time. This approach also has
the advantage of not restricting the expressiveness of the
description logic it extends, as it is more concerned with
syntactic sugaring rather than being a semantic extension.
As introduced in [15], this 4D approach can be achieved in
the form of an OWL ontology, which although insufficient
for extending the OWL-DL− language, should prove a good
starting point in addressing the representation of change in the
tOWL language.

For the design of the language we choose a layered ap-
proach. On top of the foundational OWL-DL− layer, we add
a concrete domains layer, a temporal reference layer, and a 4d
fluents layer, as described in the following sections.

B. Concrete Domains Layer

The representation of complex restrictions, regardless of
whether they describe some temporal aspect, or relate to some
static expression, can be achieved through the composition
of roles. In what follows, we denote by feature chain a
composition of features (functional roles). Following common
denomination from Description Logics and the Semantic Web,
we make a distinction between abstract features, that point to
something in the abstract domain, and concrete features, that
take values from the concrete domain. Additionally, in tOWL
we allow the feature chains to be composed with one concrete
feature g, forming what is commonly denoted as a concrete
feature path (CFP), and which is mathematically equivalent to
the composition:

f1 ◦ f2 ◦ ... ◦ fn ◦ g, (1)

where n ∈ N. Note that for n = 0, by convention, the set of
abstract features is empty.

An example of such a CFP could consist of the composition
of the time abstract feature and the start concrete feature,
resulting in a composition of type f1 ◦ g, where f1 is the time
feature and g is represented by the start feature, as follows:

time ◦ start. (2)

A construction such as the one in (2) would denote the
starting point of an interval by first applying the time abstract
feature to obtain the interval associated with an individual and
then the start concrete feature to obtain the starting point of
that interval.

Letting ui denote a CFP, we allow existential and universal
quantification of the following form in tOWL, where pd
denotes a binary concrete domain predicate:

∃(u1, u2).pd, (3)
∀(u1, u2).pd. (4)

For such constructs, ui may arbitrarily denote a CFP of
length m, with m ∈ N∗. Such constructs are useful for
defining, for example, that the starting point of an interval
should be strictly smaller than the ending point of that interval.
Such a definition of an interval would take the following form:

∃(time ◦ start, time ◦ end). < (5)

where we employ the < concrete domain predicate (pd) to
state that the starting point of some interval is strictly smaller
than its ending point.

We summarize the semantics introduced by this layer in
Table I, with reference to the tOWL abstract syntax constructs
we propose. In Table I, fn denotes an abstract feature, g a
concrete feature, ui is a concrete feature chain, ai and x are
individuals from the abstract domain, b, q1, and q2 are concrete
values, and pd is a concrete domain predicate. For a complete
overview of the tOWL language we refer the reader to the
appendix.

The first definition in this table, that of a
ConcreteFeatureChain, states that the interpretation of
such a concept consists of all those pairs of individuals of the
abstract domain and the concrete domain, respectively, such
that each of these abstract individuals is in the interpretation
of the f1 abstract feature together with exactly one other
abstract individual, a2, which in turn is in the interpretation
of f2, together with exactly one other individual, a3, and so
on to an+1. Finally, the interpretation of the concrete feature
g on the individual an+1 should be defined and should take
on exactly one concrete value, namely b.

The dataSomeValuesFrom construct, states that the
interpretation of such a concept consists of all those indi-
viduals from the abstract domain such that, when the two
concrete feature chains u1 and u2 are interpreted over these
individuals, the result consists of the q1 and q2 unique concrete
values that are in the interpretation of the pd concrete domain
predicate. Hence, they can be described by pd. Since this is
an existential quantification, the values involved should exist,
i.e., be explicitly defined.
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TABLE I
SEMANTICS FOR THE CONCRETE DOMAINS LAYER.

tOWL Abstract syntax Model-Theoretic Semantics

ConcreteFeatureChain(f1 f2 ... fn g) {(a1, b) ∈ ∆I ×∆D | ∃!a2 ∈ ∆I , ...,∃!an+1 ∈ ∆I∧
∧ ∃!b ∈ ∆D : (a1, a2) ∈ fI

1 , ...
(an, an+1) ∈ fI

n ∧ gI(an+1) = b}.
dataSomeValuesFrom (u1 u2 pd) {x ∈ ∆I | ∃!q1 ∈ ∆D,∃!q2 ∈ ∆D :

uI
1 (x) = q1 ∧ uI

2 (x) = q2 ∧ (q1, q2) ∈ pId}.
dataAllValuesFrom (u1 u2 pd) {x ∈ ∆I | ∀q1 ∈ ∆D, ∀q2 ∈ ∆D :

uI
1 (x) = q1 ∧ uI

2 (x) = q2 ∧ (q1, q2) ∈ pId )}.

The dataAllValuesFrom construct is similar to the
dataSomeValuesFrom, with the exception that this time
a universal quantification is involved, which means that the
pd relation should hold true for all values of q1 and q2. The
difference between these two constructs is that, in the case of
dataAllValuesFrom, the relationship can hold true when
q1 and q2 are missing.

C. Temporal Reference Layer
The concrete domain in the tOWL context, as presented

in the previous section, enables the representation of new
restrictions in the language. In the Temporal Reference layer
we include basic representations of time, both point-based
and interval-based, as well as a number of temporal relations
between instants and intervals, as discussed in Section III-A.
This forms the basis for our approach, as it allows the
definition of complex restrictions, such as the ones described
in the previous section, but this time presenting a temporal
character. The concrete domain employed for the current
purpose is a concrete domain based on the set Q of rational
numbers and the set of binary concrete domain predicates
{<,≤,=, ̸=,≥, >}.

This concrete domain also enables the representation of
intervals and Allen’s 13 interval relations through a translation
scheme between interval relations and equivalent relations
in terms of the intervals’ endpoints [34]. Rather than being
a concrete domain, this extension is achieved by means of
syntactic sugaring at language level, while at reasoner level we
rely on the concrete domain Q and the corresponding relations
for dealing with representations based on intervals.

Another issue regarding time in this context relates to its
representation in tOWL ontologies. The actual representation
of time in tOWL ontologies is based on XML Schema data
types, namely dateTime as enabled by the concrete domain
based on rational numbers and relations that may exist between
these numbers. Finally, it should be noted that the definition
of intervals as introduced by tOWL goes beyond the expres-
siveness of OWL-DL− by relying on the concrete domain
predicate < and the two concrete features start and end for
stating that the starting point of an interval should always be
strictly smaller than its ending point:

ProperInterval ≡ ∃(begin, end). < (6)

Although not directly enforced on the user, this restriction
on proper definitions of temporal intervals is checked by the

reasoner. All intervals that do not satisfy this restriction are not
considered proper intervals, which will be indicated to the user
through the reasoning service following a consistency check.

D. 4d Fluents Layer

The concrete domain approach that enables a temporal in-
frastructure in ontologies as presented in the previous sections
forms the basis for our approach. Building further upon this,
we seek to represent temporal aspects of entities other than
timespan. In this context, the final level of expressiveness that
we enable in tOWL considers different aspects of change:
i) change in a concrete attribute value of an individual, ii)
a change in the relationship between entities, and iii) state
transitions in processes.

A perdurantist approach forms the foundation of this type of
features. Up to a certain level, it can be argued that the fluents
and timeslices employed for the representation of temporal
information do not go beyond the expressiveness of OWL-
DL−. Rather, fluents and timeslices represent a vocabulary
employed for the representation of temporal parts of individu-
als that change some property in time. However, the semantics
of fluents as envisioned for tOWL enforces a number of
restrictions on tOWL specific concepts, and most importantly
on fluents and timeslices. Some interesting features emphasize
the interdependence between the concrete domain and the
timeslices/fluents approach and relate mostly to the restrictions
this approach imposes on the very concepts it introduces.

One such restriction imposes that fluents only relate times-
lices that hold over the same time interval. Representing such a
restriction involves the concept of equality of concrete values,
and such a representation can thus only be enabled through the
use of a concrete domain. We illustrate this idea through an ex-
ample that we graphically depict in Figure 2. In this example,
we define two OWL classes, namely Company and Product.
For each of these classes, we instantiate an individual, namely
iGoogle and iChrome, respectively, representing the company
Google and Chrome, the web-browser from Google. For
each of these individuals, we instantiate a timeslice, namely
iGoogle TS1 and iChrome TS1, respectively, representing the
static individuals over the periods iInterval1 and iInterval2.
Here, the two timeslices iGoogle TS1 and iChrome TS1 share
the same time interval, i.e., iInterval1 is equal to iInterval2, as
denoted by the towl:equal relationship. Finally, the two times-
lices are connected by the fluent hasProduct that indicates that
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over the period iInterval1 (equivalent to the period iInterval2)
Google Chrome is a product of Google.

t o w l : t i m e S l i c e O f t o w l : t i m e S l i c e O f

t o w l : t i m e t o w l : t i m e

i G o o g l e _ T S 1

i I n te r va l1 i I n te r va l2

i C h r o m e _ T S 1
h a s P r o d u c t

i G o o g l e i C h r o m e

C o m p a n y

r d f : t yperd f : t ype

o w l : C l a s s

t o w l : T i m e S l i c e

r d f : t ype rd f : t ype

r d f s : s u b C l a s s O f

t o w l : e q u a l

P r o d u c t

r d f s : s u b C l a s s O f

t o w l : F l u e n t O b j e c t P r o p e r t y

Fig. 2. Temporal restrictions on timeslices connected by fluents.

In Table II we present an overview of the tOWL TBox ax-
ioms corresponding to the timeslices/fluents layer. The tOWL
axioms and facts are described in the appendix.

In Table II, the concept of TimeSlice is defined
as all those individuals for which the time property
is defined and takes a value of type Interval, and
for which the timeSliceOf property is defined and
takes a value that is not an Interval, a TimeSlice,
or a Literal. The concept of Interval is defined
as all those individuals for which the start and end
properties are defined and take a value from XML Schema
dateTime such that the value associated to the starting
point is smaller than the value associated to the ending
point. The concept of FluentProperty is defined
as a subclass of the RDF Property class, and is in
turn a superclass for the FluentObjectProperty
and FluentDatatypeProperty constructs. The
timeSliceOf property is defined as that property that can
be applied to timeslices and that only takes values that are not
timeslices, intervals, or literals. The time property is defined
as that property that takes values only of type Interval
and can be applied to individuals of type TimeSlice. The
start and end properties are defined as those properties
that are defined for intervals and that take values from XML
Schema dateTime.

E. Reasoning

The tOWL language extends OWL-DL− through the addi-
tion of constructs that support the representation of time and
temporal aspects. The SHIN (D) description logic, on which
OWL-DL− is based, is insufficient for the expressiveness
introduced by the tOWL layers. Currently, a reasoner has
been implemented for the Lite version of the tOWL language.
The tOWL-Lite language is based on the ALC(C) description
logic, and is thus limited in expressiveness. However, this logic
is sufficient for representing fairly complex cases, such as
the Leveraged Buy Out example in Section IV. The reasoner

is based on the algorithm described in [20], extended with
a number of optimization techniques meant to enhance the
efficiency of the algorithm. The implemented optimizations
are: Normalization and Simplification Normalization, TBox
Absorption, RBox Absorption, Lazy Unfolding, Dependency-
directed Backjumping, and Top-Bottom Search for Classifica-
tion [35].

The complexity of ontology entailment in SHIQ(C) and
thus also of tOWL is ExpTime-complete [5], [29], and for
ALC(C) and tOWL Lite it is as well ExpTime-complete [29],
[34], provided that the satisfiability in C (the concrete domain)
can be decided in ExpTime. Additionally, the timeslices/fluents
extension proposed for the tOWL language (the 4d fluents
layer) is merely syntactic sugaring, and does not incur rea-
soning cost when regarded from the perspective of language
complexity.

Rather than extending existing reasoners, the tOWL-Lite
reasoner consists of a new C++ implementation containing
the tableau algorithm for the unrestricted version of the
ALC(C) description logic as described in [20]. The execution
of algorithms based on tableaux as an inference procedure for
expressive logics requires a massive use of dynamic structures
thus motivating the implementation of a new reasoner from
scratch using C++. The decision to implement a new reasoner
from scratch has been taken due to the lack of documentation,
or very poor documentation when present, of existing reason-
ers, thus not fostering extensions and making the choice for
the design of a new reasoner necessary.

The tOWL reasoner enables different temporal inferences on
tOWL knowledge bases. For example, given a time instant,
we can determine what holds true at the moment in time
based on the inside relationship between an instant and an
interval. In this way, it can be determined, at any point in time,
which timeslices hold true, since each timeslice has an interval
associated with it. Thus, we can determine what facts are true
at any moment in the knowledge base. Additionally, based
on the relationships between intervals, we can, for example,
determine, how intervals relate to each other in temporal terms,
and thus the facts that we represent in the knowledge base.
More concrete examples of reasoning in a practical application
are provided in Section IV-C.

The correctness of the reasoner has been tested by using
the benchmark suite proposed for Description Logics sys-
tems [36]. The test procedure consists of four categories
of tests, as outlined in [36]: concept satisfiability, artificial
TBox classification, realistic TBox classification, and synthetic
ABox tests. The concept satisfiability tests are focused on
the performance of computing satisfiability of large concept
expressions without reference to a TBox. The artificial TBox
classification tests investigate the performance of classifying
an artificially generated TBox, while the realistic TBox classi-
fication tests perform the same investigation but on knowledge
bases related to the GALEN medical terminology knowledge
base [37]. Finally, the synthetic ABox tests look at the system’s
performance when realising a synthetic ABox.
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TABLE II
TOWL AXIOMS FOR THE 4DFluents LAYER.

tOWL 4dFluents Construct tOWL Axioms in OWL-DL
Class(TimeSlice) ∃time.Interval ⊓ (= 1 time) ⊓ ∃timeSliceOf.¬(TimeSlice ⊔ Interval⊔

⊔ rdfs:Literal) ⊓ (= 1 timeSliceOf)
Class(Interval) ∃(start,end). ≤ ⊓∃start.dateTime ⊓ ∃end.dateTime⊓

⊓(= 1 start) ⊓ (= 1 end)
Class(FluentProperty) FluentProperty @ rdf:Property

Class(FluentObjectProperty) FluentObjectProperty @ FluentProperty
Class(FluentDatatypeProperty) FluentDatatypeProperty @ FluentProperty

Property(timeSliceOf) ≥ 1 timeSliceOf ⊑ TimeSlice
⊤ ⊑ ∀timeSliceOf.¬(TimeSlice ⊔ Interval ⊔ rdfs:Literal)

Property(time) ≥ 1 time ⊑ TimeSlice
⊤ ⊑ ∀time.Interval

Property(start) ≥ 1 start ⊑ Interval
⊤ ⊑ ∀start.dateTime

Property(end) ≥ 1 end ⊑ Interval
⊤ ⊑ ∀end.dateTime

F. RDF/XML Serialization

We present the RDF/XML serialization of the tOWL ab-
stract syntax as a separate document available as an electronic
attachment to this paper. The serialization is relevant as the
RDF/XML syntax is the lingua franca of Semantic Web
applications. By providing the serialization we enable different
users to employ the tOWL language in their applications.
These applications can export the tOWL data for reuse in
interoperability scenarios.

IV. EXAMPLE APPLICATION

In this section we illustrate the use of the tOWL language
in a temporal context. For this purpose, we focus on a
complex process - Leveraged Buy Outs (LBO) in financial
applications. In Section IV-A we present LBO processes in
general, and introduce the Alliance Boots LBO. In Section
IV-B we illustrate how such a process can be represented in
the tOWL language. We conclude this section by providing
some reasoning examples for the LBO application in Section
IV-C.

A different implementation of the tOWL language, next to
the one presented in this paper, is described in [8]. Here, we
employ the tOWL language for the representation of company
market recommendations in a system that aggregates these
recommendations for the generation of buy/hold/sell advices
for the stock market. In this example, tOWL proves valuable
in representing the different recommendations that may hold
at different points in time, and overlap each other, and in
determining which advices hold true at any point in time.

A. Leveraged Buy Outs in General

A Leveraged Buy Out is a special type of an acquisition of
a company by another company by relying mostly on loans for
the price of the acquisition. Additionally, often the assets of
the company that is to be acquired are used, partly or wholly,
as collateral for the loans. This type of process is of particular
interest in the current case for two reasons: i) its complexity
is adequate for illustrating the main features of the tOWL
language, and ii) the ability to deal with such a process in an
automated fashion is also of interest in the economic domain,

due to the high impact that the different stages have on the
share prices of the involved companies. An activity diagram
of an LBO process is presented in Figure 3.

An LBO process can be divided into 4 main stages:

1) Early Stage.
2) Due Diligence.
3) Bidding.
4) Acquisition.

The transition between stages is not straightforward, as after
nearly each stage the process can be aborted. Additionally,
some of the stages may be extended before the transition into
a different stage. In the bidding stage, the extension leads to a
raise of the current bid. The initial state of an LBO process is
the Early Stage. From this stage, a transition can be made into
the next state - Due Diligence, or this state may be extended,
or the whole process can be aborted. Whether an extension is
granted or not, the process may evolve to the Due Diligence
stage. In case the process is not aborted in this stage, the
LBO can continue with the Bidding phase. Again, besides the
process being aborted, the LBO can continue with a Raise Bid
phase in which the companies involved increase the amount
they are prepared to lay down for the target company. When
the final bid is made and accepted, even in the case when no
counter bids are made, the process moves into the Acquisition
phase and ends.

In the following we consider a model of the biggest LBO
acquisition in Europe. In the March and April of 2007,
two hedge funds competed for the acquisition of one target
company. From the two hedge funds, KKR and Terra Firma,
the first won the bidding and acquired the target company
Alliance Boots.

B. The Alliance Boots LBO in tOWL

The focus of this section is to illustrate how the information
regarding the LBO process can be represented in tOWL
abstract syntax, both at an abstract level as well as in the
particular example presented here. The main focus is on
illustrating the main concepts that are relevant from a language
perspective.
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Fig. 3. Stages of an LBO process.

1) TBox: At TBox level we represent conceptual informa-
tion that is known about LBO processes in general. In this
context, two types of companies that take part in an LBO
are known: HedgeFund and Target, which we define as
subclasses of the Company class.

Class(Company)

Class(HedgeFund partial Company)

Class(Target partial Company)

The different stages of an LBO process are represented as
subclasses of the Stage class, such as for example in the
case of the Bidding stage.

Class(Stage)

Class(Bidding partial Stage)

All stages are pairwise disjoint, which we represent as
follows.

DisjointClasses(EarlyStage,DueDiligence,Bidding,

RaiseBid,Acquisition,Abort,Extension)

We define the class of all timeslices of an LBO Process as
follows.

Class(LBOProcess_TS complete

restriction(timeSliceOf(someValuesFrom

LBOProcess)))

In similar fashion, we define, for each stage, the class of all
timeslices of that stage. For the EarlyStage this is achieved
as follows.

Class(EarlyStage_TS complete

restriction(timeSliceOf(someValuesFrom

EarlyStage)))

For each stage, we define a functional property that links a
particular LBO process timeslice to the timeslice of the stage
belonging to it.

ObjectProperty(earlyStage

domain(LBOProcess_TS)

range(EarlyStage_TS))

Func(earlyStage)

Next, we move on to define the inStage fluent that points,
for each timeslice of a company, to the stage in which the
company finds itself.

FluentObjectProperty(inStage

domain(

restriction(timeSliceOf(someValuesFrom

Company)))

range(

restriction(timeSliceOf(someValuesFrom

Stage))))

Timeslices of an LBO process are defined by the sequence
of stages that a company may follow in this process. Rep-
resenting such sequences relies on functional role chains,
and reduces to assessing the order of the intervals associated
with the different stages. For example, representing that the
EarlyStage always starts an LBO process can be repre-
sented as follows.

Class(LBOProcess_TS partial

restriction(

dataSomeValuesFrom(

ConcreteFeatureChain(earlyStage time),

time, starts)))

2) ABox: At ABox level we represent particular informa-
tion that is known about the specific LBO process presented in
this section. We start by instantiating the relevant individuals
that are known to play a role in the LBO process. First, we
represent the participating companies.



10

Individual(iAllianceBoots type(Target))

Individual(iKKR type(HedgeFund))

Individual(iTerraFirma type(HedgeFund))

For each of the hedgefunds involved, we instantiate a
process and define its stages, such as in the case of TerraFirma.

Individual(iLBOProcess1_TS1

type(LBOProcess_TS)

value(timeSliceOf iLBOProcess_1)

value(earlyStage iEarlyStage1_TS1)

value(dueDiligence iDueDiligence1_TS1)

value(bidding iBidding1_TS1)

value(abort iAbort1_TS1))

Next, we represent the information contained by the
individual news messages associated with the LBO process.
We illustrate this by employing a news message that describes
the hedge fund TerraFirma entering the EarlyStage
phase. Here, we only present a summary of the actual news
message and indicate the stage that is signaled by it. The
date and time associated to the news message is the one as
specified on http://www.marketwatch.com/, and represents the
time when the news message was issued and thus became
available to the wide public.

Buyout firm Terra Firma mulls Boots bid
Sun Mar 25, 2007 8:42am EDT
This news message signals the beginning of the LBO,
mentioning that Terra Firma is considering a bid for Alliance
Boots (EarlyStage).

For representing the information contained in the news mes-
sage we create a timeslice for the hedge fund and the target,
respectively, a time interval associated to the stage, and employ
the inStage fluent to associate the companies to the stage.

Individual(t1 type(Interval))

Individual(iEarlyStage1

type(EarlyStage_TS))

Individual(iEarlyStage1_TS1

type(TimeSlice)

value(timeSliceOf iEarlyStage1)

value(time t1))

Individual(iAllianceBoots_TS1

type(TimeSlice)

value(timeSliceOf iAllianceBoots)

value(time t1)

value(inStage iEarlyStage1_TS1))

Individual(iTerraFirma_TS1

type(TimeSlice)

value(timeSliceOf iTerraFirma)

value(time t1)

value(inStage iEarlyStage1_TS1))

In this section we have shown how a dynamic process, in
the form of an LBO process, can be represented in the tOWL
language. Due to the temporal expressiveness of the language,
we were able to define the order of stages of the considered
process, as well as the transitions that the companies involved
make through this process.

C. Reasoning Examples

In this section we present an example of how reasoning can
be employed in the LBO application previously described. We
show how it can be inferred that a company is in a certain
stage based on information on other stage transitions in which
a company was involved.

The different paths that a company may follow when
involved in an LBO process have been described in Figure
3. A set of axioms, as presented in Section IV-B, have been
used to represent this in a tOWL knowledge base, exhaustively
describing all acceptable stage sequences in an LBO process.
Based on this knowledge, and in the presence of incomplete
information, one can, in a certain number of cases, infer this
missing information from the facts already present in the
knowledge base. In this section we illustrate this by means
of an example.

Assuming the existence of a news message, N1, reporting
that the company KKR, seeking to acquire Alliance Boots, has
entered the Due Diligence stage of an LBO process, we can
represent the following information in the tOWL knowledge
base, illustrated here by means of tOWL abstract syntax.

Individual(t3 type(Interval))

Individual(iDueDiligence1

type(DueDiligence_TS))

Individual(iDueDiligence1_TS1

type(TimeSlice)

value(timeSliceOf iDueDiligence1)

value(time t3))

Individual(iKKR_TS3

type(TimeSlice)

value(timeSliceOf iKKR)

value(time t3)

value(inStage iDueDiligence1_TS1))

Individual(iAllianceBoots_TS3

type(TimeSlice)

value(timeSliceOf iAllianceBoots)

value(time t3)

value(inStage iDueDiligence1_TS1))

The representation just introduced defines a new time inter-
val, t3, that is associated with timeslices of the two companies
involved in the Due Diligence phase as well as with a timeslice
of this stage. Additionally, we associate the timeslices of the
two companies with the timeslice of the Due Diligence stage
through the inStage fluent, thus indicating that, over interval
t3, KKR and Alliance Boots find themselves in the Due
Diligence phase.

Following the N1 news message, another news message
is issued, N2, reporting that KKR and Alliance Boots have
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Fig. 4. Overview of explicit knowledge on LBO stages.
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inStage

inStage
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Fig. 5. Overview of explicit and implicit knowledge on LBO stages.

entered the Raise Bid stage of the LBO process, over some
interval t5. The knowledge relating to these two stages in the
tOWL knowledge base is depicted in Figure 4.

Having previously described all the possible paths through
which an LBO process can be instantiated for a certain
company, it is apparent that a direct transition from the Due
Diligence phase to the Raise Bid phase is not possible. We
derive that, between the two stages, the two companies must
have transitioned the Bidding phase before moving on to Raise
Bid, since no other path is possible between the two stages
described in the news messages N1 and N2, respectively. We
depict the new, relevant, snapshot of the knowledge base in
Figure 5, where the inferred knowledge is represented in dotted
lines.

V. DISCUSSION

We have seen in Section IV that the tOWL language can be
used to represent rather complicated processes in which tem-
poral aspects such as time and change play an important role.
The tOWL language meets shortcomings of various previous
approaches, such as OWL-Time [25] and the OWL ontology
for fluents [15] that only address temporality to a limited
extent. The approach presented in [25], for example, only deals
with the representation of time in the form of intervals and
instants. However, ensuring that intervals are properly defined
(e.g., starting point is always strictly smaller than the ending
point) is not possible in this approach. Additionally, no support
is offered for reasoning on the temporal constructs introduced
other than the standard OWL-DL reasoning. For example, in
OWL-Time it is also not possible to enforce a particular order
of state transitions in a process.

The approach in [25] is limited in the representation of
temporal aspects such as change. The approach taken in [15]
builds upon [25] by addressing this limitation, namely: the
representation of temporal aspects such as change. However,
it is limited in another sense which relates to the definition of
fluent properties as being symmetric, i.e., if the pair (x,y) is
the interpretation of a symmetric property, then the pair (y,x)
is also an instance of this property. This is more often than
not false, as in the very simple example of the employeeOf
relation: although it holds that x is an employee of y, it
is certainly not the case that y is also an employee of x.
Therefore, enforcing symmetry on fluent properties is usually
too restrictive.

Building upon the approach in [15], tOWL enables differ-
entiations between fluents that take values from the TimeSlice
class and fluents that indicate changing values (data types).
This is achieved through the use of the FluentObjectProperty
and FluentDatatypeProperty properties. For the representation
of time, the tOWL language relies on an approach based on
concrete domains, thus enabling higher temporal expressive-
ness when compared to the approaches in [25] and [15].

The approach proposed in this paper can also provide a
strong logical base for temporal extensions of conceptual
languages. In the ER model [38], for example, the relationship
between concepts can be represented as a fluent in order to
denote a time-varying relationship. Adaptations of the fluent
approach presented in this paper, such as the differentiation
between fluents relating to objects and fluents relating to data
types, can help refine existing conceptual models where time is
taken into account. For example, the approach in [39], present-
ing the TERC+ temporal conceptual model, could incorporate
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such a refinement in the language specification. Additionally,
the approach taken in tOWL for the representation of time
could be incorporated in temporal conceptual models when the
representation of processes and state transitions is envisioned.

From an application perspective, our work comes to enable
temporal representations in systems where this was not pre-
viously possible, such as often the case in designs based on
computational intelligence methods combined with Semantic
Web approaches. Many such applications have been devel-
oped, as for example the application of a fuzzy ontology to
news summarization [40], an ontology-based computational
intelligent multi-agent system applied to Capability Maturity
Model Integration assessment [41], and project monitoring
[42]. Ontology-based approaches have also been applied in
the development of systems based on computing with words
approach [43]. Fuzzy concept networks and their evolution are
analysed in [44], while the fuzzy matchmaking of Semantic
Web services is described in [45]. A fuzzy markup language
(FML) based on XML is applied in the context of an adaptive
domotic framework in [46], and in the more general context of
Ambient Intelligence, together with other fuzzy technologies,
in [47]. tOWL can enhance these systems by providing a
formalism for the representation of time and change.

VI. CONCLUSIONS

The tOWL language is an extension of OWL-DL− that
enables the representation and reasoning with time and tem-
poral aspects. It comes to meet shortcomings of previous
approaches, such as [15], [25] that only address this issue
to a limited extent. It extends the OWL-DL− language with
concrete domains, and enables class axioms that rely on binary
concrete domain predicates that can also be employed in com-
bination with property chains. The language provides a con-
crete domain based on the set Q of rational numbers and the
set of binary concrete domain predicates {<,≤,=, ̸=,≥, >}.
By means of syntactic sugaring we also introduce intervals and
Allen’s 13 interval relations that may hold between intervals
in the language. Additionally, a fluents approach is used for
the representation of the different aspects of change, such as
state transitions. Building on the approach presented in [15],
it extends the latter by making a difference between fluents
that point to data types and fluents that point to objects, thus
limiting the proliferation of objects inherent to this approach,
since less timeslices are created in the case of data type fluents.
The tOWL language can be employed for representation and
reasoning in a wide variety of dynamic domains, such as the
financial one as shown in this paper.
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APPENDIX
THE TOWL LANGUAGE SUMMARY

We begin by providing an overview of the tOWL descrip-
tions enabled by the language in Table III. Here, C,D are used
to denote class names, R is an object property, U is a data type
property, n is a positive integer, u1, u2 are constructs of type
towl:ConcreteFeatureChain and pd denotes a binary
concrete domain predicate. The language description in Table
III is an extension of the summary of OWL-DL constructs
found in [48].

An overview of the tOWL axioms and facts that are enabled
by the language is given in Table IV. This is an adaptation
of the summary of the OWL-DL axioms and facts found in
[48], that has been extended with the tOWL specific constructs
introduced by the language. Additionally, concepts related to
the use of nominals have been excluded from this summary
due to our focus on the OWL-DL− language.
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TABLE III
TOWL CONSTRUCTS

tOWL Abstract Syntax DL Syntax Semantics

A (URI Reference) A AI ⊆ ∆I

towl:Thing ⊤ ∆I

towl:Nothing ⊥ {}
intersectionOf(C1 C2...) C1 ⊓ C2 CI

1 ∩ CI
2

unionOf(C1 C2...) C1 ⊔ C2 CI
1 ∪ CI

2
complementOf(C) ¬C ∆I \ CI

restriction(R someValuesFrom(C)) ∃R.C {x ∈ ∆I | ∃y.⟨x, y⟩ ∈ RI and y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C {x ∈ ∆I | ∀y.⟨x, y⟩ ∈ RI → y ∈ CI}
restriction(R minCardinality(n)) ≥ n R {x ∈ ∆I | ♯({y.⟨x, y⟩ ∈ RI}) ≥ n}
restriction(R maxCardinality(n)) ≤ n R {x ∈ ∆I | ♯({y.⟨x, y⟩ ∈ RI}) ≤ n}
restriction(U someValuesFrom(D)) ∃U.D {x ∈ ∆I | ∃y.⟨x, y⟩ ∈ UI and y ∈ DD}
restriction(U allValuesFrom(D)) ∀U.D {x ∈ ∆I | ∀y.⟨x, y⟩ ∈ UI and y ∈ DD}
restriction(U minCardinality(n)) ≥ n U {x ∈ ∆I | ♯({y.⟨x, y⟩ ∈ UI}) ≥ n}
restriction(U maxCardinality(n)) ≤ n U {x ∈ ∆I | ♯({y.⟨x, y⟩ ∈ UI}) ≤ n}
ConcreteFeatureChain(f1 ... fn g) f1 ◦ ... ◦ fn ◦ g {(a1, b) ∈ ∆I × ∆D | ∃!a2 ∈ ∆I , ..., ∃!an+1 ∈ ∆I∧

∧ ∃!b ∈ ∆D : (a1, a2) ∈ fI
1 , ...

(an, an+1) ∈ fI
n ∧ gI(an+1) = b}.

restriction((u1, u2) someValuesFrom(pd)) ∃(u1, u2).pd {x ∈ ∆I | ∃!q1 ∈ ∆D, ∃!q2 ∈ ∆D : uI
1 (x) = q1 ∧

∧ uI
2 (x) = q2 ∧ (q1, q2) ∈ pId }

restriction((u1, u2) allValuesFrom(pd)) ∀(u1, u2).pd {x ∈ ∆I | ∀q1 ∈ ∆D, ∀q2 ∈ ∆D : uI
1 (x) = q1 ∧

∧ uI
2 (x) = q2 ∧ (q1, q2) ∈ pId )}

TABLE IV
TOWL AXIOMS AND FACTS

tOWL Abstract Syntax DL Syntax Semantics

Class(A partial C1...Cn) A ⊑ C1 ⊓ ... ⊓ Cn AI ⊆ CI
1 ∩ ... ∩ CI

n

Class(A complete C1...Cn) A = C1 ⊓ ... ⊓ Cn AI = CI
1 ∩ ... ∩ CI

n

SubClassOf (C1 C2) C1 ⊑ C2 CI
1 ⊆ CI

2

EquivalentClasses (C1...Cn) C1 = ... = Cn CI
1 = ... = CI

n

DisjointClasses (C1...Cn) Ci ⊓ Cj = ⊥, i ̸= j CI
i ∩ CI

j = {}, i ̸= j

Datatype(D) DI ⊆ ∆I
D

DatatypeProperty(U super(U1)...super(Un) U ⊑ Ui UI ⊆ UI
i

domain(C1)...domain(Cm) ≥ 1U ⊑ Ci UI ⊆ CI
i × ∆I

D

range(D1)...range(Dl) ⊤ ⊑ ∀U.Di UI ⊆ ∆I × DI
i

[Functional]) ⊤ ⊑ ≤ 1U UI is functional

SubPropertyOf(U1 U2) U1 ⊑ U2 UI
1 ⊆ UI

2

EquivalentProperties(U1...Un) U1 = ... = Un UI
1 = ... = UnI

ObjectProperty(R super(R1)...super(Rn) R ⊑ Ri RI ⊆ RI
i

domain(C1)...domain(Cm) ≥ 1R ⊑ Ci RI ⊆ CI
i × ∆I

range(C1)...range(Cl) ⊤ ⊑ ∀R.Ci RI ⊆ ∆I × CI
i

[inverseOf(R0)] R = (−R0) RI = (RI
0 )

−

[Symmetric] R = (−R) RI = (RI)−

[Functional] ⊤ ⊑ ≤ 1R RI is functional

[InverseFunctional] ⊤ ⊑ ≤ 1R− (RI)− is functional

[Transitive]) R+ ⊑ R RI = (RI)+

SubPropertyOf(R1 R2) R1 ⊑ R2 RI
1 ⊆ RI

2

EquivalentProperties(R1...Rn) R1 = ... = Rn RI
1 = ... = RI

n

AnnotationProperty(S)

FluentDatatypeProperty(UFD super(UFD
1 )...super(UFD

n ) UFD ⊑ UFD
i (UFD)I ⊆ (UFD

i )I

domain(CTS
1 )...domain(CTS

m ) ≥ 1UFD ⊑ CTS
i (UFD)I ⊆ (CTS

i )I × ∆I
D

range(D1)... range (Dl)) ⊤ ⊑ ∀UFD.Di (UFD)I ⊆ ∆I × DI
i

FluentObjectProperty(RFO super(RFO
1 )...super(RFO

n ) RFO ⊑ RFO
i (RFO)I ⊆ (RFO

i )I

domain(CTS
1 )...domain(CTS

m ) ≥ 1RFO ⊑ CTS
i (RFO)I ⊆ (CTS

i )I × ∆I
D

range(CTS
1 )...range(CTS

l )) ⊤ ⊑ ∀RFO.CTS
i (RFO)I ⊆ ∆I × (CTS

i )I

Individual(o type (C1)... type (Cn) o ∈ Ci oI ∈ CI
i

value(R1 o1)... value (Rn on) ⟨o, oi⟩ ∈ Ri ⟨oI , oIi ⟩ ∈ RI
i

value(U1 v1)... value (Un vn)) ⟨o, vi⟩ ∈ Ui ⟨oI , vI
i ⟩ ∈ UI

i

SameIndividual(o1...on) o1 = ... = on oI1 = ... = oIn
DifferentIndividuals(o1...on) oi ̸= oj , i ̸= j oIi ̸= oIj , i ̸= j

TimeSlice(oTS type (CTS
1 )... type (CTS

n ) oTS ∈ CTS
i (oTS)I ∈ (CTS)I

value(timeSliceOf o) ⟨oTS , o⟩ ∈ timeSliceOf ⟨(oTS)I , oI⟩ ∈ timeSliceOfI

value(RFO
1 oTS

1 )... value (RFO
n oTS

n ) ⟨oTS , oTS
i ⟩ ∈ RFO

i ⟨(oTS)I , (oTS
i )I⟩ ∈ (RFO

i )I

value(UFD
1 v1)... value (UFD

n vn)) ⟨oTS , vi⟩ ∈ UFD
i ⟨(oTS)I , vI

i ⟩ ∈ (UFD
i )I
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