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ABSTRACT
A recent direction on improving the performance of recom-
mender systems is by exploiting data semantics. However,
previous research has given little attention to the selection
of the most relevant data for recommendations. In this pa-
per we present a schema-driven approach for top-N recom-
mendations. We identify the most promising path types in
a structured information network, i.e., Linked Open Data

(LOD), based on variable importance scores. In contrast to
previous work, we focus on which information is most impor-
tant and remove path types that appear unimportant. The
methodology is tested on the MovieLens 1M dataset, seman-
tically enhanced with data from the LOD cloud. The results
are threefold. First, we find that the LOD cloud is useful
especially for small user profiles. Secondly, we find that the
LOD cloud is useful for large user profiles only when the most
popular items are not considered. Lastly, we find that se-
lecting the most relevant data from the LOD cloud improves
performance compared to using all extracted LOD data.

CCS Concepts
•Information systems→Recommender systems; Per-
sonalization; •Computing methodologies → Semantic
networks;

Keywords
Top-N recommendations; Linked Open Data; information
network schema; random forest

1. INTRODUCTION
Today, there is more information available to us than we

can ever process [11]. This information overload calls for
efficient methods to help users filter out content that is useful
to them. A class of algorithms called Recommender Systems
(RSs) was specifically designed for this task and has been
studied extensively both commercially and academically [1].
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A RS makes personalized recommendations to guide users
in their search for useful content in a potentially enormous
space of options [5]. For example, it can advise on which
movie to watch on Netflix, which restaurant to go to for
dinner, or even who to be friends with on Facebook.

There have been many approaches to address the RS prob-
lem. Most recently, researchers have tried to leverage the Se-
mantic Web to increase performance of RSs. The Semantic
Web, sometimes referred to as the Web of Data, is an ini-
tiative led by the World Wide Web Consortium (W3C) to
create a framework in which linked data can be easily shared
and reused. With defined standards on formats, the Seman-
tic Web is easily accessible for both humans and machines,
and can thus easily be integrated in a variety of applications.

A subset of the Semantic Web which has recently gained
much attention in the RS research area is the Linked Open

Data (LOD) cloud. This set originated in 2007 from the Link-
ing Open Data project, which was a community effort pri-
marily lead by researchers and developers [3]. The (ongoing)
goal was to identify and convert freely available datasets ac-
cording to the Linked Data principles, and publish them on
the Semantic Web. Thanks to the open nature of the project
it was able to grow rapidly, resulting in billions of RDF state-
ments describing and linking data on the LOD cloud today.

In this paper, we take a closer look at which information
in the LOD cloud is most informative. To do this, we build a
novel RS similar to SPrank [14] exploiting one of the most
popular datasets of the LOD cloud called DBPedia. In contrast
to previous research, we aim at improving performance by
filtering out uninformative data from the LOD cloud. More
specifically, we argue that some information is not useful for
recommendations, because the information is too generic or
simply not important. For example, in a movie RS, the year
of release is probably less important information than the
director of the movie. To do this, we take a schema-based
approach which allows us to find the most relevant infor-
mation based on variable importance scores. We use the
work from [20], by implementing their efficient matrix ori-
ented path finding methodology in a RS environment. More-
over, we evaluate the performance under different scenarios.
Specifically, not only do we look at performance for differ-
ent profile sizes, but we also explore the scenario in which
the most popular movies have been removed from the data,
similar to [7].

The paper is structured as follows. In section 2 we de-
scribe related work. Then, in section 3, we explain the pro-
posed methodology, followed by its evaluation in section 4.
Last, in section 5, we give our conclusions and future work.



2. RELATED WORK
A clear overview of the literature regarding the early days

of RSs is given by [1]. In general, RSs can be categorized
into one of three categories:

• Content-based RSs compare the content of previ-
ously liked items with new (unseen) items and recom-
mend those items which are most similar.

• Collaborative RSs base recommendations on what
other users with similar preferences have liked in the
past.

• Hybrid recommender systems combine content-based
and collaborative aspects.

Content-based RSs are built on the assumption that there
is a high chance users will like items similar to items they
have liked in the past [17]. Collaborative methods, also
known as collaborative filtering, rely exclusively on user rat-
ings to make recommendations [19]. Content-based methods
cannot take advantage of inter-user relations, while collab-
orative methods are unable to incorporate item characteris-
tics. Researchers have come up with several hybrid meth-
ods to take advantage of the best of both worlds, thereby
mitigating some of the problems as cold start and limited
content.

Some of the first authors to propose the leverage of the
LOD cloud in a RS were the authors of [10]. They argued
that the use of open data sources in RSs could solve the
data acquisition problem, thereby mitigating cold start and
sparsity problems.

An early content-based music RS that used the DBPedia

dataset is dbrec [15]. The RS relied on the Linked Data
Semantic Distance (LDSD) [16] to identify similarities be-
tween items, which is based only on the number of links from
one item to another. The authors found that dbrec provided
more novel recommendations, while performing reasonably
well in terms of precision compared to more extensive hy-
brid RSs. Novelty of recommendations was also advocated
by the authors of [9], who developed a generic knowledge
framework on top of DBPedia to make cross-domain recom-
mendations. Specifically, they focused on the scenario where
a place of interest acts as input for a music RS. For example,
they argued that someone who visited the city of Vienna is
likely to enjoy the opera, while someone who visits the O2
stadium in London probably enjoys more popular music.

In [8], the authors used multiple cross-linked datasets of
the LOD cloud in a content-based movie recommender sys-
tem. In particular, to determine similarity scores between
two movies, they checked how much information was shared
between them. For example, two movies might have the
same director or the same subject. Roughly speaking, the
more information was shared, the higher the degree of sim-
ilarity.

Lastly, the authors of [14] leveraged DBpedia to create an
ontology based top-N recommender system called SPrank

(Semantic Path-based ranking). The authors used a path-
based approach to identify features of movies, and imple-
mented a learning to rank algorithm to perform model based
recommendations. They evaluated their algorithm using im-
plicit feedback, and were able to make recommendations
that outperformed several state-of-the-art top-N recommender
systems like BPR (Bayesian Personalized Ranking) [18] and
SLIM (Sparse Linear Methods) [13].

Figure 1: Information network example

Figure 2: Information schema example

Our research differs from previous research in the sense
that we focus on the most important information from an
ontology only. Specifically, it differs from [14], because we do
not only consider all paths up to a certain length, but rather
define network schemas in which only certain path types are
allowed. Also, it differs from previous research because of
the way we find all path instances. For efficiency reasons,
we exploit a matrix oriented path finding methodology pro-
posed by the authors of [20]. Our research differs from [20],
because we implement the path finding technique in a RS. In
contrast, in [20] the authors implemented their methodology
in semantically-enhanced web search. Lastly, our research
differs from [7], because they did not consider semantically
enhanced RSs, but rather focused on collaborative filtering
approaches.

3. METHODOLOGY
We propose a LOD-based RS that depends on finding the

number of connections between items following predefined
paths in a graph. By defining the structure of the graph we
create an information network in which only certain paths
can exist. This greatly reduces the time needed to find all
paths. Moreover, some paths might add noise instead of se-
mantics. Ignoring these path types could increase accuracy.

3.1 Graphs and Information Networks
This paper uses graph theory to represent and analyze

connections between users, items, and entities. In its most
basic form, a graph G = (N ,L) consists of a set of nodes
N = (n1, n2, . . . , nN ) and a set of edges L = (l1, l2, . . . , lL)
connecting the nodes. All users, items, and entities are rep-
resented by nodes, while all connections are represented by
edges. A graph can be directed or undirected. In an undi-
rected graph all connections between nodes are symmetric,
while in a directed graph, a connection is only specified in
one direction. For this paper, we consider solely undirected
graphs, as for example movies cannot direct directors, but
we do want to be able to associate movies with directors.



More structure can be added to the set of nodes and the
set of edges. For example, the set of nodes can be split
into three subsets containing only users, items (to be rec-
ommended), or entities (related to items). Also, the set of
edges can be split in links between users and items, and links
between items and entities or other items. This can be spec-
ified more formally by using mapping functions as defined
by the authors of [20]. Let φ : N → A be the node mapping
function assigning every node n ∈ N to a node type A ∈ A,
that is, φ(n) ∈ A. Also, let ξ : L → B be the mapping func-
tion assigning every edge l ∈ L to an edge type ξ(l) ∈ B.
Then, the combination of a graph with mapping functions φ
and ξ is defined as an information network. The structure of
an information network is defined in a network schema, de-
noted TG = (A,B). The network schema defines which node
types exist in the graph, as well as between which node types
certain link types are allowed.

Figure 1 shows an example information network. There
are 3 users, 4 movies and 6 entities, which in turn consist of 3
directors and 3 actors. Users and movies are linked when the
user has liked that particular movie. Similarly, there exists
a link between movie and entity when either the movie was
directed by that director, or when the actor starred in the
movie. The information schema of this network in shown
in Figure 2. Here we see all links that are allowed in the
information network.

The information network and schema can be used to search
for similarities between items and/or users. To do so, we
need an efficient way to determine how often two nodes are
connected, and with what kind of links. We implement a
matrix oriented path-finding approach that has previously
been used in semantically-enhanced web search [20]. For
this approach, we first introduce the concept of meta paths.

3.2 Meta Paths
In general, two nodes can be similar if there exists one or

more connections between them in the information network.
Nodes can be connected by a direct link, or a concatenation
of multiple links called meta paths. In our example, it can
be seen that users can be associated with movies directly if
they have liked the movie, or indirectly if they have liked a
movie with a similar actor or director.

Given a network schema TG = (A,B), a meta path is
defined as a sequence of links between two node types and
is denoted as

P = A1
R1−−→ A2

R2−−→ . . .
Rl−1−−−→ Al. (1)

There can be multiple instances of a meta path in an in-
formation network. Let p = (a1, r1, a2, r2, . . . , rl−1, al) be a
path in an information network. Then, p is defined as an
instance of P if ∀i, φ(ai) = Ai and ∀i, ξ(ri) = Ri, where
ri is the link between node ai and ai+1. Note that a meta
path defines a concatenation of links on the schema level,
whereas a path denotes an instance of a meta path. We will
also refer to meta path as a path type. The length of a meta
path is defined as the number of links in P, and a path is
symmetric if and only if there exists an inverse path of P,
denoted

P−1 = Al
Rl−1−−−→ . . .

R2−−→ A2
R1−−→ A1

One can note that the paths considered in this work are
symmetric as we are dealing with undirected graphs (i.e., the
paths have direction, but the edges do not have orientation).

Two meta paths P(1) and P(2) can be concatenated if the
last node type of P(1) is the same as the first node type
of P(2). To clarify, let us consider the singular length path
instances from our example in Figure 1:

user 2
likes−−−→ movie 2

movie 2
starring−−−−−→ actor 1

actor 1
starring−−−−−→ movie 1.

These can be concatenated to form a length 3 path:

user 2
likes−−−→ movie 2

starring−−−−−→ actor 1
starring−−−−−→ movie 1.

Now, we introduce a matrix oriented path finding algorithm
to find all path instances in the information network belong-
ing to each defined path type in the information schema.

3.3 Matrix Oriented Path Finding
Given an information network and a relation type Rk, the

adjacency matrix W
(Rk)
AiAj

is defined as an n ×m matrix in-

dicating which nodes from node type Ai are linked to nodes
from node type Aj and by how many links r ∈ Rk. Here,
n and m represent the number of nodes belonging to node
type Ai and Aj , respectively. Notice that the transpose of

W
(Rk)
AiAj

represents the adjacency matrix from Aj to Ai.

The commuting matrix MP contains the number of path

instances p ∈ P, where P = A1
R1−−→ A2

R2−−→ . . .
Rl−1−−−→ Al

is a specific meta path, and where MP(i, j) indicates how
many path instances exist between node xi ∈ A1 and yj ∈
Al, following meta path P. The commuting matrix can be
calculated as the product of the adjacency matrices, that is:

MP = WR1
A1A2

WR2
A2A3

. . .W
Rl−1

Al−1Al
. (2)

3.4 Combining Commuting Matrices
Dependent on how many node types and link types have

been defined, there are as many commuting matrices as there
are unique meta paths in the information network. Here we
propose a method for combining commuting matrices. The
resulting path count matrix can be used to store the number
of paths between users and items.

Let MP(i) be defined as the n × n symmetric commut-

ing matrix containing all path counts given meta path P(i),
where n is the total number of items available for recom-
mendation. First, we evaluate all symmetric paths of the
type:

item
Rj−−→ *

Rj−−→ item, (3)

where the * can be any node type, including other users. We
focus on symmetric paths because these make most sense
intuitively. For example, if an actor is liked for his acting
skills, this does not necessarily mean he is also a good di-
rector. Additionally, due to computational limitation, we
restrict the length of these paths to 2. Next, let z be defined
as the number of different path types in the information net-
work. We can now define an (n ∗ n)× z path count matrix
as:

P =
[
vec(MP(1)) vec(MP(2)) · · · vec(MP(z))

]
, (4)

where vec(A) is the matrix vectorization operator (i.e., stacks
the columns of A on top of each other). For this matrix, it
holds that element P (i ∗ n + j, k) represents the number of
paths from item with index i to item with index j following



meta-path P(k). Next, let xu,i be defined as the vector of
size z, containing the cumulative path counts from user u
to item i. All paths from user to item greater than length 1
are of the form:

user
likes−−−→ item

Rj−−→ *
Rj−−→ item,

where the last part is the same as in Equation 3. This results
in paths up to length 3. Note that if the length constraint
is relaxed, ∗ can also be replaced by multiple instances of
Equation 3. Now we can use matrix P to calculate the path
counts using the formula:

xu,i =
∑
j∈I+u

P (ji), (5)

where P (ji) is the row vector from P representing the path
counts from item j to item i for all path types, and I+u
contains all items which are liked by user u.

Again we refer to our example. Since there are three re-
lation types in the example network schema, we search for
three path types:

Directing: Movie
directedBy−−−−−−−→ Director

directed−−−−−→ Movie;

Likes: Movie
likedBy−−−−−→ User

likes−−−→ Movie;

Starring: Movie
hasStarring−−−−−−−−→ Actor

starring−−−−−→ Movie.

Note that these path types all fit the definition of Equation
3.

3.5 Calculating Top-N Recommendations
Using the same notation as [14], let S be defined as a

binary feedback matrix where su,i = 1 if user u liked item
i, and 0 otherwise. The user profile of user u is defined
as the set of items for which su,i = 1, that is, I+u = {i ∈
I|su,i = 1} (set of items the user likes). Similarly, I−u is
defined as I−u = {i ∈ I|su,i = 0} (set of items the user
does not like). The user profiles are used to calculate path
count vectors xu,i for every user-item combination in the
data using Equation 5. Next, let I−∗u ⊆ I−u be defined as
a set of size k ∗ |I+u | (the number of unliked user items in
the training set), where k is a constant. As noted by [14],
the size of k has little influence on the results. Therefore,
we adopt their setting and set k = 2, i.e., we have twice as
many unliked items as liked items in the training set. The
elements for I−∗u are randomly sampled from I−u . The set
that can be used to train the RS is then defined as:

TR =
⋃
u

{〈su,i,xu,i〉|i ∈ I+u ∪ I−∗u } (6)

Given the set TR, we want to find a ranking function f :
Rm → R such that f(xu,i) ≈ su,i.

3.6 Building f Using Random Forests
In order to create a ranking function f , we will make use

of random forests [4], which we will briefly discuss here. A
random forest is an ensemble method which has shown to
be successful on many occasions. As a bagging approach, it
is known to reduce variance in comparison to non-bagging
solutions such as decision trees. Moreover, they were among
the best performing algorithms in the Yahoo! learning to
rank challenge [6], and they are frequently used success-
fully in data science competitions on Kaggle (e.g., the Flight
Quest competition).

For combining individual trees — we use Classification
And Regression Tree (CART) for trees — random forests
rely on the concept of bootstrap aggregating, also known
as bagging. In this procedure, multiple bootstrap samples
with replacements are drawn from the dataset. Each time,
a tree model is learned on the bootstrapped sample, and at
the end all models are averaged. This reduces overfitting on
the train set, because each time the model is learned on a
different subset of the data. Additionally, random forests re-
duce overfitting by limiting the number of possible splits at
each split. To do this, each time a split has to be made the
model randomly selects a subset of size mtry from the inde-
pendent variables and chooses the optimal split within this
subset. This creates an opportunity to find other, maybe
less pronounced relations in the data.

Variable Importance.
For each tree in the random forest, a bootstrap sample

with replacement is used to train the CART model. This
means, that on average one third of the observations in the
train set are not used for growing the tree. These obser-
vations are defined as “out of bag”, or OOB, and provide a
good test set for monitoring key statistics.

Variable importance is a difficult concept, because the im-
portance of a variable may be conditional of its interactions
with other variables (c.f. [12]). To define variable impor-

tance in random forests, let O(q) be defined as the set of
OOB observations for tree q. The variable importance of
variable Xm in tree q is then estimated as the increase in
the within mean squared error (MSE) after permuting the
values in Xj :

V q(Xj) =

∑
i∈O(q)(yi − ŷ(q)i )2

|O(q)|
−
∑
i∈O(q)(yi − ŷ(q)i,φj

)2

|O(q)|
, (7)

where ŷ
(q)
i and ŷ

(q)
i,φj

represent the predicted values for ob-

servation i before and after permuting the value of xi,j , re-
spectively. We permute the values of the path of type j for
all observations in O(q). Lastly, overall variable importance
for variable Xj is defined as the increase in within MSE over
the whole forest:

V (Xj) =
∑
q

V q(Xj) (8)

Note that a higher increase in sum of squared errors impli-
cates a higher variable importance, and that V q(Xj) = 0 if
variable Xj does not appear in tree q.

4. EVALUATION
We evaluate the performance of the recommender system

using the One-Plus-Random methodology [2, 7]. Let T be
the set of all user-item ratings. All 5 star ratings are con-
sidered to be positive feedback, while all other ratings are
regarded as unobserved, i.e., unliked. First, the positive rat-
ings from T are split into a train set and a test set, denoted
Ttrain and Ttest. Specifically, we select 10 positive feedback
observations from T to be in Ttest and put all other obser-
vations in Ttrain. The observations in Ttrain are used to
create user profiles of a predefined size of at most m. Here,
m is the maximum profile size, because there can be users
with less than m positive ratings in Ttrain. For every user
in Ttrain, we randomly select k×m irrelevant items for that



user. Together these observation will form the feedback ma-
trix S for the TR set from Equation 6. Since we are only
interested in Top-N recommendations, Ttest only contains
positive feedback observations.

After training the model on TR, it is tested by evaluating
how good the model can select a relevant item from Ttest
for a specific user when random irrelevant items for that
user are added. To do this, we iterate over each user-item
combination in Ttest. Each time, we create a temporary
set consisting of the selected item from Ttest, together with
100 randomly selected irrelevant items for that specific user.
These must be items that do not appear in the test set, nor
in the user profile of that user. This results in a sample of
101 items, of which we assume that only the test item is
relevant (the ratio of relevant to irrelevant items is 1:100).
The items are ranked according to their predicted score, and
the top-N items are recommended to the user. If the test
item is among the recommended items, it is counted as a
hit. Performance is measured using recall@N (R@N):

R@N =
#relevant items recommended

#relevant in Ttest
=

#hits

|Ttest|
(9)

whereN represents the number of items recommended to the
user. This metric measures how much of the relevant items
in Ttest have been recommended to the user. Note that in
this test setup, the formula for precision@N can be obtained
by dividing Equation 9 by N [7]. Moreover, since there is
only one relevant item in every temporary set, precision@N
values are not meaningful. Therefore, we chose not to report
precision@N values.

Lastly, it is worth mentioning that this methodology tends
to underestimate the performance of the recommender sys-
tem, because some of the unrated items might actually be
relevant to the user [7].

4.1 Data
We start with the MovieLens 1M dataset1, which contains

1,000,000 ratings on a scale of 1 (terrible) to 5 (amazing)
from 6,040 users on 3,952 movies, where each user has at
least 20 ratings.

The second source of data is a subset of the LOD cloud
called DBPedia. To link DBPedia with the MovieLens dataset
we proceed as follows. First, we retrieved all movies with
corresponding release years from DBPedia. We considered
English titles only and filtered out movies of which the re-
lease year was unknown. Secondly, for each movie in the
MovieLens dataset we compared the title and the release
year with the movies from DBPedia. If there was a match,
we replaced the movie ID with the DBPedia URI. In total,
we were able to successfully match 2,056 movies and disre-
garded all other movies. Additionally, we only considered
users with at least 15 positive ratings. A positive rating is
defined as a rating of 5, while all other ratings are considered
to be negative (irrelevant) ratings. The rationale behind this
approach is that we only want to recommend items of which
we think the user will like them a lot. By defining only 5 star
ratings as positive we can assume that all these movies were
indeed perceived as very good. This left 104,196 positive
ratings from 2,731 users, with on average 38 positive ratings
per user. For each user, we selected 10 positive ratings to
be in the test set Ttest, and selected m of the other positive

1http://grouplens.org/datasets/movielens/

ratings for the train set Ttrain. Two profile sizes that we will
focus on are m = 5 and m = 50, representing two situations,
one with little information about the users and one with a
lot of information about the users. As mentioned before, m
specifies the maximum profile size, because there might be
users with less than m positive ratings in Ttrain.

Recommending the most popular items should give rela-
tively good results. However, recommending the most pop-
ular items is trivial and does not add much value, because
trivial recommendations are not interesting to users (as they
already were going to see them anyway) nor to content
providers (as these movies are popular already and do not
need recommendation). Similar to [7], we will therefore not
only evaluate performance on the total test set, but also on
the test set without the 3.7% most popular movies (i.e., 76
movies). This part is referred to as the long-tail of the data.

After the initial movie matching, we queried DBPedia for
more RDF triples containing the matched movie URIs as
either subject or object. We considered RDF triples that
are relevant to the movie domain and all dcterms:subject
triples linking to the movies in the dataset. The latter link
movies to their category, and is also used by Wikipedia to
improve its structure, by grouping pages with similar sub-
jects.

In the information schema we defined three node types:
User, Movie, and Entity. The former two are self explana-
tory, the latter encompasses all actors, directors, subjects,
writers, producers, music composers, cinematographers, ed-
itors, and narrators.

4.2 Defining Schemas
We define three different network schemas to test our

methodology. First, we define a schema where we ignore
the LOD cloud, hence we only consider collaborative links
between users. This schema is referred to as CF (Collab-
orative Filtering). The second schema we consider is one
where all direct paths are possible, referred to as ADP (All
Direct Paths). This is a setup that closely resembles the ap-
proach of [14]. However, there are two key differences with
their approach. First, we only consider paths up to length 3,
whereas they considered all paths up to length 4. We chose
to restrict the length to 3 due to computational limitations.
Secondly, we only consider direct paths, whereas they also
considered cross paths. With direct paths we mean that the
link type from Movie to Entity should be the same as the
link type from Entity to Movie. In other words, the path
from Movie to Movie should be symmetric. An example of a
cross path would be the scenario where an entity (e.g., per-
son) starred in one movie, and directed on another movie:

User
likes−−−→ Movie

starring−−−−−→ Entity
director−−−−−→ Movie.

We believe the effect of eliminating cross paths to be mini-
mal, due to the limited presence of cross paths in the graph.

The last information schema we consider is a variant of the
ADP schema, where we only consider paths that have a high
variable importance score from the random forests trained
on the ADP information network. We name this schema as
Albatross, referring to the remarkable efficiency of the bird.
The rationale behind this approach is that some meta paths
are less important than other meta paths. For example, we
believe that a user is more likely to like a movie because of
its cast, rather than who composed the music for that movie
or where the movie was released. In fact, some meta paths



might not add semantics at all, but rather add noise to the
data. For example, the release location of the movie tells
us very little about the content of the movie and therefore
adds little to no semantics to our data. Eliminating these
paths based on variable importance scores should therefore
be beneficial to the accuracy of the RS. In order to select
the most valuable paths from the information network, we
evaluate the variable importance scores from the random
forest trained with different settings of mtry, which defines
the number of random features selected by the random forest
for each split. We report the variable importance scores
for the scenario where mtry is equal the square root of the
number of features (we have 14 features), as proposed by [4].

4.3 Variable Importance & Path Type Selec-
tion

We evaluate the variable importance scores of the random
forests trained on small profiles (i.e., m = 5) and large pro-
files (i.e., m = 50), respectively. For m = 5 (Figure 3(a)),
we find that the collaborative path type likes is among the
most important variables. Also, director and subject are
among the path types with high variable importance scores.
The remainder of the path types can be divided into two
groups. One group with path types which clearly do not add
any semantics to the graph (basedOn, releaseLocation, nar-
rator, previousWork, and subsequentWork). These variables
have very low variable importance scores and are therefore
not selected for the Albatross schema (the schema contain-
ing only the important paths). The other group consists of
path types with all similar variable importance scores (cine-
matography, producer, musicComposer, starring, writer, and
editing). We decided to include these variables in the Al-
batross schema, as there exists some intuitive explanation
of why the information might help recommendations. For
the final Albatross schema at m = 5, we include likes, di-
rector, subject, cinematography, producer, musicComposer,
starring, writer, and editing.

For m = 50 (Figure 3(b)), we find that some of the same
path types show up at the top. Again, director shows to
be a path type with high variable importance. This makes
sense as the director has a significant influence on the out-
come of a movie. For example, consider directors as Steven
Spielberg, Christopher Nolan, Quentin Tarantino, and Mar-
tin Scorsese, who are famous for their talent for creating
great movies. Additionally, we find that producer, writer,
and starring have high variable importance scores. This
can be explained following a similar reasoning as for direc-
tor. Two path types that we believe are in a gray area when
it comes to variable importance are likes and cinematogra-
phy. It stands out that in contrast to the m = 5 scenario,
the likes path type is not clearly the top variable in terms
of variable importance, but rather comes after some of the
LOD path types. We decided to still include the variable in
the Albatross scenario for m = 50, because of the clear in-
tuitive explanation of why this path type is important. The
same does not hold for cinematography, however, which is
why we exclude it from the Albatross schema. For the final
Albatross schema at m = 50, we include director, writer,
producer, starring, and likes.

4.4 Recall@N : All Items
In this section we report Recall@N scores for the RSs

trained on profile sizes m = 5 and m = 50. As mentioned

before, we chose not to report precision@N values, because
they differ from recall@N only by a multiplicative term N.
The results are shown in Table 1. For m = 5, we find that
both ADP and Albatross outperform collaborative filtering
(CF), where only the users feedback is used as information
for the random forest. For N = 5, the CF benchmark has a
probability of 26.4% of recommending a relevant item, while
the ADP and Albatross RSs have a probability of roughly
36.7% and 36.6%, respectively. Both ADP and Albatross
show increasing recall@N after N = 5, while for the bench-
mark the increase seems to stall at 27.2%. This can be ex-
plained by the fact that the collaborative information about
the users is very limited at m = 5. In this scenario, the LOD

cloud provides useful information about movies for recom-
mendations. The difference in performance between ADP
and Albatross is negligible, indicating that the unused paths
indeed do not provide useful information, but that they also
do not add much noise for m = 5.

For m = 50, we find that the recall@N values are generally
higher than for m = 5. This makes sense as we now have
more information available on the users. One of the effects of
a larger user profile is that the CF approach performs really
well compared to ADP and Albatross for small N. However,
recall that the dataset contains relatively few items with a
lot of positive feedback. This probably means that, while
the LOD cloud contains useful information on the content of
the movies, the popular movies are easily identified by the
collaborative information in the dataset, resulting in high
recall@N scores. This will be further investigated when we
test the RSs on the long tail of the data.

The benefit of path selection is shown by the fact that re-
call@N is higher for Albatross than for ADP. The difference
in performance between ADP and Albatross is highest for N
= 10, where recall@N equals 56.3% for ADP and 59.7% for
Albatross (difference = 3.4%). This supports our hypothe-
sis that some paths only add noise and should therefore be
ignored in the information network.

4.5 Recall@N : Long Tail Items
In order to test the sensitivity of the RSs to the availabil-

ity of popular items, we test the RSs trained on both profile
sizes also on the long-tail of the test set Ttest. The results
are reported in Table 2. As expected, the performance of
all RSs are lower compared to the all items test set. This
makes sense, because movies which are very popular have
a higher chance of being liked by any user. For m = 5, we
find that the performance of the CF RS is worst, followed by
ADP. Albatross performs best in this scenario, but the dif-
ference with ADP is again small. Compared to the all items
test set, however, the differences seems more pronounced.
Specifically, CF sees the largest drop in performance with
a decrease in recall@N of roughly 21%. In contrast, for the
RSs exploiting the LOD cloud the decrease in recall@N is
roughly 18% and 15% for ADP and Albatross, respectively.
This strengthens the arguments both for the use of the LOD

cloud, as well as the use of path selection. Also, it suggests
that the use of path selection becomes more useful when
there is not a clear group with very popular items.

For m = 50, we find that the Albatross network schema
provides the best results. For N = 5 and N = 10, both ADP
and Albatross outperform the CF schema. For higher values
of N, Albatross also outperforms CF, while ADP is outper-
formed by CF. This shows the usefulness of path selection.



(a) m = 5 (b) m = 50

Figure 3: Variable importance scores for all considered path types with mtry =
√
w, where w equals the

number of variables (14)

Table 1: Recall@N scores for CF, ADP, and Albatross at different profile sizes; all movies
m = 5 m = 50

N CF ADP Albatross CF ADP Albatross
5 0.264 0.367 0.366 0.518 0.359 0.378
10 0.272 0.511 0.513 0.696 0.563 0.597
15 0.272 0.615 0.616 0.794 0.699 0.731
20 0.272 0.664 0.662 0.854 0.787 0.812
25 0.272 0.682 0.681 0.894 0.851 0.864

Specifically, where ADP is outperformed by CF, Albatross
keeps on outperforming CF. These results are also in line
with our previous hypothesis that popular movies are easily
identified using CF. In this scenario, where the most popular
movies have been removed from the test set, the performance
of CF is dramatically reduced for low values of N.

4.6 Variable Importance vs. Recall@N
Lastly, we compare the variable importance results with

the recall@N scores for both user profile sizes. For m = 5, we
found that likes had the highest variable importance score.
It can be seen, however, that for this profile size the CF RS
algorithm performed worst, indicating that collaborative in-
formation alone is not sufficient for the best recommenda-
tions. We believe this can be explained by the fact that
there exist more complex relations in the dataset, which are
picked up by the random forest. For m = 5, for example,
this might suggest that likes might indeed be an important
path type, given that a movie also has the same director or
subject.

For m = 50, we found that the path types from the LOD

cloud became more important in terms of variable impor-
tance, while the CF performance was good in the all items
test set. This can be explained by the fact that the random
forests learns from bootstrapped samples, i.e., samples with
not necessarily all popular items. In this scenario, the LOD

path types become more important, which is also confirmed
by tests on the long tail of the data. In other words, using
only collaborative information tends to result in the recom-
mendation of popular items, while the use of the LOD cloud
provides more hybrid recommendations (popular and long
tail items).

5. CONCLUSIONS
We develop a semantically enhanced, top-N recommender

system based on SPrank [14], exploiting a subset of the LOD

cloud called DBPedia. In contrast to [14], we define an infor-
mation network where only predefined paths can be found.
By implementing a matrix oriented path finding algorithm
[20], we find the number of paths from users to items fol-

Table 2: Recall@N scores for CF, ADP, and Albatross at different profile sizes; long tail
m = 5 m = 50

N CF ADP Albatross CF ADP Albatross
5 0.055 0.155 0.156 0.103 0.205 0.206
10 0.061 0.310 0.316 0.344 0.359 0.395
15 0.061 0.430 0.441 0.544 0.512 0.562
20 0.061 0.488 0.503 0.677 0.634 0.682
25 0.061 0.509 0.528 0.767 0.727 0.768



lowing specific path types and we use this information in
a random forest to learn a ranking function. We use vari-
able importance scores to select only the most useful path
types, thereby removing path types that only add noise to
the data. The RS is evaluated under different scenarios us-
ing an empirical dataset consisting of positive feedback on
movies. Specifically, we evaluate the results for different pro-
file sizes, as well when the most popular movies have been
removed from the test data.

Variable importance scores from the random forest models
suggest that likes, director, and subject are among the most
important path types when user profiles were small. For
larger user profiles, the variable importance scores indicate
that director, producer, writer, and starring are important
path types.

We find two scenarios for which the LOD cloud is most
beneficial to the RS’s accuracy. First, we find that accuracy
is improved by exploiting the LOD cloud in the scenario of
small user profiles. Secondly, we find that when there is
a lack of very popular items, exploiting the LOD cloud also
improves the RS’s accuracy.

When the most popular items are removed, the Albatross
schema gives the best performance in terms of recall@N for
both large and small user profiles. When tested on the all
items test set, we find that for small user profiles, using the
LOD cloud is useful, yet we cannot show the importance of
path type selection. For large user profiles, pure collabora-
tive filtering performs similar to the LOD based approaches,
but Albatross outperforms ADP, suggesting the usefulness
of path selection. We argue that the collaborative filter-
ing approach performs well in this case, because there are a
lot of popular items which are easily identified via the likes
paths. This puts the LOD based methods at a disadvantage,
because they tend to recommend more long tail items.

The results from this paper can be used to improve other
state-of-the-art RSs. For example, the concept of only search-
ing for predefined paths could be implemented for other do-
mains than the movie domain. Also, the proposed methodol-
ogy could improve recommender systems by providing users
with insights into why certain items are recommended.
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