
Using Word Embeddings for Ontology-Driven Aspect-Based
Sentiment Analysis

Sophie de Kok
Erasmus University Rotterdam
Rotterdam, the Netherlands
sophiedekok@gmail.com

Flavius Frasincar
Erasmus University Rotterdam
Rotterdam, the Netherlands

frasincar@ese.eur.nl

ABSTRACT
Nowadays, theWeb is the main platform to gather information. The
growing amount of freely available unstructured data has increased
the interest in sentiment analysis, where the goal is to extract opin-
ions from text. In this paper we focus on review-level aspect-based
sentiment analysis, where we predict the sentiment of a certain
aspect in a review. We propose a two-stage sentiment analysis algo-
rithm. In the first stage a domain ontology is utilized to predict the
sentiment. If the domain ontology stage is inconclusive, a back-up
stage based on an SVM bag-of-words model is employed. Further-
more, the use of word embeddings to improve the domain ontology
coverage in the first stage by finding semantically similar words is
investigated. We find that the two-stage approach significantly out-
performs two baseline methods and achieves competitive results for
the SemEval-2016 data. Furthermore, by not employing the back-up
stage, we still perform significantly better than the baselines. Lastly,
we find that employing word embeddings improves the accuracy
when the domain ontology size is relatively small.

CCS CONCEPTS
• Information systems → Sentiment analysis; Information ex-
traction; Web mining;

KEYWORDS
aspect-based sentiment analysis, review-level sentiment analysis,
domain ontology, word embeddings
ACM Reference Format:
Sophie de Kok and Flavius Frasincar. 2020. Using Word Embeddings for
Ontology-DrivenAspect-Based Sentiment Analysis. In The 35th ACM/SIGAPP
Symposium on Applied Computing (SAC ’20), March 30-April 3, 2020, Brno,
Czech Republic. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3341105.3373848

1 INTRODUCTION
Nowadays, the Web is the main platform to gather information [17].
Since theWeb 2.0 era, people are invited to share their thoughts and
opinions online [15]. This results in a growing number of online re-
views available for different products. This user-generated content

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00
https://doi.org/10.1145/3341105.3373848

helps other users make decisions. Furthermore, these reviews also
help businesses to improve. The growing amount of freely available
unstructured data has increased the interest in sentiment analysis.
In sentiment analysis or opinion mining, the goal is to extract an
opinion from a (review) text [9].

There are different levels of sentiment analysis [9]. We focus
on aspect-based sentiment analysis, where the goal is to predict
the sentiment of a certain aspect. An advantage of aspect-based
sentiment analysis is that we can extract multiple opinions from one
review. Thus, someone can be positive about one aspect of a product
and be negative about another aspect. For example, in the single
sentence review “The servers were friendly, but the food was not
tasty.”, we have two different aspects, namely service and food. The
polarity of the first aspect is positive and the polarity of the second
aspect is negative. Therefore, aspect-based sentiment analysis can
be used for a more detailed analysis than, e.g., document-level
sentiment analysis as it utilizes more information of a review [18].

Furthermore, it is found that using a knowledge base improves
the accuracy of sentiment analysis [19]. We also make use of a
knowledge base in our model by creating a domain ontology con-
sisting of domain concepts and their associated axioms. The axioms
define relations between the concepts and help to extract implicitly
stated information from reviews. For example, when in a review
it is mentioned that the waiters are friendly, we can infer that the
service was good. Moreover, a knowledge base is not dependent on
how much training data there is available. This can be of value in
situations where annotated data might be limited.

When there is not enough data available to model language
correctly this is called data sparsity [2]. In this case we address
possible data sparsity when using the domain ontology by making
use of word embeddings. Word embeddings are NLP techniques to
represent words as vectors of numbers, where semantically similar
words ought to have similar vectors. As the lexicalized domain
ontology is created manually, there might not be enough data to
properly use it, as it might not be large enough and thus have limited
lexical and semantic coverage. By employing word embeddings,
more words that are not present in the lexicalized domain ontology,
can be used to improve the number of words found in the text
matching the employed ontology.

There are many different methods researched for aspect-based
sentiment analysis. Most methods are based on using either a knowl-
edge base like sentiment scores, machine learning, or a combination
of both [18]. We propose a two-stage algorithm for review-level
aspect-based sentiment analysis. First, we use a knowledge base in
the form of an ontology to predict the sentiment of the aspects. If
the ontology phase is inconclusive, we fall back on a bag-of-words

https://doi.org/10.1145/3341105.3373848
https://doi.org/10.1145/3341105.3373848
https://doi.org/10.1145/3341105.3373848

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Sophie de Kok and Flavius Frasincar

model in combination with machine learning. We compare the ac-
curacy of this two-stage ontology-driven aspect-based sentiment
analysis algorithm with baseline algorithms.

Lastly, as our domain ontology is manually created, it is limited
in lexical and semantic coverage. Therefore, we possibly miss rela-
tionships between words and the ontology might be too small to be
properly used in the first phase. We research the effect of employ-
ing word embeddings to improve the first stage of the two-stage
algorithm. For this we experiment with different ontologies varying
in size. Furthermore, we study different word embedding models to
compute the word vectors. The word vectors are computed when a
word is not present in the lexicalized domain ontology. For such a
word we compute its neighbouring words by finding vectors that
are similar to the computed word vector. By checking if the nearest
neighbours of the word are present in the ontology, we can capture
more words. This increases the number of relevant review words
that appear in the ontology and thus the first stage of the algorithm
might improve as we have more hits in the ontology, and thus a
better domain coverage.

2 RELATEDWORK
The authors of [18] give an overview of aspect-based sentiment
analysis. Both aspect detection as well as aspect-based sentiment
analysis are discussed. For aspect-based sentiment analysis the au-
thors categorize the algorithms based on the methods used. They
distinguish three different types of algorithms: only using a knowl-
edge base - like sentiment scores, only using machine learning
algorithms, or a hybrid method that combines both. We will make
use of a hybrid method that combines a knowledge base in the form
of an ontology with a machine learning algorithm as back-up as the
domain ontology and the machine learning algorithm can augment
each other. The ontology is able to recognize concepts and relations
that the machine learning algorithm might not capture and vice
versa.

The authors of [1] also make use of an ontology to perform
sentiment analysis. The domain specific ontology is created using
ConceptNet [10] and WordNet [5]. First, the important product
features or aspects in a review are detected by a domain ontology.
Then, the opinion words that belong to these aspects are obtained
with the Stanford dependency parser [11]. Using a polarity lexicon
the authors then determine the sentiment scores and aggregate
these to predict the polarity of an entity. The method using an
ontology has a better accuracy than the considered baseline. Like
[1], we make use of an ontology for performing sentiment analysis.
Furthermore, we also employ a dependency parser to find words
that belong to aspects by calculating dependency based word win-
dows. However, instead of using a polarity lexicon to determine
sentiment scores we use the ontology to calculate ontology scores
in terms of the hits.

Most approaches that employ word embeddings for sentiment
analysis use the word vectors as features for amachine learning clas-
sifier. The authors of [21] make use of word embeddings to perform
sentiment analysis on tweets. They create sentiment-specific word
embedding features and combine these with handcrafted features to
use with a support vector machine. Their word vectors are created
using a neural network that is trained on a corpus of 10 million

tweets. This paper participated in the competition of SemEval-2014.
Of the 45 participating teams they achieved the second best result.

The authors of [6] and [8] also use word embeddings as features
of their classifier to perform sentiment analysis. [6] employs the
CBOW architecture of the word2vec algorithm to make domain
specific semantic word clusters. They then create features that indi-
cate if a certain word cluster is present in the current sentence. [6]
predicts the polarity for each aspect on sentence level employing
a Maximum Entropy classifier. Then, they aggregate these predic-
tions for each aspect category in a review and obtain review-level
aspect category sentiment predictions. [8] uses the pre-trained
GoogleNews word vectors as features in their Logistic Regression
classifier. Including these features improved their results. In this
paper we also employ word vector to perform sentiment analysis.
However, we do not use the created word vectors as features of a
machine learning algorithm, but employ them for our ontology to
improve the first phase of the algorithm. We use the pre-trained
GoogleNews word vectors and we also create our own restaurant
specific word vectors using the word2vec framework.

The authors of [22] employ word embeddings to improve the
performance of semantic textual similarity. Many NLP methods
depend on co-occurrences of words to evaluate the similarity be-
tween texts. However, this does not always need to be the case. As
an example the authors give the following two sentences: A storm
will spread snow over Shanghai and The earthquakes have shaken
parts of Oklahoma. These sentences contain similar information,
however they do not have a single word in common. The authors
combine pre-existent features of similarity measures with word
embedding features. They define two different word embedding
features. The first feature, micro, uses the similarity between words.
In the aforementioned sentences, ‘storm’ is similar to ‘earthquake’,
‘spread’ to ‘shaken’ and Shanghai and Oklahoma are both places.
They then take the difference between each similar word pair, e.g.,
‘earthquake’ and ‘storm’, and sum these to get a semantic similarity
value. For their second feature, macro, the authors find the cen-
troid of each sentence by determining a point that has the same
distance to all the word vectors of the sentence. Then, they define
the semantic similarity of two sentences as the distance between
corresponding centroids. They find that using both word embed-
dings features improves their accuracy. Like [22], we also employ
word embeddings to find similar words to improve our results, but
this in relation to a domain ontology.

3 DATA
The data used to train and evaluate the sentiment analysis model is
obtained from SemEval-2016 [16]. The test data is used to evaluate
our models and compare them with each other and with the partic-
ipants of SemEval-2016. The training data has two purposes. First,
it is used to train the back-up model. Second, part of the training
data is also used as an evaluation set while developing our models.
This way our model is optimized independently of the test data.
A notion is defined as an aspect category paired with a review
in which it is mentioned. The textual unit of a notion contains
the text of the review. The training data exists of 1435 notions
(335 different reviews) and the test data contains 404 notions (90
reviews).

Using Word Embeddings for Ontology-Driven Aspect-Based Sentiment Analysis SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

Figure 1: Annotated data fragment

In Fig. 1, a fragment of the annotated data is shown. This review con-
sists of four sentences and mentions five aspect categories. The data
is pre-processed using the Stanford CoreNLP tool [11] before being
used in the algorithm. The data is tokenized, Part-Of-Speech (POS)
tags are assigned, and all words are lemmatized. Lastly, the data
is processed by a dependency parser which finds all the relations
between words.

For each notion the algorithm predicts the sentiment label of the
corresponding aspect category in the review. As people canmention
a certain aspect multiple times in a review, a sentiment label that
summarizes all sentiment mentioned regarding this aspect category
is assigned. We distinguish four different sentiment labels: positive,
negative, neutral, and conflict. The conflict label is assigned to a
notion when conflicting sentiments are expressed. For example,
“The lasagna was delicious, but the risotto was not good", has the
sentiment label ‘conflict’ assigned for the aspect FOOD#QUALITY.

Fig. 2 and 3 show how the aspect categories and the sentiment is
distributed. Each review always has the aspect category RESTAU-
RANT#GENERAL, which represents the overall sentiment of the
review. The aspect category FOOD#QUALITY is also almost al-
ways mentioned in a review. Furthermore, the sentiment labels are
imbalanced as approximately 70% of the notions have a positive
sentiment. This indicates that if we always predict positive we al-
ready achieve an accuracy of about 70%. Lastly, there are only a
few notions that have the sentiment labels ‘conflict’ or ‘neutral’
assigned.

Figure 2: Relative frequencies for each aspect category label

To train the word embedding models, data is obtained from ex-
ternal sources to have enough data for representative word vectors.
We use two datasets to create different word embedding models.

Figure 3: Relative frequencies for each sentiment label

The first word embedding model uses the pre-trained Google-
News word vectors from the original word2vec project. This set
is trained on news articles containing approximately 100 billion
words from the GoogleNews dataset resulting in 3 million different
word vectors.

The other model consists of vectors that we train ourselves. The
input corpus consists of reviews obtained from the Yelp Dataset
Challenge [23] Round 9. The dataset contains 4.1 million reviews.
As not all of the reviews are restaurant reviews, the dataset is
filtered using the business IDs such that only restaurants are in
the dataset. Furthermore, all non-English reviews are removed
using the language-detection package [14]. There are 1779 different
restaurant businesses present in the filtered dataset totalling to
95437 English restaurant reviews with approximately 11 million
words. The dataset consists only of restaurant reviews to ensure
that the word vectors created are best suited for the restaurant
domain. For example, for the word ‘turkey’ we want ‘chicken’ and
‘meat’ to be returned as related words instead of ‘Erdogan’ and
‘Ankara’. The reviews are first tokenized, before being used as input
in the word2vec algorithm from the deeplearning4j package [20].

4 FRAMEWORK
Now we will discuss the framework employed for this paper. First,
we discuss the structure of the domain ontology. Then, we elaborate
on the use of word embeddings. Finally, we present the two-stage
algorithm that we propose.

4.1 Ontology
The domain ontology is divided into multiple classes grouped
by types. The main classes represent the sentiment, the aspects,
and the words that denote sentiment. The first main class con-
tains the subclasses Positive, Negative, and Neutral. The second
class called AspectIndicator, contains expressions that indicate if
the aspect is implied in the text. For example, when the word
‘waiter’ is present in the review we can deduce that it is being
talked about the aspect service. All expressions in this class are
linked to their corresponding aspect categories. Thus,Waiter is con-
nected to the aspect category SERVICE#GENERAL by the axiom
Waiter ⊑ ∃ aspect .{‘SERVICE#GENERAL’}. Furthermore, the lex-
ical representation of a word is linked to the corresponding concept
in the ontology. For example, the lexical form ‘waiter’ is linked to the
ontology concept Waiter by the axiomWaiter ⊒ ∃ lex .{‘waiter’}.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Sophie de Kok and Flavius Frasincar

The last class SentimentWord is split in different types that repre-
sent different categories of expressions. The first category contains
words that are always positive or negative and are independent of
an aspect. E.g., ‘good’ belongs to this category as this word is always
positive and not dependent on an aspect. The second type contains
sentiment words that only belong to a single aspect. For example,
‘helpful’ only belongs to the aspect SERVICE#GENERAL and is
always positive. The third type has words that belong to more than
one aspect, but not to all, and are either always positive or always
negative independent of the aspect. An example is ‘delicious’. This
word is always positive and belongs to both DRINKS#QUALITY
and FOOD#QUALITY. The fourth and last class has the remainder
of the sentiment words, which are words that are positive or nega-
tive dependent on the context. For example, ‘cold’ in combination
with fries has a negative sentiment, but in combination with beer
is positive. We make use of axioms to represent these relations.

In Fig. 4 a graphical representation of the ontology class Sen-
timentWord is depicted. For example, Cold represents the type-4
word ‘cold’ that can be both positive and negative. Furthermore,
the asterisk indicates that Cold is related to all aspect categories of
Drink and also is related to all aspect categories of Food. An aspect
category is for example DRINKS#QUALITY.

Figure 4: SentimentWords class in the ontology

In Fig. 5 part of the class AspectIndicator is represented. The as-
terisk represents the other aspect categories. The concept ColdDrink
is here part of all the aspect categories that are related to Drink.
Furthermore, ColdDrink in combination with Cold is a subclass of
Positive. The concept ColdDrink represents for example the word
‘beer’.

The main ontology consists of 95 AspectIndicators and 141 Sen-
timentWords. To test the influence of word embeddings we create
several smaller sub-ontologies. The first sub-ontology consists of
90% of the original elements, the second one of 80% etc., where the
ratio of AspectIndicators to SentimentWords is kept the same. Fur-
thermore, the most specific concepts like Breathtaking are removed
first resulting in the smallest ontology only containing fundamen-
tal concepts like Drink and Good. In total there are ten ontologies
differing in size.

Figure 5: AspectIndicator class in the ontology

4.2 Word Embedding
We employ the word2vec framework to train word embedding
models [12]. The framework implements two different models and
different training methods. The first model, the Continuous Bag-Of-
Words (CBOW) method, takes the surrounding words, the context
of a word, as input and tries to predict the word. The other model,
the skip-gram method, takes the word itself as input and predicts
the context of the word. A graphical representation of both methods
is depicted in Fig. 6, where t is the position of the current word and
k the size of the context window. The CBOW model is faster than
the skip-gram model, but the skip-gram model performs better for
infrequent words. As CBOW averages the vectors of the context
words to predict the center word it is worse at predicting uncommon
words. Assume we have the following two sentences: “The food
was delicious” and “The food was devine”. CBOW uses the context
to predict the word of interest. Now given the context [the, food,
was], where we want to predict the last word, the model is much
more likely to predict ‘delicious’ because CBOW predicts the most
probable word.

Figure 6: Continuous Bag-of-Words and skip-grammethods

Furthermore, the framework implements two training algorithms.
The first algorithm is the hierarchical softmax algorithm. This algo-
rithm is better for infrequent words. The second training algorithm
is the negative sampling algorithm. This algorithm performs better

Using Word Embeddings for Ontology-Driven Aspect-Based Sentiment Analysis SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

for frequent words and also works better with low dimensional
vectors [13]. The framework has many different parameters. We
only consider the main parameters here. First, the dimensional-
ity parameter determines the number of dimensions of the word
vectors, where usually a higher dimensionality is better. However,
more dimensions results in a longer computation time. Next, the
word2vec context window size parameter determines how many
words are part of the context of a word based on the proximity
to the word. Furthermore, the minimum word frequency param-
eter determines how often a word has to be in the corpus to be
considered. Finally, the sub-sampling frequency makes frequent
words less important by removing frequent words with a proba-
bility of p = f −t

f −
√

t
f , where f is the frequency of the word and

t is the sub-sampling parameter. The accuracy and the speed can
be improved by sub-sampling the frequent words of a large data
set as the word vectors of frequent terms like ‘the’ do not change
significantly after a few million iterations [13].

The first word embeddingmodel uses Google’s pre-trained word2vec
vectors with vector dimension 300. The model is trained using the
Continuous Bag of Words (CBOW) architecture, where the mean
of the context vectors is used to find the vector of the center word.
The context window size parameter is set to 5, the minimum word
frequency equals 10 and the sub-sampling of frequent words thresh-
old is set at 10−5. Finally, negative sampling is used with the noise
word parameter equal to 3.

The other word embedding model is a word2vec model created
using the deeplearning4j package [20]. As input we use the cleaned,
tokenized Yelp restaurant review data as described in the data
section. We compare two word embedding models. The first model
is a skip-gram model with the default parameters: context window
size of 5, a minimum word frequency of 5, a learning rate of 0.025
and minimum learning rate of 10−4. The vectors have a dimension
of 100. The other Yelp model is a CBOWmodel also configured with
the same default parameters. Both models are trained using the
hierarchical softmax algorithm, as the Yelp dataset is relatively small
and we want to appropriately model also the infrequent words.

4.3 Algorithm
Our approach consists of a two-stage algorithm. In Fig. 7 an activity
diagram of the approach is depicted. First, we obtain the ontology
words of the textual unit of a notion. If a word is not present in
the ontology we make use of word embeddings to find if there is a
match in the ontology. The next step is to calculate the ontology
scores. If there are hits in the ontology, we check if the outcome
of the ontology scores is conclusive, thus if only one sentiment
is assigned. If the outcome is inconclusive, we use the back-up
algorithm to predict the sentiment. Below we explain how the hits
are counted and when an outcome is inconclusive.

4.3.1 Ontology Words. The first step in the algorithm is getting
the ontology words. It starts by checking if a word is present in the
ontology. When a word is not present in the ontology, it calculates
the corresponding word vector. Then, it finds all neighbours of the
word. Neighbours are words that are related to the original word
found by the different word embedding models. If the similarity
between the neighbour and the original word exceeds an optimized

Figure 7: Activity Diagram

similarity threshold t , the algorithm checks if the neighbour is
present in the ontology. If the neighbour is present, it then adds the
new word to the set of ontology words. The pseudocode for this
method is presented in Algorithm 1. To save computation time, we
first find the neighbours of all non-ontologywords and pre-compute
the similarity before running the algorithm.

Algorithm 1: Ontology Words Algorithm
Get the ontology words from notion n.
function getOntologyWords(ont, n)

Set ontoloдyWords
foreachword ∈ textualU nitn do

if inOntoloдy(word) = true then
ontoloдyWords ←− ontoloдyWords ∪word

else
Set neiдhbours ←− дetN eiдhbours(word)
foreach neiдhbourW ord ∈ neiдhbours do

if inOntoloдy(neiдhbourW ord) = true &
similar ity(word , neiдhbourW ord) ≥ t then

ontoloдyWords ←−
ontoloдyWords ∪ neiдhbourW ord

end
end

end
end

return ontoloдyWords

4.3.2 Ontology Scores. The next step in the algorithm is calculating
the ontology scores. Fig. 8 shows how the ontology scores per
notion are determined when there are hits in the ontology. There
are four types of sentiment expressions as explained before. For each
type i = 1, 2, 3, 4, we return pi , the number of positive sentiment
hits in the ontology, ni , the number of hits in the ontology with
a negative sentiment and ti , the number of hits in the ontology
with a neutral sentiment. Aggregating the number of hits with their
corresponding weights wi , results in three different scores P , N ,
and T which are the ontology scores. Furthermore, as we want
to optimize the effect of negative ontology concepts with respect
to the positive concepts, we multiply the negative score N with
the negativity parameter ϑ . There is not a neutrality parameter as
the algorithm first checks if the predicted sentiment is positive or
negative. Only when this is not the case, it checks if the neutral
score T is larger than zero.

Each type of sentiment word is handled differently as follows:
Type-1. As we are working with reviews, we need to take into

account that if an expression with, e.g., a general positive sentiment
is found at the very beginning of the review, it is unlikely that this

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Sophie de Kok and Flavius Frasincar

Figure 8: Ontology Scores

expression affects aspects that are only mentioned at the end of
the review. For example, assume a review contains 10 sentences.
In the first sentence the word ‘good’ is present and only in the
last sentence the aspect SERVICE#GENERAL is mentioned. It is
then unlikely that the word ‘good’ found in the first sentence, af-
fects the aspect mentioned only in the last sentence. Therefore,
for type-1 expressions we make use of a word window to deter-
mine whether an expression is relevant for the current aspect. This
dependency-based word window is established using the relations
of the type-1 sentiment word with the other words in the review.
Next, the algorithm finds all the aspect indicators, which are ele-
ments of the ontology class AspectIndicator, present in the word
window. If any of these indicators is linked to the current aspect,
then it counts the type-1 expression as a hit for the current notion.
For example, assume that we currently have a notion n, which
consists of the review in Example 4.1 and is paired with the aspect
SERVICE#GENERAL. As ‘nice’ is a type-1 expression, we find its
word window [are, the, ., and, nice, cheap, food, waiters, so, is]
(windows size 1 and taking all the dependent parents and children).
Next, we loop over the words in this word window. As ‘waiter’ is
an aspect indicator in our ontology and is connected to the current
aspect category SERVICE#GENERAL, we count ‘nice’ as a positive
type-1 hit for this notion.

Example 4.1. “The food is so cheap and the waiters are nice."

Type-2. When the algorithm finds a type-2 expression in the
text, it checks if the aspect linked to the type-2 sentiment word
matches the aspect of the current notion. If the aspect categories
match, the word is counted as a type-2 hit. Assume that the current
notion consists of the review in Example 4.2 paired with the aspect
AMBIENCE#GENERAL. As ‘peaceful’ is a type-2 expression with
a positive sentiment linked to the aspect AMBIENCE#GENERAL,
it counts as a positive type-2 hit for the current notion. The link
between a sentiment word and its aspect is represented by the fol-
lowing axiom: Peace f ul ⊑ ∃ aspect .{‘AMBIENCE#GENERAL’}.

Example 4.2. “This is such a lovely, peaceful place to eat outside."

Type-3. A type-3 expression is handled in the same way as a
type-2 expression. When we find a type-3 sentiment word, we
check if one of the linked aspects correspond to the aspect category
of the current notion. If this is the case, we have a type-3 hit.
For example, assume that the current notion has aspect category
FOOD#QUALITY. As the word ‘delicious’ in Example 4.3 is linked to
the aspects FOOD#QUALITY and DRINK#QUALITY, this is counted
as a positive type-3 hit.

Example 4.3. “The service was excellent and the food was deli-
cious."

Type-4. Type-4 expressions are special as they are only counted
when an axiom in the ontology is triggered. When a type-4 word
is found, the word window surrounding this sentiment word is
calculated. Next, the algorithm finds the aspect indicators that are
present and check for each of the indicators if there is an axiom
with the corresponding type-4 expression. For example, the word
‘cold’ has two different sentiments in the two examples below.

Example 4.4. “Instead ordered an ice cold beer which tomeworks
with indian."

Example 4.5. “The pizza was delivered cold and the cheese wasn’t
even fully melted!"

In Example 4.4, ‘cold’ refers to the beer, which is positive. How-
ever, in the Example 4.5 it refers to the pizza, which carries a neg-
ative sentiment. In the ontology, we have two different axioms
defined for this example:

ColdDrink ⊓Cold ⊑ Positive (1)
WarmFood ⊓Cold ⊑ Neдative (2)

Axiom 1 states that the intersection of class Cold with the class
ColdDrink is a subclass of Positive. Moreover, ‘beer’ belongs to the
class ColdDrink and ‘pizza’ toWarmFood. This if formally defined
as follows:

Cold ⊒ ∃ lex .{‘cold’} (3)
ColdDrink ⊒ ∃ lex .{‘beer’} (4)
WarmFood ⊒ ∃ lex .{‘pizza’} (5)

Thus, if ‘cold’ is found in combination with ‘beer’ like in Example
4, it counts as a positive type-4 hit. However, when ‘cold’ is found
in combination with the word ‘pizza’ this is counted as a negative
type-4 hit.

Furthermore, for each type of expression we check for negation.
If one of the two preceding words of the sentiment word in the
sentence is a negating word like ‘not’ or ‘never’, we flip the polarity
of the hit around. Thus, if we find a positive sentiment word with a
negating word we count it as a negative hit. We look at two pre-
ceding words as the authors of [7] found that looking at two words
following a negation word improved their sentiment classification
performance the most.

For type-1 and type-4 expressions the algorithm employs word
windows. To determine which words will be part of a certain word
window, we take the structure of the review into account using
the Stanford CoreNLP package [11]. In particular, we use the Stan-
ford dependency parser to find the words that belong to the word
window. The size of the word window equals 1 + ω as the word
window always includes the center expression. If the expression
is multi-worded like ‘nothing special’, both words are part of the
center expression. In Algorithm 2, the pseudocode of how the word
windows are determined is given.

In the last stage of the two-part algorithm, the algorithm predicts
the sentiment of the notions. It uses the ontology scores calculated
previously to make a prediction. If there are hits in the ontology it
checks if the outcome is conclusive, thus if only one sentiment is
assigned. We compare the ontology scores for positive and negative,
where one score has to be at least ε larger than the other to account

Using Word Embeddings for Ontology-Driven Aspect-Based Sentiment Analysis SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

Algorithm 2:Word Window Algorithm
Returns a set of all words in the word window surrounding the
center Expression. The functions дetParents(word) and
дetChildren(word) return all the words that are respectively parents
and children to the inputword as annotated by a dependency parser.

function getWordWindow(centerExpression)
Setwindow ←− center Expression
for i ← 1 to ω + 1 do

foreachword ∈ window do
window ←− window ∪ дetParents(word)
window ←− window ∪ дetChildren(word)

end
end

returnwindow

for bias in review writing and to be less affected by a single word
with a different sentiment. Next, the algorithm checks if there are
any neutral hits. When there are no hits at all in the ontology or the
outcome from the ontology is inconclusive, we employ the back-up
model to predict the sentiment. The pseudocode of this method can
be found below in Algorithm 3.

Algorithm 3: Sentiment Computation Algorithm
Calculate the predicted polarity for n, where n is a notion. Furthermore, we
denote the predicted polarity of the notion as pn .

Data: n, a notion; ont , the ontology
Result: pn , the polarity of notion n
begin

ontoloдyWords ←− дetOntoloдyWords(ont , n)
ontoloдyScore ←−
дetOntoloдyScore(ont , n, ontoloдyWords)

if ontoloдyScore[posit ive] ≥ ontoloдyScore[neдative] + ε
then

pn ←− positive
else if
ontoloдyScore[posit ive] ≤ ontoloдyScore[neдative] − ε
then

pn ←− negative
else if ontoloдyScore[neutral] , 0 then

pn ←− neutral
else

pn ←− BackUpPredict ion(n)
return pn

end

We have eight different parameters in the first phase of the two-
stage algorithm. The main seven parameters are the four different
ontology scores weights w1,w2,w3,w4, the difference parameter
ε , the negativity parameter ϑ , and the word window size ω. These
seven parameters are optimized together using a grid search for
cross-validation on training data. The ontology score weights are
optimized over a range of 0 to 2.5 with a step of 0.1. The difference
parameter and the negativity parameter are both found in a range
of 0 to 3.5 with a step of 0.25. The word window size is found in a
range of 0 to 3 with a step of 1. The last parameter is the similarity
threshold t which determines whether word vectors are sufficiently
similar to be considered a related word. This threshold is optimized
separately for each word embedding model using values from 0.5
till 0.9 with a step of 0.05.

As back-up algorithm for the two-stage method we distinguish
between two algorithms. The first algorithm is the default algorithm
which always predicts the majority class, namely positive. Such an
algorithm does not need training. The second algorithm is a bag-of-
words method, namely a linear multi-class Support Vector Machine

(SVM) [4], which is trained using the training data for all available
labels: positive, negative, neutral, and conflict. We used a linear
kernal as it has been shown to work well for text classification
tasks where there are relatively many input features compared to
the number of training instances [4]. As SVM features we use a
bag-of-words, that is all the words present in the review, the current
aspect category of the notion, and the number of sentences in the
review. The SVM complexity parameter c is optimized using a grid
search from 10−6 to 103, with the exponent being increased by 1.

The main measure we use to evaluate our models is the accuracy,
which equals the F1 score in our setup. This score is defined as
follows:

F1 =
2TP

2TP + FP + FN
, (6)

where FP is the number of false positives, FN the number of false
negatives, and TP the number of true positives. A true positive is
defined as a correctly predicted sentiment label. When the senti-
ment label of a notion is predicted incorrectly we define this as
both a false negative as well as a false positive.

Furthermore, we also compare our main models with baseline
models. As baseline models we use both back-up algorithms. The
first baseline model, default, always predicts the majority class
positive. The second baseline model is the bag-of-words SVMmodel
as explained previously.

We also perform two-tailed t-tests to compare the average F1
scores obtained from ten repetitions of 10-fold cross-validation
performed with the training data. In 10-fold cross-validation the
data is split into 10 equally sized sets. Then, for each iteration a
different set is used as test set, while the remaining 9 sets are used
to train the model.

5 EVALUATION
In this section we present the results. First, we show the results
of our two-stage algorithm without word embeddings. Next, we
present the results of the models with word embeddings.

5.1 Two-Stage Algorithm
In Table 1, we compare our two-stage aspect-based sentiment anal-
ysis model,Ont + BoW , with the two baseline models, de f ault and
BoW . The de f ault model always predicts the majority class, in our
case positive. The BoW model is the bag-of-words SVM model with
optimized complexity parameter c = 0.1. Model Ont + BoW , is the
two-stage aspect based model with optimized parameters as stated
in Table 2.

Furthermore, we also present the results of theOnt model, which
is the same as ourOnt +BoW model, but predicts the majority class
positive as back-up instead of employing the BoW model when the
ontology is inconclusive. All of the above models do not employ
word embeddings.

In the first columns, we present the average results of ten runs of
10-fold cross-validation only using the training data. Furthermore,
we give the p-values of the two-sided t-tests where we compare
the average F1 scores. In the last couple of columns the results
of a single run using the test data is shown. For this single run
we use the training data to train the models and the test data to

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Sophie de Kok and Flavius Frasincar

Table 1: Performance of the two-stage aspect-based sentiment classification model

p-values of two-sided t-tests in-sample out-of-sample
avg. F1 st.dev. default BoW Ont Ont+

BoW
F1 F1

default 0.7049 0.0711 - - - - 0.7052 0.7079
BoW 0.7804 0.0564 <0.0001 - - - 0.8718 0.7847
Ont 0.7956 0.0459 <0.0001 <0.0001 - - 0.7958 0.8045
Ont+BoW 0.8091 0.0429 <0.0001 <0.0001 <0.0001 - 0.8530 0.8168

evaluate the models. The in-sample F1 uses the training data and
the out-of-sample F1 uses the test data.

The Ont + BoW model outperforms both baseline models sig-
nificantly for the 10-fold cross validation employing the training
data and for the single run with the test data. The Ont + BoW
model has increased the test accuracy of the BoW model by over 3
percentage points. Furthermore, the Ont model also significantly
outperforms both baseline models. The Ont model has an accuracy
approximately 2 percentage points higher than the BoW model for
the test data. The difference between theOnt +BoW model and the
Ont model for the 10-fold cross-validation is approximately 1.5 per-
centage points and for the test data approximately 1.2 percentage
points.

Looking at the parameter values in Table 2, we note that the
negativity parameter ϑ equals 3.0. This indicates that negative ex-
pressions count three times as heavy as positive sentiment words.
As approximately 70% of the sentiment labels in our data is positive,
concepts that express negative sentiment are important. Further-
more, we note that the different weight values indicate that type-4
sentiment words are most important. Type-4 sentiment words are
expressions that are context dependent. These words are defined
very precisely, because they have to be formalized by an axiom.
This indicates that the sentiment word is most probably correctly
interpreted and thus carries the sentiment specified in the ontology.
Therefore, it is logical that type-4 sentiment words are crucial.

Compared to the results of the SemEval-2016 submissions of task
5 subtask 2, we are ranked second. The accuracy of theOnt + BoW
model of this paper is 0.25 percentage point lower than the best
model and outperforms the third ranked model by 0.24 percentage
point.

Table 2: Model Parameters

Parameter w1 w2 w3 w4 ε ϑ ω

Value 1.0 0.75 0.75 1.5 1.5 3.0 1

5.2 Word Embeddings
In Table 3, we present the results of the twomodels created using the
Yelp restaurant review data. The skip-gram model with similarity
threshold t = 0.75 performs better than the Continuous Bag-Of-
Words (CBOW) model with similarity threshold t = 0.85. This can
be explained by the fact that generally the skip-gram model works
better on smaller data sets and represents uncommon words well.
Both models have 25894 word vector representations. We continue
with the skip-gram model as our Yelp word embedding model.

Table 3: Performance of Yelp Word Embedding models

Word Embedding Model Average F1 of 10 ontologies
skip-gram 0.7965

CBOW 0.7904

In Fig. 9 we compare three different models with each other for
different ontology sizes. The percentages on the horizontal axis are
the percentages of concepts used from the original ontology. The
values on the vertical axis are the F1 scores obtained by performing
a single run using the test data. The dotted line represents the
Ont+BoW model without employingword embeddings. The striped
line is the Gooдle model, which consists of the Ont + BoW model
with the GoogleNews word embeddings and a similarity threshold
t of 0.80. The last model called Yelp is our Ont + BoW model in
combination with the Yelp reviews and the skip-gram word2vec
architecture. The Yelp model has a similarity threshold of 0.75. The
similarity thresholds t are optimized separate from the other model
parameters.

As you can see, the accuracy decreases when the ontology gets
smaller. Up to 40% the Gooдle and the Ont + BoW model have the
same accuracy. However, for even smaller ontologies, the Gooдle
model does outperform the Ont + BoW model. Furthermore, the
Yelp model never performs better than our Ont + BoW model and
mostly has a lower F1 score than theOnt +BoW model. TheGooдle
model is the best performing model in our experiment.

Figure 9: Effect of word embeddings for different ontology
sizes

6 CONCLUSION
We employed a two-stage ontology-driven algorithm for aspect-
based review-level sentiment analysis. The two-stage algorithm
significantly outperforms both considered baseline algorithms. The

Using Word Embeddings for Ontology-Driven Aspect-Based Sentiment Analysis SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

bag-of-words SVM baseline has an accuracy that is over 3 percent-
age points lower than the accuracy of our final model.

Furthermore, we investigate the effect of not using any training
data for our model. The model thus only depends on the ontology
and does not use the bag-of-words SVM model as back-up. We
find that even when we do not train a back-up model we still
significantly outperform the baseline methods. The model without
the back-up algorithm has a 1.2% decrease in accuracy compared
to the model with the bag-of-words back-up.

Lastly, we examined the effect of using word embeddings for
the two-stage algorithm. Two different word embedding models
are created. The first model employs the pre-trained GoogleNews
word vectors. The other model uses Yelp restaurant reviews to train
word vectors. We find that, when used in conjunction with the main
ontology, the word embedding models do not improve the accuracy.
The Yelp word embedding model even decreased the accuracy of
the predictions. A reason for this might be that we did not have
enough Yelp restaurant data to create representative word vectors.
However, we find that when the ontology is sufficiently small, in
our case containing 30% of the main ontology concepts, the Google
word embedding model does improve the accuracy.

As in around 40% of the notions the back-up algorithm is used
to predict the sentiment, the first stage of the algorithm could be
improved. For future work, one could look at either expanding the
ontology or improving the algorithm that uses the ontology hits to
predict the sentiment. Especially, the sentiment labels ‘neutral’ and
‘conflict’ are rarely predicted. One could try to research if a pattern
among these notions is present in order to better predict these
polarities. For example, [6] believe that the overall sentiment of a
certain aspect gravitates toward the polarity of the last mention in
the review of that aspect.

The domain ontology is the main component of our algorithm.
We find that the accuracy decreases with the size of the ontology.
This indicates that an extensive ontology is needed to get good
results. However, creating an ontology is a very time consuming
task. For future work, one could look into automating the creation
of the ontology [3].

REFERENCES
[1] Basant Agarwal, Namita Mittal, Pooja Bansal, and Sonal Garg. 2015. Sentiment

Analysis Using Common-Sense and Context Information. Computational Intelli-
gence and Neuroscience 2015 (2015), 30.

[2] Ben Allison, David Guthrie, and Louise Guthrie. 2006. Another look at the data
sparsity problem. In 9th International Conference on Text, Speech and Dialogue
(TSD 2006). Springer, 327–334.

[3] Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini. 2005. Ontology learning
from text: methods, evaluation and applications. Vol. 123. IOS press.

[4] Chih-ChungChang andChih-Jen Lin. 2011. LIBSVM:A Library for Support Vector
Machines. ACM Transactions on Intelligent Systems and Technology 2 (2011), 27:1–
27:27. Issue 3. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[5] C. Fellbaum. 1998. WordNet: An electronic lexical database. MIT Press.
[6] THercig, T Brychcın, L Svoboda, andMKonkol. 2016. UWB at SemEval-2016 Task

5: Aspect based sentiment analysis. In 10th International Workshop on Semantic
Evaluation (SemEval 2016). Association for Computational Linguistics, 354–361.

[7] Alexander Hogenboom, Paul Van Iterson, Bas Heerschop, Flavius Frasincar, and
Uzay Kaymak. 2011. Determining negation scope and strength in sentiment
analysis. In IEEE International Conference on Systems, Man, and Cybernetics 2011
(SMC 2011). IEEE, 2589–2594.

[8] Mengxiao Jiang, Zhihua Zhang, and Man Lan. 2016. ECNU at SemEval-2016
Task 5: Extracting effective features from relevant fragments in sentence for
aspect-based sentiment analysis in reviews. In 10th International Workshop on
Semantic Evaluation (SemEval 2016). Association for Computational Linguistics,
361–366.

[9] Bing Liu. 2012. Sentiment Analysis and Opinion Mining, Synthesis Lectures on
Human Language Technologies. Vol. 16. Morgan & Claypool.

[10] Hugo Liu and Push Singh. 2004. ConceptNet — A Practical Commonsense
Reasoning Tool-Kit. BT Technology Journal 22, 4 (2004), 211–226.

[11] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations. Association for Computational Linguistics,
55–60.

[12] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013). https://arxiv.org/abs/1301.3781.

[13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
In Advances in Neural Information Processing Systems 26 (NIPS 2013). Curran
Associates, Inc., 3111–3119.

[14] Shuyo Nakatani. 2010. Language Detection Library for Java. https://github.com/
shuyo/language-detection.

[15] Tim O’Reilly. 2005. What is Web 2.0. http://www.oreilly.com/pub/a/web2/
archive/what-is-web-20.html.

[16] Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion
Androutsopoulos, and Suresh Manandhar. 2016. SemEval-2016 Task 5: Aspect
based sentiment analysis. In 10th International Workshop on Semantic Evaluation
(SemEval 2016). Association for Computational Linguistics, 27–35.

[17] Reuters Staff. 2009. Internet most popular information source. http://www.
reuters.com/article/us-media-internet-life-idUSTRE55G4XA20090617.

[18] Kim Schouten and Flavius Frasincar. 2016. Survey on aspect-level sentiment
analysis. IEEE Transactions on Knowledge and Data Engineering 28, 3 (2016),
813–830.

[19] Kim Schouten, Flavius Frasincar, and Franciska de Jong. 2017. Ontology-Enhanced
Aspect-Based Sentiment Analysis. In 17th International Conference on Web En-
gineering (ICWE 2017) (Lecture Notes in Computer Science), Vol. 10360. Springer,
302–320.

[20] Skymind. 2017. Deeplearning4j: Open-source distributed deep learning for the
JVM, Apache Software Foundation License 2.0. http://deeplearning4j.org.

[21] Duyu Tang, Furu Wei, Bing Qin, Ting Liu, and Ming Zhou. 2014. Coooolll: A
deep learning system for Twitter sentiment classification. In 8th International
Workshop on Semantic Evaluation (SemEval 2014). Association for Computational
Linguistics and Dublin City University, 208–212.

[22] Junfeng Tian and Man Lan. 2016. ECNU at SemEval-2016 Task 1: Leveraging
word embedding from macro and micro views to boost performance for semantic
textual similarity. In 10th International Workshop on Semantic Evaluation (SemEval
2016). Association for Computational Linguistics, 621–627.

[23] Yelp. 2017. Yelp Dataset Challenge. https://www.yelp.com/dataset/challenge.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://arxiv.org/abs/1301.3781
https://github.com/shuyo/language-detection
https://github.com/shuyo/language-detection
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://www.reuters.com/article/us-media-internet-life-idUSTRE55G4XA20090617
http://www.reuters.com/article/us-media-internet-life-idUSTRE55G4XA20090617
http://deeplearning4j.org
https://www.yelp.com/dataset/challenge

	Abstract
	1 Introduction
	2 Related Work
	3 Data
	4 Framework
	4.1 Ontology
	4.2 Word Embedding
	4.3 Algorithm

	5 Evaluation
	5.1 Two-Stage Algorithm
	5.2 Word Embeddings

	6 Conclusion
	References

