
Model Words-Driven Approaches for
Duplicate Detection on the Web

Marnix de Bakker
marnixdebakker@zeelandnet.nl

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, the Netherlands

Flavius Frasincar
frasincar@ese.eur.nl

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, the Netherlands

Damir Vandic
vandic@ese.eur.nl

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, the Netherlands

Uzay Kaymak
u.kaymak@ieee.org

Eindhoven University of Technology
PO Box 513, NL-5600 MB

Eindhoven, the Netherlands

ABSTRACT
The detection of product duplicates is one of the many chal-
lenges that Web shop product aggregators are facing. This
paper presents two new methods to solve the problem of
product duplicate detection. Both methods extend a state-
of-the-art approach that uses the found model words in prod-
uct titles to detect product duplicates. The first proposed
method uses several distance measures to calculate distances
between product attribute keys and values to find duplicate
products when no matching product title is found. The sec-
ond proposed method detects matching model words in all
product attribute values in order to find duplicate prod-
ucts when no matching product title is found. Based on
our experimental results on real-world data gathered from
two existing Web shops, we show that the second proposed
method significantly outperforms the existing state-of-the-
art method in terms of F1-measure, while the first method
outperforms the existing state-of-the-art method in terms of
F1-measure, but not significantly.

Categories and Subject Descriptors
H.2.0 [Database management]: General; H.3.2 [Informa-
tion Storage and Retrieval]: Information Storage—record
classification; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—information filtering

General Terms
Algorithms, Design

Keywords
Duplicate detection, Web shops, products, model words

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

1. INTRODUCTION
In the current Web era, a tremendous amount of prod-

ucts is sold online in a variety of Web shops. Despite the
fact that different Web shops often sell the very same prod-
uct, the information about this product can vary greatly
over the different Web shops. Some Web shops display very
detailed information, while others display only a small num-
ber of product attributes. One Web shop might only dis-
play properties like weight and manufacturer, while another
might also display properties like color and dimensions. As
a result, information about products tends to be scattered
across different Web shops.

By aggregating data from various Web shops, one can ob-
tain more detailed and accurate product information. Nev-
ertheless, there is a significant problem that needs to be
solved in order to combine product data from various Web
shops. The problem is that a manual approach to product
integration is infeasible, due to the vast amount of infor-
mation, products, and Web shops. Therefore, this process
needs to be automated. To automatically combine data from
different websites, it is necessary to know how information
from Web shops can be used to detect identical products,
i.e., perform duplicate detection. Other product integration
challenges, such as product schema alignment and product
merging, are considered outside the scope of this paper.

Because the title of a product can vary on different Web
shops, duplicate detection is not as simple as just finding
product names that precisely match. This is especially true
for electronic products like TV’s. Take as an example the
Web shop Bestbuy.com, which gives a TV the name ‘Sam-
sung - 40” Class / LCD / 1080p / 60Hz / HDTV’, while
the Web shop Newegg.com gives the very same product the
name ‘Samsung 40” 1080p 60Hz LCD HDTV LN40D503’.
Because different Web shops can offer very different infor-
mation about a product, duplicate detection on the Web is
a challenging problem.

In this paper, we propose two solutions to product du-
plicate detection. A state-of-the-art solution [11] that has
been previously used for this problem is based on extracting
the so-called model words (words consisting of both numeric
and alphabetic/punctuation characters) from the product
names and comparing these to find duplicates. Model words

are important in the process of duplicate detection, as in-
formation that is valuable for product duplicate detection
(for instance product codes) often contains both alphabetic
and numeric characters. The methods proposed in this pa-
per extend this method and use it as a baseline. The first
method that we propose combines the model words method
for product names with accounting for similarities between
product properties. The second proposed method not only
uses model words for the product names, but also for the
values of product properties.

The paper is organised as follows. In Section 2, we discuss
related work on (product) duplicate detection. Section 3
presents two new methods for duplicate detection. The per-
formance of the proposed methods and a state-of-the-art
method are evaluated and compared in Section 4. Section 5
concludes the paper and suggests possible future work.

2. RELATED WORK
In this section we discuss related work that addresses

the problem of (product) duplicate detection. Section 2.1
presents the state-of-the-art title model words method, which
is our baseline. Section 2.2 addresses a product code-based
method. The learnable string similarity method is discussed
in Section 2.3 and last, in Section 2.4, filtering methods
aimed at increasing the efficiency of duplicate detection are
discussed.

2.1 The Title Model Words Method
In [11], model words from product names are used to iden-

tify duplicate products on the Web. To determine whether
or not two products are identical, the authors use an algo-
rithm that starts by calculating the word-based cosine simi-
larity [10] between the two product names. If this similarity
is above a threshold value, the products are considered du-
plicates. If the similarity is not greater than the threshold,
the algorithm continues by extracting the model words from
the names of the two products. Then, the algorithm checks if
it can immediately conclude that the products are different.
This is done by searching for word pairs (in each word pair
there is one model word from the first product name and
one from the second product name) where the non-numeric
parts are approximately the same, but the numeric parts are
different. A situation like this generally indicates different
products, for example ‘Samsung - 55” Class/ LED / 1080p
/ 120Hz / HDTV’ vs. ‘Samsung - 46” Class/ LED / 1080p /
120Hz / HDTV’. For this similarity check, the Levenshtein
similarity [7] is used. If it finds such a word pair with differ-
ent numeric parts and approximately the same non-numeric
parts, the algorithm stops and gives as output that the two
products are not duplicates.

If no such word pairs as previously described are found,
the algorithm continues by calculating a new similarity be-
tween the product names. This similarity value is a com-
bination of the cosine similarity between product titles and
the average Levenshtein similarity between the two sets of
words in the product titles. Subsequently, a check is per-
formed to find model word pairs that are likely to be the
same. This means that a model word pair has equal numeric
parts and approximately equal non-numeric parts. If such
pairs are found, the aforementioned cosine/Levenshtein sim-
ilarity is then updated to increase the weight of the model
words. Once this is done, the final step is to check if the
final similarity value is greater than a threshold. If this is

the case, then the algorithm returns true and the products
are considered duplicates.

The methods proposed in this paper expand upon the ti-
tle model words method that is described above. Different
from the original title model words method, our methods
use additional information from the product attributes to
improve the effectiveness of duplicate detection. In addi-
tion, the newly proposed model words method uses not only
model words from the title, but also found in the product
attribute values.

2.2 The Product Code Based Method
In [6], the authors describe a method for duplicate de-

tection using (model) words in the product titles. Their
algorithm decides which products are duplicates using the
similarity between product titles. An important element of
this method for finding matching product titles is extracting
product codes from product titles. These product codes are
unique numbers for each product, designated by their man-
ufacturer. To do this, the algorithm first removes common
features such as dimensions, weight, voltage, etc., from the
title. Then it filters the title, removing stop words and words
that appear frequently in product offers of several different
manufacturers. After this, the method generates candidates
(generally consisting of up to three model words) for prod-
uct codes, using a manually created list of regular expres-
sions that capture knowledge on the syntactical structure of
product codes. Last, it uses Web verification to check the
correctness of the extracted candidates. This is done by sub-
mitting a query to a Web search engine for a candidate; the
fraction of the results containing the corresponding manu-
facturer, with respect to all results, is then used to verify
the correctness of each candidate.

The methods proposed in this paper are more flexible than
those used in [6], since they do not need product codes to be
contained in the title (in fact, in our TV data set, the ma-
jority of product titles do not contain a product code). Also,
our proposed methods are fully automated, while in [6] the
authors assume a manually generated list of regular expres-
sions that capture knowledge on the syntactical structure
of product codes. The methods in [6] use only information
from the product titles, while our methods also use infor-
mation from the product attributes, which grants us a much
larger amount of information to use for duplicate detection.

2.3 The Learnable String Similarity method
In [2], methods similar to one of our proposed methods are

presented. These methods use textual similarity measures,
much like our first proposed method. One of their meth-
ods uses an extended variant of learnable string edit dis-
tance [9]; the other uses a vector-space based method with a
support vector machine [3] for training. These methods are
applied to databases and they can identify both duplicate
fields and duplicate records (this corresponds with detecting
duplicate attributes and products, respectively). However,
to perform duplicate detection, these methods require the
information in all records to be stored in the same way, i.e.,
the names of the fields are required to be the same for all
records. Our proposed methods do not have this strict re-
quirement. In fact, in the data set that we use, product
attribute keys (which correspond to field names) from one
Web shop are often different from the corresponding keys
from the other Web shop. This is an important problem on

the Web, which is addressed by our proposed methods, but
not by the database methods from [2].

2.4 Filtering methods
Unlike the other approaches presented here, the main ob-

jective of the methods discussed in [13] is not to increase
the quality of duplicate detection, but rather to increase the
speed and scalability, so where other methods focus on in-
creasing the effectiveness of duplicate detection, these meth-
ods focus on increasing the efficiency.

While assessing if two records are duplicates, most meth-
ods for duplicate detection compare each field from the first
record to each field of the second record. On large data sets,
this can cause the execution times to become very long. The
focus of [13] is on shortening these execution times by reduc-
ing the amount of data that is considered. This is done by
first canonicalizing each record: ordering the tokens (fields)
within the record according to some global ordering. Then
during the duplicate detection phase it is sufficient to only
consider part of each of the tokens, for example the prefix:
the first p tokens. If there is sufficient overlap in these parts
of the two records, the two records are taken as candidates to
be duplicates; if there is not sufficient overlap, the algorithm
no longer needs to consider this record pair as potential du-
plicates. For duplicate candidates, a similarity measure is
used to determine which of the candidate pairs are classified
as duplicates.

Because the previously described algorithm is purely fo-
cused on improving the efficiency of duplicate detection,
while the objective of our proposed methods is to improve
the effectiveness of duplicate detection, we have not used
this approach in the implementation of our methods. Nev-
ertheless, improving the efficiency of our algorithm, possibly
inspired by such an approach, is part of future work.

3. PRODUCT DUPLICATE DETECTION
The proposed methods build on the title model words

method [11] and also use information other than title prod-
uct information to improve the ability of the algorithm to
detect duplicates. For all methods, we do not allow dupli-
cate products from the same Web shop, since we assume
that Web shops do not list the same product more than
once. All product attributes are stored in key-value pairs
(KVP’s). An example of a key-value pair is: (‘Weight’, ‘16.9
lbs.’). Our algorithm is based on the assumption that we
have products coming from two different Web shops. How-
ever, our approach remains generalizable, as the case with n
Web shops can be reduced to n− 1 applications of the two
Web shops case. Furthermore, we assume that the product
descriptions are using the same units of measurement, as the
integration of different units of measurement is not the focus
of this paper. The attribute distance method is presented
in Section 3.1. The next section, Section 3.2, discusses the
extended model words method.

3.1 The Attribute Distance Method
Our first proposed method uses model words to find simi-

lar product names, and distance measures to check matching
attributes to detect duplicates. The pseudocode for the at-
tribute distance method is given in Algorithm 1. It starts
by assigning each product from the first Web shop to its
own cluster, in order to prevent products from being clus-
tered with products from the same Web shop, as mentioned

Algorithm 1 Attribute distance method

Require: The input: Sets A and B contain all products
from two Web shops

Require: Tdist is the threshold below which the distance
between the current product and the best matching
product is required to be for those two products to be
considered duplicates

Require: Tkey is the distance threshold below which two
keys are assumed to be equal

Require: Tmatch is the threshold above which the number
of key matches between two products is considered as a
possible match

Require: calcDist(q, r, distm) calculates the distance be-
tween strings q and r using distance measure distm

Require: clusterFull(b,j) returns true if cluster j already
contains a product from the same Web shop as product
b; otherwise, returns false

Require: key(q) returns the key from key-value pair (KVP)
q; value(q) returns the value from KVP q

Require: matchingTitle(b,j) uses model words to check if
the title of the current product (b) matches the title of
a product in cluster j (using the method from [11]); if
so, returns true; otherwise, returns false

1: Assign each product from the first Web shop (set A) to
its own cluster, obtaining a set of clusters J

2: for all b ∈ B do
3: shortestDistance = ∞
4: sameTitle = false
5: for all j ∈ J do
6: if not clusterFull(j) then
7: if matchingTitle(b,j) then
8: sameTitle = true
9: clusterbest = j

10: else
11: totalDistance = 0
12: distance = ∞
13: matchCount = 0
14: for all KVP’s q in b do
15: for all KVP’s r in j do
16: keyd = calcDist(key(q), key(r), distm)
17: if keyd < Tkey then
18: totalDistance = totalDistance +

calcDist(value(q), value(r), distm)2

19: matchCount = matchCount+ 1
20: end if
21: end for
22: end for
23: if matchCount > 0 then
24: distance =

√
totalDistance

2∗matchCount
25: end if
26: if distance < shortestDistance &

matchCount > Tmatch then
27: shortestDistance = distance
28: clusterbest = j
29: end if
30: end if
31: end if
32: end for
33: if sameTitle then
34: Add current product to cluster clusterbest
35: else if shortestDistance < Tdist then
36: Add current product to cluster clusterbest
37: else
38: Assign current product to a new cluster in J
39: end if
40: end for
41: return J

at the beginning of Section 3. Subsequently, the algorithm
loops over every product that is not from the first Web shop,

assigning every product to a cluster with products that are
found to be its duplicates, if any.

To find an appropriate cluster for a product, the algorithm
loops over all clusters; for each product in these clusters, the
algorithm first checks if the cluster is not ‘full’ which in this
case means that it already contains a product from this sec-
ond Web shop. If the cluster is full, this cluster is not consid-
ered anymore. After this, another check is performed, this
time to assess if the title of the clustered product matches
the title of the product we currently want to cluster, using
the title model words method as in [11]. If the titles match,
the current product is clustered with the clustered product
with a matching title.

The attribute distance method extends the title model
words method as follows. If no product with a matching ti-
tle is found, the attribute distance method uses the informa-
tion contained in the product attributes (stored as KVP’s)
to detect duplicates. For each combination of KVP’s, it
first calculates the distance between the two keys, if this dis-
tance is below a predetermined threshold (Tkey), it continues
by calculating the distance between the values of these two
KVP’s with matching keys. This distance is then squared.
All squared distances between attribute values with match-
ing keys are added up, after which the square root of this
value is taken. This is then divided by two times the number
of key matches, so that a pseudo-average attribute distance
is obtained, which favors products with a higher amount of
key matches.

When the loop is concluded (i.e., when either a match-
ing title has been found or when the algorithm has gone
through all clusters without finding a matching title), we
decide which cluster the current product will be added to.
If a matching title has been found, the current product is
clustered with the matching product. Otherwise, the closest
clustered product, i.e., the clustered product with the small-
est attribute distance to the current product, is considered.
If this attribute distance is below the threshold value (Tdist),
the current product is clustered with this closest product. If
the distance is above the threshold value, the conclusion is
made that no duplicates of the current product are in the
set of clusters, so a new cluster is made, containing only this
product.

3.2 The Extended Model Words Method
The second method uses model words, not only to find

similar names, but also to find similar attributes to detect
duplicates. The pseudocode for the extended model words
method is given in Algorithm 2. It starts by assigning each
product from the first Web shop to its own cluster. Subse-
quently, the algorithm loops over every product that is not
from the first Web shop, assigning every product to a clus-
ter with products found to be its duplicates, if any. To find
an appropriate cluster for a product, the algorithm starts
by checking if the cluster is ‘full’ and if both products have
matching titles, in the same way as in the previous method.

When no matching titles are found, the title model words
method would conclude that the product has no duplicates
and the attribute distance method would use distances be-
tween keys and values from the KVP’s to detect duplicates.
The extended model words method uses a different approach
when no matching titles are found. The algorithm takes
all model words from the attribute values of each clustered
product and calculates the percentage of matching model

words between that product and the product that is be-
ing clustered. Unlike the attribute distance method, this
method does not use the keys, it uses only the values, taking
all model words from those. Please note that we relax the
model words definition here by allowing not only combina-
tions of alphanumeric characters but also strings or numbers,
alone.

The reason for the decision to only use the values from
KVP’s, is that data from various Web shops can be struc-
tured in very different ways; only investigating the values
when their corresponding keys match, could (unnecessarily)
limit the amount of information from the attributes that
can be used to detect duplicates. For example: a certain TV
from Bestbuy.com has the KVP: (‘Product Weight’, ‘19.1lbs.
with stand (16.9lbs. without)’).

Newegg.com also has information about this TV, only
here, the information is structured in two different KVP’s:
(‘Weight Without Stand’, ‘16.9lbs.’) and (‘Weight With

Algorithm 2 New model words method

Require: The input: Sets A and B contain all products
from two Web shops

Require: Tmatch is the threshold above which the matching
model words percentage must be for two products to be
considered duplicates

Require: obtainModelWords(p) gives all model words from
the values of the attributes of product p

Require: clusterFull(b,j) returns true if cluster j already
contains a product from the same Web shop as product
b; otherwise, returns false

Require: matchingTitle(b,j) uses model words to check if
the title of the current product (b) matches the title of
a product in cluster j (using the method from [11]); if
so, returns true; otherwise, returns false

Require: matchingMWpercentage(C,D) returns the per-
centage of matching model words from two sets of model
words

1: Assign each product from the first Web shop (set A) to
its own cluster (set of clusters J)

2: for all b ∈ B do
3: MWmax = 0
4: MW = obtainModelWords(b)
5: for all j ∈ J do
6: if not clusterFull(j) then
7: if matchingT itle(b, j) then
8: sameTitle = true
9: clusterbest = j

10: else
11: c = obtainModelWords(j)
12: MWperc = matchingMWpercentage(MW, c)
13: if MWperc > MWmax then
14: MWmax = matchingMWpercentage
15: clusterbest = j
16: end if
17: end if
18: end if
19: end for
20: if sameTitle then
21: Add current product to cluster clusterbest
22: else
23: if MWmax > Tmatch then
24: Add current product to cluster clusterbest
25: end if
26: else
27: Assign current product to a new cluster in J
28: end if
29: end for
30: return J

Stand’, ‘19.1lbs.’). In this case, the attribute distance method
would gain no information from these KVP’s, because the
keys do not match. The extended model words method,
however, would find two matching model word pairs here
(the model word ‘16.9lbs’ and the model word ‘19.1lbs’ would
be found in the attributes of both TV’s), which could enable
this method to detect duplicates where the attribute value
method would not be able to do so.

When the loop is concluded (i.e., when either a match-
ing title has been found or when the algorithm has gone
through all clusters without finding a matching title), we
decide what cluster the current product will be added to. If
a matching title has been found, the current product is as-
signed to the cluster with the matching product. Otherwise,
the clustered product with the highest percentage of match-
ing model words is considered. If this percentage is above
a threshold value (Tmatch), the current product is clustered
with the product with which this best match was found. If
the percentage is below the threshold value, the conclusion
is made that no duplicates of the current product are in the
set of clusters, so a new cluster is made, containing only this
product.

4. EVALUATION
In this section the results of the proposed approaches are

evaluated. The methods discussed in Section 3 are com-
pared against the basic title model words method, which
they expand upon and against each other. To assess the
performance of these methods, we use them to detect dupli-
cates in our data set of TV’s obtained from Best Buy [1] and
Newegg [8] and calculate the F1-measure, precision, and re-
call from the experiment results. The data set contains 282
TV’s: 200 from Bestbuy.com and 82 from Newegg.com; each
TV from Newegg.com has a duplicate in the data from Best-
buy.com. This means there are 82 pairs of duplicate TV’s
(so 164 TV’s belonging to a duplicate pair) and 118 prod-
ucts that do not have a duplicate in the data set. To assess
whether or not one method is better than another, we will
run the algorithms on 20 random test sets of approximately
10% of all products (ensuring that there is a proportional
amount of duplicates in these data sets, to ascertain that
these smaller data sets are still representative for the orig-
inal data set); using the remaining 90% of the data set as
the training set each time to determine the method parame-
ters. Then we calculate the F1-measures and use a Wilcoxon
signed rank test [12] to assess whether or not one method
significantly outperforms the other. This section starts by
evaluating each method separately. The title model words
method, the attribute distance method, and the extended
model words method are discussed in Sections 4.1, 4.2, and
4.3, respectively. In Section 4.4 all three methods are com-
pared to each other.

4.1 The Title Model Words Method
The title model words method uses two parameters, i.e.,

α and simThreshold (as described in Section 2.1). Both
of these parameters can range from 0 to 1 and both affect
how similar two titles have to be for their products to be
considered the same. The higher α and simThreshold are,
the more similar titles have to be for their products to be
clustered together. Runs of the algorithm on the training
set with various values (from 0 to 1 with a step size of 0.1)
for these two parameters showed that high values (0.8 and

Table 1: Means and standard deviations of the best
values for each parameter over the 20 training sets
for the title model words method

Mean Standard deviation
α 0.815 0.059
simThreshold 0.845 0.051

0.9) for both parameters tend to provide the best results;
the results can be seen in Table 1.

A somewhat surprising result is that the F1-measure is al-
most always 0 when both α and simThreshold are 0.9, while
the best F1-measures are observed when these parameters
take values close to 0.9. The cause of this is that when both
parameters are 0.9, the similarity requirement for titles is
so strict that no products are clustered together anymore.
The title model words algorithm was run on the 20 test sets
described earlier. The average value of the F1-measure over
these 20 runs was 0.357. The corresponding average preci-
sion and recall are 0.556 and 0.279, respectively.

4.2 The Attribute Distance Method
The attribute distance method uses 6 parameters. The

first two parameters are α and simThreshold, the parameters
used by the title model words method, which this method ex-
pands upon. Like the title model words method, this method
performs best with high values for α and simThreshold (0.8
and 0.9). The third parameter, Tkey, is the threshold be-
low which the distance between two keys must be for them
to be assumed equal. Increasing the value of this thresh-
old increases the amount of information from the product
attributes that is used, but this also makes it more likely
that non-matching keys are considered equal, resulting in
inaccurate distances. The best value for this parameter is
0.645 on average. The fourth parameter, Tmatch, is the min-
imum number of key matches that must be found between
two products for them to be allowed as a possible match (if
no matching product title is found). This is an integer that
has been tested with values ranging from 1 to 5. This range
was found to give useful results on a smaller test data set.
The best value for this threshold is 1.95 on average, but this
can vary greatly, since it has a standard deviation of 1.317.

The fifth parameter, distm, is the distance measure used
to calculate the distance between two strings. Two distance
measures were tested, i.e., the Jaro-Winkler distance mea-
sure [5] and the cosine distance measure [14]. On average,
the cosine distance measure provided better results than the
Jaro-Winkler distance measure. Last, Tdist is the threshold
below which the distance between a product and the best
matching product must be for them to be considered dupli-
cates (when no matching title is found). The higher Tdist

is set, the more clusters containing more than one product
(i.e., duplicates) are made and the higher the risk of false
positives (products clustered together while they are not du-
plicates). The best value for Tdist was found to be 0.1 when
experimenting with values between 0 and 1 with a step size
of 0.1. All of these parameter mean values and their stan-
dard deviations can also be found in Table 2.

The attribute distance algorithm was run on the 20 test
sets described above. The average value of the F1-measure
over these 20 runs was 0.529, which is higher than the av-
erage F1-value for the title model words method, which is

Table 2: Means and standard deviations of the best
values for each parameter over the 20 training sets
for the attribute distance method

Mean Standard deviation
α 0.82 0.062
simThreshold 0.855 0.051
Tkey 0.645 0.167
Tmatch 1.95 1.317
Tdist 0.1 0

0.357. The average precision and recall of the attribute dis-
tance method are 0.531 and 0.556, respectively. When com-
paring these values with the corresponding ones from the
title model words method, we observe that the values for
the precision of these two methods are not far apart. We
observe that the higher F1-value of the attribute distance
measure can be fully attributed to the higher recall.

4.3 The Extended Model Words Method
The extended model words method uses three parameters.

The first two are α and simThreshold, the two parameters
used by the title model words method, which is the basis
for the extended model words method. For the extended
model words method, the optimal value for α was found to
be 0.9 in all cases, the optimal value for simThreshold is
0.87 on average, as shown in Table 3. The third parameter
is Tmatch, which is the threshold above which the percent-
age of matching model words within the attributes of two
products must be for them to be considered duplicates (note
that this Tmatch is different from the threshold with the same
name which is used in the attribute distance method). The
higher this threshold, the stricter the requirement, so a lower
Tmatch will provide more clusters. In all runs, the best re-
sults were achieved with a Tmatch of 0.3, when experimenting
with values between 0 and 1 with a step size of 0.1.

The extended model words algorithm was also run on the
20 test sets described at the beginning of Section 4. The av-
erage value of the F1-measure over these 20 runs was 0.607,
which is higher than the corresponding F1-measure for the
other methods. The average values of the precision and re-
call are 0.637 and 0.597 respectively, so the F1-value, the
average precision and average recall of the extended model
words method are all higher than the corresponding values
of both other methods.

Table 3: Means and standard deviations of the best
values for each parameter over the 20 training sets
for the extended model words method

Mean Standard deviation
α 0.9 0
simThreshold 0.87 0.047
Tmatch 0.3 0

4.4 Comparison of All Methods
To compare the performance of the three methods, we

use the values of the F1-measure over the aforementioned
20 test sets for each method. The average F1-values over
these 20 test sets are presented in Table 4. The average F1-
value of the attribute distance method is higher than that
of the title model words method. The average F1-value for

Table 4: Average F1-value, precision and recall over
the 20 test sets for each method

Average Average Average
Method F1-measure precision recall
Title model words 0.357 0.556 0.279
Attribute distance 0.529 0.531 0.556
New model words 0.607 0.637 0.597

the extended model words method is higher than those of
the other two methods. The difference between the average
F1-value of this method and that of the title model words
method is quite large; the difference between the F1-value of
the extended model words and that of the attribute distance
method is much smaller.

However, to assess whether or not these differences are
significant, we perform Wilcoxon signed rank tests. The re-
sults of these tests will allow us to determine if any method
significantly outperforms the others. The results of these
tests are displayed in Table 5. The p-values resulting from
the Wilcoxon signed rank test to compare the title model
words method to the attribute distance method are 0.082
and 0.923. This shows that we can not prove a signifi-
cant difference in performance between these two methods
at a 0.05 significance level (although the attribute distance
method does outperform the title model words method at
a 0.10 significance level). The p-values obtained when com-
paring the extended model words method to the attribute
distance method are 0.285 and 0.727, both clearly not sig-
nificant. The p-value for the Wilcoxon signed rank test to
assess whether or not the extended model words method
outperforms the title model words method is 0.002, so the
extended model words method has significantly better per-
formance than the title model words method, but does not
significantly outperform the attribute distance method.

Table 5: The one-sided p-values for the Wilcoxon
signed rank test, calculated to determine whether
or not a method outperforms the others (µrow <
µcolumn)

p-values Title Attribute New model
model words distance words

Title model words X 0.082 0.002
Attribute distance 0.923 X 0.285
New model words 0.999 0.727 X

Table 6 presents the means and standard deviations of the
execution times for the three methods. These results were
obtained from runs on the 20 test sets with the parame-
ters that were found to be the best on their corresponding
training sets. The title model words method clearly has the
shortest mean execution time: 109 milliseconds, this was
expected since our two proposed methods use the algorithm
from the title model words method as their base and extend
it. The mean execution time of the extended model words
method is longer: 563 ms, this is because the extended model
words method considers not only the title, but also the prod-
uct attribute values. The attribute distance method has the
longest mean execution time: 1730 ms, this is because the
attribute distance method not only uses product titles and

product attribute values, but also product attribute names
(keys), which increases the execution time.

Table 6: Means and standard deviations of the ex-
ecution times (in milliseconds) over the 20 test sets
for each method

Method Mean Standard deviation
Title model words 109 26
Attribute distance 1730 385
New model words 563 91

5. CONCLUSIONS
In this paper we have proposed new solutions to the prob-

lem of product duplicate detection on the Web. We started
with the title model words method, a state-of-the-art solu-
tion to the problem of product duplicate detection on the
Web [11]. We have devised two new methods to solve the
problem of duplicate detection, both of which extend the
title model words method. The first new method is the
attribute distance method, which uses the information in
the product attributes, using distance measures to deter-
mine if products are duplicates when no matching title is
found. The second new method is the extended model words
method: this method not only uses model words to detect
matching titles, but also searches for matching model words
in the product attribute values to detect duplicates.

For the evaluation we have used a real-world data set of
TV’s from two existing Web shops, which contains dupli-
cates as well as non-duplicate products. The results show
that the extended model words method significantly outper-
forms the existing state-of-the-art title model words method
with respect to the F1-measure. With respect to the F1-
measure, the attribute distance method does not outperform
the extended model words method, yet it does outperform
the title model words method, but not significantly.

Despite the fact that the attribute distance method not
only uses title model words, but also additional informa-
tion from the product attributes, we have found that the
attribute distance method does not significantly outperform
the title model words method. The likely explanation of
this result is that the way in which data is represented dif-
fers greatly between the two Web shops in our data set. If
a key from one Web shop does not match the corresponding
key from the other shop (which occurs quite frequently in
our data set), the information that could be gained from the
value belonging to these keys remains unused. Because of
this, a great deal of information can be lost, leaving only a
small, sometimes insufficient amount of information to use
for duplicate detection. This has a negative effect on the
performance of the attribute distance method.

The fact that major differences in keys between one source
and the other exist, was our main motivation to implement
the extended model words method. This method disregards
the attribute keys and only analyses the attribute values,
thereby avoiding the problem that affects the attribute dis-
tance method. Although the attribute distance method does
not significantly outperform the title model words method,
this paper does provide a new method that outperforms the
existing state-of-the-art title model words method.

As future work we would like to experiment with addi-
tional string distance measures such as the Jaccard [4] or

Levenshtein [7] distance measures. Also we would like to
investigate an ontology-based approach for duplicate detec-
tion where domain background knowledge can be used to
aid duplicate detection. For instance, knowing the range of
a property can support the value matching step in our first
proposed duplicate detection algorithm.

Another possible approach that we would like to explore
is a hybrid one, combining elements from the attribute dis-
tance method and the extended model words method; for
instance by using distance measures to find similar keys, as
in the attribute distance method, and then finding matching
model words from the attribute values. Also we would like
to improve the efficiency of the proposed algorithms using
optimization methods from existing work [13].

Last, we would like to experiment with other distance-
based methods. An example of this could be the use of the
cosine similarity on TF-IDF vectors that are obtained from
the attribute values of a product. At a later stage, one could
also experiment with feature selection methods.

6. REFERENCES
[1] Best buy. http://www.bestbuy.com.

[2] M. Bilenko and R. Mooney. Adaptive Duplicate
Detection Using Learnable String Similarity Measures.
In Proceedings of the 9th International Conference on
Knowledge Discovery and Data Mining (KDD 2003),
pages 39–48. ACM, 2003.

[3] C. Cortes and V. Vapnik. Support-Vector Networks.
Machine Learning, 20(3):273–297, 1995.

[4] P. Jaccard. Distribution de la Flore Alpine dans le
Bassin des Dranses et dans Quelques Régions Voisines.
Bulletin de la Société Vaudoise des Sciences
Naturelles, 37:241–272, 1901.

[5] M. Jaro. Advances in record-linkage methodology as
applied to matching the 1985 census of tampa, florida.
Journal of the American Statistical Association,
84(406):414–420, 1989.

[6] H. Köpcke, A. Thor, S. Thomas, and E. Rahm.
Adaptive Duplicate Detection Using Learnable String
Similarity Measures. In Proceedings of the 15th
International Conference on Extending Database
Technology (EDBT 2012), pages 545–550. ACM, 2012.

[7] V. I. Levenshtein. Binary Codes Capable of Correction
Deletions, Insertions, and Reversals. Soviet Physics
Doklady, 10(8):707–710, 1966.

[8] Newegg. http://www.newegg.com.

[9] E. Ristad and P. Yianilos. Learning string-edit
distance. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 20(5):522–532, 1998.

[10] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw Hill, 1983.

[11] D. Vandic, J. W. J. van Dam, and F. Frasincar.
Faceted Product Search Powered by the Semantic
Web. Decision Support Systems, 53(3):425–437, 2012.

[12] F. Wilcoxon. Individual Comparisons by Ranking
Methods. Biometrics Bulletin, 1(6):80–83, 1945.

[13] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang.
Efficient similarity joins for near-duplicate detection.
Transactions on Database Systems (TODS), 36(3):15,
2011.

[14] M. Zaki. Introduction to Data Mining. Springer, 2003.

