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ABSTRACT
Matrix factorization models are becoming increasingly popular in
the field of collaborative filtering recommender systems. Recent de-
velopments in this area of research use a penalization method, such
as the L2 penalty, to restrict overfitting and reduce sparseness. We
propose an alternative way of regularizing matrix factorization for
recommender systems, i.e., the elastic net. A compromise between
the L1 and L2 penalties, the elastic net can be implemented in any
coefficient estimation scenario. We evaluate the performance of
our model on real-world data, namely the MovieLens 100K dataset.
Comparison with two more restrictive models shows that our pro-
posed regularization provides superior accuracy in predictions, as
measured by the mean absolute error. Moreover, prediction errors
for individual users occur less often, and we are able to accurately
predict 95.02% of the ratings with an error of at most two points
from the real ratings, given on a scale from 1 to 5. Finally, sensitivity
analysis shows the stability of the proposed solution.
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1 INTRODUCTION
The World Wide Web is constantly experiencing a massive increase
in the amount of information it provides. A 2013 study approximates
that as much as 90% of the data available at that time had been
created in the previous two years alone [18]. The amount of data
available online, be it movies, music, news, scientific articles, etc.,
guarantees that users can find virtually any piece of information.
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However, with the rapid increase in accessible information, the
ease of finding the exact piece of information that a user needs is
increasingly hindered; all the information a user needs is available
online, but finding it may be extremely challenging.

The previously described scenario is where the need for effective
and efficient recommendation systems stems from; recommender
systems are becoming more and more popular in today’s abundance
of information available with just the click of a button or the tap of
a screen. They are used to filter a stream of information according
to the needs and preferences of a certain user. In particular, rec-
ommenders are tools that try to predict the rating or preference
that a user would give to an item. Thus, these systems make it
possible to prompt a user only with items that he/she might find
interesting, instead of letting the user browse through all available
items. They have numerous applications, in particular since the
advent of the Internet and the enormous increase in information
available online. Given this benefit, it is not surprising that recom-
mender systems are widely employed in fields like movies, music,
news, and e-commerce. In particular, movies providers like Netflix,
Hulu, and iTunes owe their existence to a certain extent to their
recommender engine. If the system is able to understand the latent
features of movies that appeal to a user, this enables the system
to rank the movies which possess the same features that the user
values, according to the user’s preferences. These movies are then
recommended to the user, since it is very likely that they match the
user’s tastes.

We propose a new approach to model-based collaborative filter-
ing recommenders, and focus on latent factor models. Latent factor
models are an effective solution to recommendations [2, 3, 16]. They
try to reduce the dimensionality of the problem by finding features
extracted from the users’ stated preferences for a set of items. These
are features that characterize the items and towards which users
have certain affinities. Building on the state-of-the-art algorithms
that exploit matrix factorization techniques, we propose a new ap-
proach by generalizing two existing algorithms [5, 9]. The goal of
our research project is to fit a matrix factorization model to a set of
movie ratings used as a training set in such a way that the model is
able to accurately predict ratings that users would give to movies
they have not seen.

2 RELATEDWORK
The Netflix Prize1 competition has shown that matrix factorization
techniques outperform their classic nearest neighbor counterparts
when applied to recommender systems [9]. The prize was won in
2009 by the team “BellKor’s Pragmatic Chaos", whose algorithm

1http://www.netflixprize.com/
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outperformed the algorithm that Netflix was using at that time
for movie recommendations, namely Cinematch, by 10.05%2 (with
respect to RMSE). The winning algorithm includes a regularized ma-
trix factorization approach, proving the power of such techniques
for collaborative filtering recommendations.

A popular approach to collaborative recommender systems is
represented by latent factor models. These models try to reduce
the dimensionality of a given user-item ratings matrix by finding
latent factors that are able to characterize the items and for which
users have certain preferences. Due to their ability to reduce the
dimensionality of datasets, the popularity of latent factor models
has increased recently, especially since the tremendous increase in
the amount of information available online, through which users
have to browse before finding their favorite items [10, 13, 22].

Finding the latent factors and decomposing the user-item ratings
matrix into the product of two smaller matrices, i.e., the user factor
matrix and the item factor matrix, seem like tasks for singular value
decomposition (SVD) methods. However, missing values are not
admissible inside a matrix to be taken as input by an SVD method;
a typical user-item ratings matrix, like the one we will analyze in
this research, has a huge amount of missing values, since each user
provides ratings for only a small subset of the movie items. This
makes the SVD method unfit for our purpose.

Koren, Bell, and Volinsky [9] propose a regularized matrix fac-
torization technique for recommender systems by imposing a ridge
type of regularization on the user factor loadings and the item
factor loadings. They estimate the model coefficients using two
methods: alternating least squares (ALS) and stochastic gradient
descent (SGD). As the authors report, SGD tends to be easier to im-
plement and faster than ALS; furthermore, Aberger [1] also defends
the SGD method’s runtime advantage over ALS. On the other hand,
ALS scales well to very large, sparse datasets [23]. In our project
we choose to focus on SGD.

The literature on matrix factorization techniques for recom-
mender systems also talks about other methods used to estimate
such models. Rodrigues, Jorge, and Dutra [15] describe the cyclic
coordinate descent (CCD) method, and show how a graphics pro-
cessing unit (GPU) implementation of this algorithm can help accel-
erate recommender systems. Furthermore, Gogna and Majumdar
[5] opt for a majorization-minimization (MM) approach to solve
their matrix factorization model; MM is an iterative procedure that
exploits the convexity of a function and is popular for avoiding
intense computations, such as elaborate matrix inversions and ma-
trix multiplications [14]. However, algorithms that implement MM
procedures are usually slower than gradient descent methods [11].

Gogna and Majumdar [5] offer a different point of view. The
motivation they offer for their chosen regularization approach sets
them apart from Koren, Bell, and Volinsky [9]. More specifically,
they argue that any given user has a certain inclination towards any
type of movie, be it a drama, a comedy, a thriller, etc. Therefore, they
impose ridge regularization on the user factor matrix, whereby the
factor loadings are optimized and scaled, but they can never become
zero. A factor of zero in this context would mean that the user has
no attraction towards a certain type of movie; the authors argue
that this assumption is not likely to hold. On the other hand, as far

2https://en.wikipedia.org/wiki/Netflix_Prize#2009

as the item factor matrix is concerned, the authors impose lasso
regularization, since, they argue, a certain movie cannot contain
characteristics of all genres at once; the lasso is able to meet this
constraint by selecting only those features that the movie has.

The elastic net regularization has been shown to outperform
the lasso and has been introduced in 2005 [24]. It compromises be-
tween the lasso and ridge regularization methods, i.e., it is a linear
combination of the L1 penalty (corresponding to the lasso) and the
L2 penalty (corresponding to ridge). An important advantage of
the elastic net over ridge is the former’s ability to perform variable
selection, which is a limitation of ridge regularization. Moreover,
the authors prove that another great advantage of the elastic net
is that it manages to overcome two limitations of the lasso. One
of the limitations occurs in cases with high-dimensional data (the
number of variables/predictors is usually denoted by p) but few
observations (the number of observations is typically denoted by
n); often called “large p, small n" situations, they create problems
for the lasso regularization, which is only able to select at most n
variables before it saturates. The second limitation of the lasso, that
is successfully fixed by the elastic net, is the lasso’s tendency to
select one variable from a group of strongly correlated variables
and ignore the others; the elastic net manages to resolve this draw-
back by means of its group selection power, whereby it identifies
groups of highly correlated variables and treats all variables in a
group alike. The mathematical manifestation of this treatment is
revealed by the values of the coefficients corresponding to highly
correlated variables, which tend to be equal, up to a change of sign
for negatively correlated variables. This implies that all variables in
a group are either selected altogether, or none of them is selected.

What motivates us to conduct this research is our aspiration to
develop a more general regularization method that embeds both
the method of Koren, Bell, and Volinsky [9], as well as the model
proposed by Gogna and Majumdar [5]. Additionally, we identified
two reasons for which we doubt the validity of the assumptions
made by Gogna and Majumdar [5] on the user factor matrix and the
item factor matrix. The first reason is that the factors that a matrix
factorization method finds do not coincide with the typical movie
genres, as the authors seem to suggest. The factors found by this
method are complex and difficult to interpret; analyzing in more
detail the movies that score high on a certain factor gives an idea
about what the factor might be. To illustrate the complexity of such
factors, consider two examples of factors discovered by Koren, Bell,
and Volinsky [9], which the authors name “critically acclaimed" and
“mainstream crowd-pleaser"; clearly, movies belonging to possibly
(almost) all movie genres have the potential of becoming “critically
acclaimed" or a “mainstream crowd-pleaser". For example, a “criti-
cally acclaimed" movie can be a drama, a thriller, a documentary, a
musical, a sci-fi, or even a comedy. We believe that, indeed, only
certain factors can be associated with a movie (our first hypoth-
esis); however, in contrast to Gogna and Majumdar [5], who use
the lasso on the item factor matrix, we intend to use the (superior)
regularization power of the elastic net to discover which factors
best characterize each movie.

The second reason that motivates our deviation from the model
of Gogna and Majumdar [5] builds on the first reason and concerns
the fact that users might actually have no preference for certain
factors (our second hypothesis). If we consider the “mainstream

https://en.wikipedia.org/wiki/Netflix_Prize#2009
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crowd-pleaser" category of movies, there might be users that have
such a strong preference for suspense over predictability that they
would never watch such a movie. Thus, we doubt the legitimacy of
the ridge regularization imposed on the user factor matrix, which
is unable to perform factor selection. In order to verify the validity
of our second hypothesis we impose elastic net regularization on
the user factor matrix.

We address the two issues discussed above by introducing a more
general matrix factorization model that regularizes both the user
and the item factor matrices using elastic net regularization. This
raises the following research question: How to exploit an elastic net
regularization for matrix factorization in recommender systems? Our
proposed model generalizes two models, one proposed by Koren,
Bell, and Volinsky [9], which we will refer to as the KBV method,
and the other one coined by Gogna and Majumdar [5], which we
will refer to as the GM method. The KBV model can be seen as
a special case of our approach, since ridge regularization can be
regarded as a special case of the elastic net. Similarly, the GMmodel
can also be seen as a special case of the model we develop in this
research, since both ridge and the lasso are special cases of the
elastic net.

We will refer to our proposed approach using the acronym
ENetMF, as an abbreviation for elastic net matrix factorization.
To our knowledge, this is the first work that aims to achieve this.
Since our proposed method is more general and has more degrees of
freedom, we expect it to be able to better describe the latent factor
space and thus to perform better when compared to more restric-
tive methods. More specifically, we expect our model to achieve a
lower prediction error due to a better attuning of the parameters.
However, the runtime of our model will presumably be higher, since
it is more complex than the models described by Koren, Bell, and
Volinsky [9], and Gogna and Majumdar [5].

3 METHODOLOGY
In this section we describe the model we develop in our research
and provide the mathematical details of an estimation method,
the stochastic gradient descent, which can be summarized in two
update rules.

3.1 Matrix Factorization
Matrix factorization methods have previously been shown to be su-
perior to classic nearest-neighbor techniques for the task of generat-
ing product recommendations [9]. For example, matrix factorization
models are important tools that help reduce the dimensionality of
a U × I user-movie ratings matrix R by mapping users and movies
to an F -dimensional latent factor space. In this space each user u
is represented by a vector pu ∈ RF , which quantifies the prefer-
ence the user has for movies that score high on the corresponding
factors. Similarly, item i is represented in the same F -dimensional
space by vector qi ∈ RF , whose elements quantify the extent to
which movie i possesses each of the F latent factors. The goal of
matrix factorization is to estimate vectors pu and qi for all users
u = 1, . . . ,U and items i = 1, . . . , I . Then pTuqi is an approximation
of user u’s real rating of item i , denoted by rui , so that pTuqi = r̂ui .
Matrix factorization decomposes R into two matrices P ∈ RU×F

and Q ∈ RI×F such that P ×QT best approximates R. More specifi-
cally, P ×QT approximates the known elements of R. Note that R
often contains missing values, since users do not provide ratings
for all movies. Consequently, P ×QT makes predictions about the
missing values of R. The matrix P describes the users’ preferences
for the F discovered movie features, called factors. Similarly, the
matrix Q depicts the salience of the F factors in each of the movie
items.

3.2 Regularization Methods
We need to estimate the elements of vectors pu and qi for all u =
1, . . . ,U and i = 1, . . . , I ; in total there areU+I vectors of dimension
F , which means there are F (U + I ) coefficients to be estimated. The
optimal number of factors needs to be large enough to capture
all important characteristics of the ratings matrix R, and small
enough to avoid overfitting; it is common practice to experiment
with different values of F and empirically find the optimal one [16].
In Section 4.3 we describe the experiments that provide empirical
support for fixing F = 8. With U = 943 users and I = 1,682 movie
items, we need to estimate in total 8 · (943 + 1, 682) = 8 · 2, 625 =
21, 000 coefficients.

Complex systems with many coefficients to be estimated suffer
from the problem of overfitting. Overfitting is synonymous to over-
estimating the effect of a set of predictors on the response variable.
This overstating of the impact of certain variables translates into
large estimated coefficients on the respective predictors. A solution
is to incorporate a selection and shrinkage procedure, also called
regularization method, into the model, which penalizes the magni-
tude of coefficients and selects those variables that have predictive
power [9]. Next we review three regularization methods.

3.2.1 Ridge. Ridge regularization is synonymous with L2 penal-
ization on the coefficients, which is done by adding a term equal to
the square of the magnitude of the coefficients [20]. This leads to
the following model:

min
(pu ,qi )

∑
(u ,i)∈K

(
rui − p

T
uqi

)2
+ ρ1 ∥pu ∥

2
2 + ρ2 ∥qi ∥

2
2 (1)

where K is the set of pairs (u, i) for which the user-item rating rui
is known; ρ1 and ρ2 are positive constants, also called shrinkage
parameters, or tuning parameters, and are determined via cross-
validation. The term ρ1 ∥pu ∥22 + ρ2 ∥qi ∥

2
2 is called the penalty term;

without this term, the expression in Equation 1 amounts to least
squares regression. The larger the coefficients pu and qi are, the
larger the penalty will be for making them non-zero. Thus, the
penalty term in Equation 1 has the effect of shrinking the values of
the coefficients pu and qi , as compared to the values they would
get without using a penalty term. However, the coefficients cannot
become zero, which means that ridge regularization is not able to
perform factor selection. We obtain the KBV model [9] by imposing
that ρ1 = ρ2 in Equation 1.

3.2.2 Lasso. The least absolute shrinkage and selection operator
(lasso) is equivalent to L1 penalization on the coefficients to be
estimated [19]. This is done by adding a penalty term proportional
to the absolute value of the magnitude of coefficients. In our case,
lasso regularization leads to the following model:
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min
(pu ,qi )

∑
(u ,i)∈K

(
rui − p

T
uqi

)2
+ λ1 ∥pu ∥1 + λ2 ∥qi ∥1 (2)

where K is the set of pairs (u, i) for which the user-item rating rui
is known; λ1 and λ2 are positive constants determined via cross-
validation. They control the size of the coefficients, and therefore
control the amount of regularization; the higher λ1 and λ2 are,
the smaller the estimated coefficients pu and qi will be. Moreover,
higher values of λ1 and λ2 produce a greater amount of null co-
efficients; conversely, small values of the parameters λ1 and λ2
imply that the lasso penalty is less powerful in performing variable
selection and producing sparse solutions.

3.2.3 Elastic Net. The elastic net is a regularization method that
combines ridge and lasso regularization methods in a linear way.
We propose to use the elastic net in a matrix factorization algorithm
in order to learn the factor vectors pu and qi , which amounts to
minimizing the following non-convex regularized squared error on
the set of known ratings:

min
(pu ,qi )

∑
(u ,i)∈K

(
rui − p

T
uqi

)2
+ ρ1 ∥pu ∥

2
2 + ρ2 ∥qi ∥

2
2

+ λ1 ∥pu ∥1 + λ2 ∥qi ∥1

(3)

where K is the set of pairs (u, i) for which the user-item rating
rui is known. The constants ρ1, ρ2, λ1 and λ2 are determined by
cross-validation and quantify the extent of regularization.

Note that the KBV and the GM models are embedded in our
proposed model. More specifically, the KBV model is a special case
of our model if we impose the restrictions:

ρ1 = ρ2 (4)
λ1 = λ2 = 0 (5)

On the other hand, the GM model can be obtained by imposing the
following restrictions on the parameters in our proposed model:

ρ2 = 0 (6)
λ1 = 0 (7)

The novelty of the GM model lies in the argumentation Gogna and
Majumdar [5] offer for their choice of parameters. The authors
argue that any given user has a certain preference for any given
type of movie (thriller, comedy, drama, etc.), therefore it makes
sense to estimate the preferences of users for all movie genres.
Given this argument, they use a ridge type of regularization on the
user feature matrix. On the other hand, they argue, movies cannot
possibly pertain to all genres, therefore they impose a lasso type
of regularization on the item feature matrix, whereby the method
selects only the features that characterize a certain movie.

We find it hard to believe that a user has a certain preference for
any given movie genre; for example, some users may dislike violent
scenes so much that they would never watch a horror movie. This
makes ridge regularization unsuitable for the user feature matrix,
since it is not able to select those features that appeal to each user.
Moreover, the movie features found by a latent factor modeling
approach are not as obvious as the difference between comedy

and drama is, but tend to be rather ambiguous, such as “critically-
acclaimed" or “standard, mainstream crowd-pleaser"; a critically-
acclaimed movie can be a drama, or a thriller, or a psychological
movie. Undoubtedly, only certain factors characterize each movie;
however, we propose to enforce an elastic net regularization on
the item feature matrix, since it has been shown to overcome the
limitations of the lasso. More precisely, the lasso’s performance is
hindered by two types of limitations. One of the limitations occurs
in “large p, small n" situations, i.e., high-dimensional data but few
observations; the second limitation is the lasso’s inability to carry
out group selection, a drawback that prevents it from treating highly
correlated variables similarly [24].

3.3 Estimation Method
We investigate one approach to fitting the model described in Equa-
tion 3, namely stochastic gradient descent. The main idea behind
gradient descent methods is to make small adjustments to the objec-
tive function to be minimized; in each step, the adjustment is made
in the opposite direction of the gradient of the objective function.
Gradient descent methods require the method to run through all the
observations in the training dataset before deciding to do a single
update for the coefficients in a particular iteration. In contrast, sto-
chastic gradient descent (SGD) methods use only one observation
from the training set to update the coefficients in an iteration. Thus,
SGD has a clear advantage in terms of speed over standard gradient
descent methods.

We estimate the coefficientspu and qi using a stochastic gradient
descent (SGD) optimization procedure, for all u = 1, . . . ,U and
i = 1, . . . , I . The algorithm loops through all ratings from the
training setK and iteratively optimizes the coefficients by adjusting
them in the opposite direction of the gradient of the objective
function from Equation 3.

The general update rule of SGD methods is:

θ ← θ − α∇θ J (θ ; rui ) (8)
where θ is the vector of coefficients to be estimated, J (θ ) is the
objective function to be minimized, and rui is an element from the
training set. The gradient operator is denoted by ∇; α is called the
learning rate and needs to be chosen in such a way that it leads to
stable convergence. The soft-thresholding operator is defined as:

S (x,γ ) = sgn (x) (|x | − γ )+

=


x − γ , if x > 0 and |x | > γ
x + γ , if x < 0 and |x | > γ
0, if |x | ≤ γ

(9)

Using Equations 8 and 9, and insights from [9] and [17], we obtain
the following update rules:

puf ← S

(
puf + α

(
euiqi f − ρ1puf

)
, α

λ1
2

)
(10)

qi f ← S

(
qi f + α

(
euipuf − ρ2qi f

)
, α

λ2
2

)
(11)

The algorithm loops through all ratings rui in the training set, and
at each step it computes the corresponding puf and qi f , where f
indexes the factors, f = 1, . . . , F , and where F is the dimension of
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the factor space. Furthermore, eui = rui − p
T
uqi is the estimation

error between the actual rating rui given by user u to movie item i
and its most recent estimation r̂ui = pTuqi . Applying the update rule
from Equation 10 for all factors f = 1, . . . , F leads to an updated
vector pu ; updating all vectors pu for u = 1, . . . ,U leads to an
updated matrix P . The same procedure is used to update matrix Q .
There are five unknown parameters: the learning rate of the SGD
method, α , the two elastic net tuning parameters that regularize
the user factor matrix, ρ1 and λ1, and the two elastic net tuning
parameters that regularize the item factor matrix, ρ2 and λ2; we
describe how we estimate these parameters in Section 4.3.

4 EVALUATION
We evaluate our model by assessing its performance in compar-
ison with two more restrictive recommenders, namely the KBV
recommender [9] and the GM recommender [5].

4.1 Dataset
We use the MovieLens 100K dataset [6] to empirically validate our
research. The dataset contains 100,000 ratings (1-5) from 943 users
on 1,682 movies, and is freely available online3. For each user we
dispose of user demographics like age, gender, and occupation. The
average user is roughly 34 years old, and there are approximately
two times more male users than female users included. Out of the 19
occupations, the most well-represented category is that of students,
comprising over a fifth of the 943 users. For each movie item we
have information concerning the release date and the genre; there
are 18 possible genres and movies can be in several genres at once.
Indeed, 833 movies belong to one genre, while the rest belong to
two, three, or up to six genres.

On average, the dataset contains about 100 movie ratings per
user, with users having rated from at least 20 movies to at most 737
movies. On average, each movie received about 60 ratings, while the
most popular movie in the dataset received almost 600 ratings from
the users. A closer look at the ratings indicates that the average
rating is 3.53, with a variance of 1.27. Moreover, the mode of the
ratings distribution is 4, with around 34% of the ratings taking this
value. The fact that each user rated, on average, about 100 movies
gives an idea about the degree of sparsity of the user-item ratings
matrix. The dimensions of the matrix are 943 users × 1,682 movies,
which amounts to 1,586,126 potential ratings, of which we are only
given 100,000.

4.2 Experimental Setup
In order to assess the prediction performance of our recommender,
we use 90% of the dataset for training and validation and keep the
remaining 10% for testing the recommender. Testing is done using
the parameter configuration we find optimal in the training and
validation phase. Training and validation of the recommender is
performed through 10-fold cross-validation, whereby we randomly
partition the selected 90% of the full dataset into ten equally sized
subsets. We keep one of the ten subsets as the validation set and
use the other nine subsets for training the recommender. We repeat
this training and validation process ten times, using each of the ten
subsets exactly once as the validation set. We run the recommender
3http://grouplens.org/datasets/movielens/100k/

using each pair of training and validation sets, and record each time
the desired measures of model quality. At the end of the ten runs we
average the ten results for each model quality indicator, to obtain
overall measures of model quality. As measures of model quality
we consider the mean absolute error, the spread of prediction error,
and the runtime. We consider the parameter configuration that
provides the lowest mean absolute error to be optimal. Finally, we
use the optimal parameter configuration and run the recommender
on the test set (i.e., the remaining 10% of the full dataset) and we
report the measures of model quality we obtain.

We compare the results we obtain following our procedure with
the results the KBV and the GMmethods obtain on the same dataset.
We consider the performance indicators achieved by our implemen-
tation of the two algorithms we compare against, and we run all
three algorithms on the same machine. By doing so, any differences
in outcomes are solely a result of the regularization technique ap-
plied.

One model quality indicator we evaluate is the mean absolute
error (MAE), which measures the mean deviation of the predicted
ratings from the real ratings and is an indicator of the overall
accuracy of an algorithm [5]. Equation 12 shows how the MAE is
computed in fold t of the 10-fold cross-validation. Moreover, Kt
represents a subset of K ; K is the set of pairs (u, i) for which the
user-item rating rui is known - similarly, we define Kt as the set of
pairs (u, i) for which the user-item rating rui is known and that are
used in fold t of the cross-validation. Thus, |Kt | = 90,000

10 = 9, 000,
for all t = 1, . . . , 10. The overall MAE is computed by averaging
over all ten mean absolute errors found in the ten folds of the
cross-validation (Equation 13).

MAEt =

∑
(u ,i)∈Kt |rui − r̂ui |

|Kt |
(12)

MAE =
1
10 (MAE1 +MAE2 + . . . +MAE10) (13)

Another model quality indicator we examine is the prediction
error: when talking about a single rating prediction, it is the ab-
solute difference between predicted and real ratings. Because the
ratings, true or predicted, can take one of the values 1 to 5, it follows
that |rui − r̂ui | ∈ {0, 1, 2, 3, 4}. The spread of the prediction error
looks at how many times the prediction error takes each value
in {0, 1, 2, 3, 4}, and relates them to the number of ratings in the
validation set, namely 9,000 in our case. Equation 14 shows how to
compute the share of correctly predicted ratings (prediction error
is 0) in fold t of the cross-validation, where xt ,0 is the number of
predicted ratings that exactly match the actual ratings. In a similar
fashion we record the share of prediction errors equal to 1, 2, 3, and
4 in fold t of the cross-validation via nt ,1 to nt ,4; in the computation
of nt ,1 to nt ,4 we use xt ,1 to xt ,4, which represent the number of
predicted ratings that differ from the actual ratings given by the
users by 1 to 4, respectively. We use Equation 15 to average the
shares over the ten folds and to obtain an overall value for the share
of prediction error 0 via n0. In a similar way we compute the overall
values for the shares of prediction errors 1, 2, 3, and 4 via n1 to n4.

nt ,0 =
xt ,0
|Kt |

(14)

http://grouplens.org/datasets/movielens/100k/
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n0 =
1
10

(
n1,0 + n2,0 + . . . + n10,0

)
(15)

The final quality measure we use to assess the performance of
our algorithm is the runtime. To this end, we record the number
of seconds from the beginning of the algorithm, throughout the
matrix factorization part, until the predictions are obtained and the
recommender stops.

Compared to the KBV model, our model has three new variables;
compared to the GM model, our model has two extra variables.
Since our proposed method is more general and has more degrees
of freedom, which enable it to better describe the latent factor space,
we expect it to perform better when compared to the other two
methods; we expect the MAE of our recommender to be lower and
the prediction errors to occur less often. However, the runtime of
our recommender will likely be higher, since we propose a more
general model, with more tuning parameters.

4.3 Parameter Setup
There are four tuning parameters that need to be estimated in
such a way as to minimize the expression in Equation 3: the two
elastic net parameters on the user factor matrix, ρ1 and λ1, and the
two elastic net parameters on the movie factor matrix, ρ2 and λ2.
Further, in order to approximate the solution to Equation 3 we use
the stochastic gradient descent (SGD) method, which adds another
tuning parameter, namely the learning rate α . Finally, the number
of dimensions F of the latent factor space that explains the ratings
given by users to movies is another tuning parameter, and needs to
be estimated.

The learning rate α is a tuning parameter that determines the
size of the steps the SGD algorithm takes to reach the minimum
of the expression in Equation 3, thus, α influences the speed of
convergence of the algorithm. Moreover, α controls the accuracy
of the predictions: a learning rate α that is too large can cause the
algorithm to miss/overlook the optimal solution, while an α that is
too small can slow down the algorithm and prevent it from finding
the optimal solution when there is a fixed number of iterations.
Although different values of the learning rate α lead to different
sets of predictions, and, thus, to different prediction accuracies,
Koren [8] provides empirical evidence that using a fixed learning
rate can be beneficial; the researcher finds that fixing α = 0.001
works well for the Netflix problem. Moreover, working with a fixed
learning rate is a computationally attractive alternative to optimiz-
ing it together with the other parameters of the model; this argues
in favor of fixing α and attuning the remaining parameters to a
fixed learning rate. To this end, we perform a line search for an
adequate value of α under the following setup: we fix ρ1, ρ2, λ1,
and λ2 to 0.25, weighting each of the four elastic net components
in Equation 3 equally, and we fix F to 8. Under this setup, α was
varied between 0.0001 and 0.005, in steps of 0.0001. Using the MAE
as the evaluation criterion, we found that α = 0.001 minimizes this
assessment measure. Moreover, the literature [8] and various simu-
lation studies performed on similar movies datasets also exploit this
fixed value for the learning rate in the analyses. Thus, we decided
to fix α = 0.001 as well, and optimize the rest of the parameters
accordingly.

(a)

(b)

Figure 1: Influence of F on prediction accuracy, as mea-
sured by the mean absolute error (MAE), and on runtime
(expressed in seconds). Plotted for values of F up to 20, Fig-
ure (a) shows how theMAE behaves with increasing F , while
Figure (b) illustrates how the runtime responds to increasing
values of F . The value of F thatminimizes themean absolute
error (MAE) assessment criterion is 8.

Apart from fixing the learning rate α , we also fix the number of
factors F . A similar argumentation invoking computational effort
supports performing a line search for the appropriate number of
factors and fixing F to that certain value throughout subsequent
analyses. Keeping the value 0.25 for ρ1, ρ2, λ1, and λ2, and fixing
α to 0.001, we performed a line search for a suitable value of F .
Under this setup, the number of factors F was varied between 2
and 20. For values of F up to 8, we noticed that the prediction
accuracy of our recommender system improves when the number
of factors it estimates increases (Figure 1 (a)). For higher values
of F , the MAE increases, compared to its minimum value attained
for F = 8. Moreover, Figure 1 (b) shows that the runtime of the
algorithm grows at such a high rate with increasing values of F ,
that it does not justify increasing the number of factors beyond
8. Additionally, from an intuitive point of view, in the context of
movies and viewers’ attitude towards movies, we hypothesize that
eight key characteristics would allow us to find enough descriptive
dimensions to understand and predict movie preferences, therefore
we work with F = 8.

Thus, we restrict the parameter space of our model in two di-
rections, by imposing α = 0.001 and F = 8. We estimate the other
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parameters by four-dimensional grid search: we search for the opti-
mal values of ρ1, ρ2, λ1, and λ2 in [0, 0.5], using a 0.1 step size. Our
four-dimensional grid search analyzes 1,296 4-tuples and chooses
the one that leads to the lowest mean absolute error of the predicted
ratings; each of the three algorithms we consider has its own opti-
mal parameters. The algorithms were implemented in PHP4 and
run on a machine with Intel Xeon W3680 3.33GHz six core CPU,
12GB of RAM, and 64-bit Windows 10 operating system.

4.4 Results
The 4-tuples (ρ1, ρ2, λ1, λ2) that give the lowest MAE for each of
the three methods, respectively, are (0.3, 0.0, 0.0, 0.0) for ENetMF,
(0.2, 0.2, 0.0, 0.0) for KBV, and (0.2, 0.0, 0.0, 0.1) for GM. Although
our approach does not impose any restrictions on the parameters,
the algorithm finds that the optimal parameter setup fixes ρ2 = 0,
λ1 = 0, and λ2 = 0. Since ρ2 and λ2 are the elastic net parameters
acting on the item factor matrix, their optimal values found by
our algorithm imply that our proposed approach makes the most
accurate predictions when the item factor matrix is not regularized.
Moreover, finding λ1 = 0 indicates that there is no selection of
factors performed on the user item matrix, which implies that users
have a certain affinity towards all factors, as hypothesized by Gogna
and Majumdar [5].

Measuring how close predicted ratings are to real ratings given
by the users to the movie items, the MAE is a measure of accuracy
used to assess the performance of various recommenders; the MAEs
obtained by ENetMF (0.9279), KBV (0.9543), and GM (0.9523) attest
the superior prediction accuracy of our proposedmodel and endorse
it as a reliable recommendation tool. Our algorithm performs 2.77%
better than KBV, and achieves 2.56% improvement in predictions
with respect to GM, both in terms of mean absolute error.

As explained in Section 4.2, the optimal parameters correspond-
ing to each of the three models are obtained following 10-fold
cross-validation. This means that each algorithm returns a MAE
in each of the ten folds; averaging the ten MAEs corresponding
to each algorithm yields the overall MAE of each model in the
training and validation phase, corresponding to a certain parameter
setup (ρ1, ρ2, λ1, λ2). Since the differences between these values are
small, we run two separate two-sample paired t-tests to properly
assess whether the MAEs differ significantly between the three
methods. Compared to the ten MAEs achieved by the KBV recom-
mendation method, the MAEs obtained following our approach
tend to be smaller, although the statistical evidence is not very
strong (p = 0.051). Further, compared to the ten MAEs achieved by
the GM recommendation method, the MAEs obtained following our
approach also tend to be smaller, however, the statistical evidence
is not compelling (p = 0.08).

The mean absolute error provides an overview of the prediction
performance and accuracy of a recommender system. To zoom in on
the predicted ratings, we analyze how close individual predictions
fall from the real ratings. Our proposed approach predicts 95.02%
of the ratings with an error of at most two points (prediction error
is either 0, 1, or 2), while KBV predicts 94.39% of the ratings with
the same accuracy, and GM predicts only 94.41% of the ratings with
the same precision. Although 0.01% of the ratings in our working

4Code available at https://tinyurl.com/yb6ddww4.

(a)

(b)

(c)

Figure 2: MAE fluctuations corresponding to small changes
in ρ1 around its optimal value. Figure (a) illustrates MAE
fluctuations caused by ENetMF (optimal ρ1 = 0.3), Figure (b)
exhibits MAE fluctuations caused by the KBV method (op-
timal ρ1 = 0.2), while Figure (c) reveals MAE fluctuations
caused by the GM method (optimal ρ1 = 0.2).

dataset of size 100K amounts to ten ratings, the number rapidly
increases with the size of the dataset under scrutiny; therefore, an
increase of 0.01% in correctly predicted ratings is a considerable
improvement for very large datasets.

Comparison of the algorithms across the runtime dimension is
done by recording the time (in seconds) it takes each method to
evaluate a single 4-tuple (ρ1, ρ2, λ1, λ2). Runtime increases with
the number of parameters to be estimated: KBV estimates one

https://tinyurl.com/yb6ddww4
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parameter, since the model imposes that ρ1 and ρ2 should be equal,
and has the lowest runtime, 61.49; GM estimates two parameters
and requires 61.80 seconds; finally, ENetMF imposes no restrictions
and estimates four parameters, and has the highest runtime, 62.27.

The only parameter that is not restricted by any of the three
recommendation methods is ρ1 (λ1 and λ2 are restricted to 0 in
the KBV method, while ρ2 and λ1 are restricted to 0 in the GM
method). A sensitivity analysis of how small changes in this pa-
rameter affect the predictive performance of the three algorithms
would shed light on which recommendation method is the most
sensitive to parameter fluctuations. Figure 2 shows how the MAE
reacts to small changes in ρ1 around its optimal value, for each of
the three recommendation methods. Using a 0.001 step size, we
consider changes of at most ±0.05 around ρ1’s optimal values: they
are 0.3 for our proposed method, 0.2 for the KBV algorithm, and 0.2
for the GM recommender. For each of the three methods we con-
sider an interval of length 0.1, centered around ρ1’s corresponding
optimal value, and evaluate how these changes affect the predictive
performance of the recommenders, as measured by their respective
MAE. Note that in Figure 2 the optimal value of ρ1 that we found
previously does not lead to the lowest MAE; the reason is that these
plots zoom in extensively around a specific value of ρ1, and can
thus approximate the optimal value of ρ1 more accurately, while
the resolution of the grid search we performed to find the optimal
parameters was inferior, for runtime and computational burden
reasons. High resolution grid search is the only support we have
in finding the best parameter estimates, as the minimization of an
expression with an elastic net penalty has no closed form solution.
The reason is that the elastic net penalty does not have partial
derivatives at zero for any of the penalized coefficients, due to the
L1 component of the penalty [21]. However, the L2 component of
the elastic net penalty ensures strict convexity, which guarantees
the existence of a minimum to the expression in Equation 3. There-
fore, we optimize using the stochastic gradient descent procedure,
whereby we alternate between updating the user factor matrix P
and the item factor matrix Q , and we use the grid resolution as an
indication of how accurate our estimates are. The plots in Figure 2
show that the range of the MAE of our proposed algorithm (Figure
2 (a)) is comparable to the ranges corresponding to the other two
methods (Figure 2 (b) and (c)), attesting the stability of all three
approaches; this kind of stability is a desirable characteristic of a rec-
ommender system, since it shows that the prediction performance
of the underlying algorithm is less sensitive to possible inaccuracies
in the estimated parameter values.

4.5 Discussion
In this section we revisit the two hypotheses we formulated in
Section 2 and analyze to what extent they are confirmed/infirmed
based on the results of Section 4.4.

An interesting result that our research revealed is that, although
we do not impose restrictions on the elastic net parameters that
regularize the item factor matrix, our algorithm finds that their
optimal values are 0. Note that the elastic net parameter λ2 accounts
for the lasso contribution to the regularization, thus it is responsible
for the selection of coefficients. Finding that λ2 = 0 invalidates our
first hypothesis stated in Section 2, namely that movies can only

be characterized by certain factors. An interpretation that could be
given to the fact that λ2 = 0 is that there seems to be no need for
a recommendation method to select a certain subset of factors to
describe movies; instead, all factors found by ENetMF characterize
movies to certain extents. Since factors are complex features that
describe the content of movies, and not plain movie genres, it is
plausible that each movie is a mix of (possibly) all factors, with
different weights; the salience of a factor in a movie item translates
into the magnitude of the corresponding coefficient in the item
factor matrix.

In presenting our second hypothesis in Section 2, we deviated
from the reasoning of Gogna and Majumdar [5], and stated that
users might not have an inclination towards all factors, and that
their preferences are better described by subsets of the latent factors
revealed by a recommendation tool. Finding λ1 = 0 invalidates our
second hypothesis and suggests that users do indeed a certain
affinity towards all underlying features describing movies.

We mentioned in Section 2 that one of the advantages of using
the elastic net regularization over ridge or lasso is its ability to
perform group variable selection. Our research allows us to make a
surprising empirical observation in this direction, namely that the
sparsity property and the grouping effect usually inflicted by the
L1 component of the elastic net are not that transparent in the case
of our recommender system. More precisely, the coefficients of the
variables of our model (the eight latent factors) do not make the in-
clusion/exclusion decision that would produce the sparse solutions
generally induced by the elastic net; even under the influence of
the elastic net, our model includes all eight variables. A closer look
at the values of the optimal parameters gives us an idea why this
is the case. Parameters λ1 and λ2 quantify the lasso contribution
to the elastic net regularization on the user and the item factor
matrices, respectively, and control the number of null coefficients.
We found λ1 = 0, whose value is responsible for the parameter’s in-
ability to perform variable selection. Additionally, we found λ2 = 0,
which effectively means there is no selection operator acting on the
item factor matrix. Also, the variables cannot be split into groups
according to comparable values of their corresponding coefficients,
which prevents us from observing the grouping effect we expected.

5 CONCLUSIONS
The aim of our research was to develop a recommender system
that uses matrix factorization with an elastic net regularization,
and to evaluate its performance on the MovieLens 100K dataset, a
collection of 100,000 ratings (1-5) from 943 users on 1,682 movies,
against the KBV model [9] and the GM model [5]. There are two
main hypotheses that motivated our research. Our first hypothesis
postulates that not all factors included in the model are necessary
for describing movie characteristics. Therefore, the L1 contribution
of the elastic net should act accordingly, and select those underlying
factors that are needed to explain movie features, through param-
eter λ2. However, our model finds that λ2 = 0, which invalidates
our first hypothesis and suggests that each movie item is a mix of
all latent factors, since the parameter that grants the elastic net
its variable selection power is null. Our second hypothesis states
that users might not have a preference for all factors. Our research
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infirms this statement by finding λ1 = 0; the elastic net regulariza-
tion acting on the user factor matrix is unable to perform factor
selection, given that the value we found for λ1 is null. The fact that
λ1 = 0 shows that user preferences do not need the selection ability
of the elastic net in order to be correctly represented using subsets
of the latent factors; in fact, our research indicates that users tend
to have a certain preference towards all underlying factors that
characterize movie items.

In terms of mean absolute error (MAE), our algorithm performs
best, achieving 2.77% better prediction accuracy compared to the
KBV model; however, the improvement is not statistically signif-
icant, based on a p-value of 0.051. Compared to the GM model,
our approach obtains a 2.56% increase in accuracy of predictions,
although the improvement is not statistically significant (p-value
0.08). Moreover, our method performs better in terms of the pre-
diction errors it makes for individual users: we manage to predict
95.02% of the ratings with an error of at most two points from the
real ratings, while KBV achieves the same accuracy for 94.39% of
the ratings, and GM for 94.41%. Our method is thus able to describe
the latent factor space better and thus outperform the other two
methods with respect to prediction accuracy.

There are a number of possible future research directions that
build up on the current state of our recommender and could po-
tentially improve our prediction accuracy by adjusting some of
the specifications of our model. First, allowing the parameter α
to vary alongside the other four elastic net parameters (ρ1, ρ2,
λ1, and λ2) could improve the performance of our recommender
through a better optimization of our objective function. Alterna-
tively, one could use a genetic algorithm to find the optimal five-
tuple (α, ρ1, ρ2, λ1, λ2), as the efficiency of this class of algorithms
has been studied and confirmed by previous research [4, 7, 12].
Secondly, increasing the number of latent factors to be discovered
beyond eight could impact results in three ways: (1) it might be
easier for the elastic net regularization to find groups of highly
correlated variables when there are more explanatory variables
included in the model; (2) a model with more variables has a better
chance of forming a sparse representation under the influence of
the elastic net penalty, since it might be more straightforward to
find unnecessary factors and leave them out of the model when
there are more variables to choose from; (3) an increased number of
underlying factors has the potential of better represent user choices
and movie features, and, thus, lead to more accurate predictions.
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