
Using Hierarchical Edge Bundles to Visualize Complex
Ontologies in GLOW

Walter Hop
walter@lifeforms.nl

Sven de Ridder
sven@glowvis.org

Frederik Hogenboom
fhogenboom@ese.eur.nl

Flavius Frasincar
frasincar@ese.eur.nl

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, the Netherlands

ABSTRACT
In the past decade, much effort has been put into the visual
representation of ontologies. However, present visualization
strategies are not equipped to handle complex ontologies
with many relations, leading to visual clutter and inefficient
use of space. In this paper, we propose GLOW, a method
for ontology visualization based on Hierarchical Edge Bun-
dles. Hierarchical Edge Bundles is a new visually attractive
technique for displaying relations in hierarchical data, such
as concept structures formed by ‘subclass-of’ and ‘type-of’
relations. We have developed a visualization library based
on OWL API, as well as a plug-in for Protégé, a well-known
ontology editor. The displayed adjacency relations can be
selected from an ontology using a set of common configura-
tions, allowing for intuitive discovery of information. Our
evaluation demonstrates that the GLOW visualization pro-
vides better visual clarity, and displays relations and com-
plex ontologies better than the existing Protégé visualization
plug-in Jambalaya.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—User interfaces; H.5.2 [Information Interfaces
and Presentation]: User Interfaces—Graphical user in-
terfaces (GUI); I.3.8 [Computer Graphics]: Applications

General Terms
Languages, design, management

Keywords
Ontologies, visualization, hierarchical edge bundles, GLOW,
Semantic Web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2012 ACM 978-1-4503-0857-1/12/03 ...$10.00.

1. INTRODUCTION
An ontology formally represents knowledge about a do-

main. It contains a summary of all the concepts from the
domain, and the relations between these concepts. This for-
mal definition of domain knowledge enables computers to
answer complex questions, and derive new knowledge about
the domain, using automatic reasoning.

The data contained within ontologies can also be used by
humans for exploration or information extraction. Since the
knowledge in itself is abstract, human-computer interfaces
are necessary for this purpose. A frequently used technique
is visualization. Ontology visualizations can present a viewer
with immediate insight in the structure and properties of the
knowledge contained within the ontology.

An analogy can be made between ontologies and graph
topologies. When concepts are mapped to nodes, and their
relations are mapped to edges, a graph emerges. Using a
graph diagram is therefore an obvious choice for ontology
visualization.

The layout of the graph should comply with the way users
perceive the concepts depicted; for instance, elements should
be placed close to major elements they depend on, and the
hierarchical nature of concepts should be implied by their
representation [17]. A problem with many real-life ontolo-
gies, in this regard, is their size: as an ontology grows, it
becomes harder to satisfy these constraints in a diagram.
‘Pan-and-zoom’ functions may partially resolve graph size
problems, but can obscure the large-scale structure.

Many ontologies contain hierarchical concept trees, such
as those formed by ‘subclass-of’ or ‘type-of’ relations. There
are many strategies to visualize such tree structures. An
example of this is the inverted radial layout, for which an
instance is displayed in Fig. 1.

The leftmost diagram in Fig. 1 shows that this layout com-
presses a large amount of information about the hierarchical
structure of items into a relatively small space. Also, the
center of the diagram leaves room for the drawing of addi-
tional edges that may represent a different (in regards to the
hierarchical) kind of relation. Mixing these edges with the
‘hierarchical’ edges would lead to visual clutter [9]. However,
even when spatially separated, a high number of inner edges
can still lead to a cluttered mesh of edges that is hard to
comprehend. The Hierarchical Edge Bundles technique, as
described by Holten [9], allows to ‘bundle’ adjacency edges
into sets of related curves. As shown in the rightmost di-

agram, this results in a less complex and less cluttered ap-
pearance, which enables one to visualize larger graphs. As
demonstrated in [9], this does not only lead to aesthetically
pleasing images, but also to graphs that help experts, stu-
dents, and local companies to quickly gain insight in the
adjacency relations present in hierarchically organized sys-
tems. A bundling coefficient can be modified to change the
amount to which the adjacency curves are affected by the
hierarchy.

In this paper, we explore the use of Hierarchical Edge Bun-
dles for the interactive visualization of complex ontologies,
i.e., ontologies that have a large number of classes, individ-
uals, and non-type relations, as well as a large number of
distinct properties or rules. We propose GLOW, a method
for ontology visualization, that incorporates this technique.
The method includes a data selection phase that consists
of several configurations useful for analyzing real-life ontolo-
gies. Various graph layouts, among which the inverted radial
layout, are evaluated.

We construct a reference implementation of the GLOW
visualization and data preparation methods in Java. The
package can read any ontology via the OWL API [11], a
Java API and implementation for working with OWL on-
tologies. OWL (Web Ontology Language) is the standard
format for ontologies on the Semantic Web [2]. Developers
of Semantic Web applications can use the package to embed
GLOW visualizations into their own programs by making
use of the GLOW API.

We also make available a visualization plug-in for Pro-
tégé [15], a well-known ontology editor and knowledge acqui-
sition system. The plug-in can be used alongside Protégé’s
standard tools and visualizations. The full software package
is available on-line at http://www.glowvis.org/.

The remainder of this paper is organized as follows. First,
in Sect. 2 we discuss related work on visualizing relations
in complex ontologies. In Sect. 3 we introduce the GLOW
framework, followed by details on its reference implemen-
tation in Sect. 4. In Sect. 5, we evaluate the performance
of our Protégé plug-in with respect to the current ontology
visualizer Jambalaya [16], incorporating various exploratory
use cases based on an existing ontology from the Semantic
Web. Finally, we draw conclusions and discuss directions for
future work in Sect. 6.

Figure 1: Inverted radial layout visualizations of hi-
erarchical data and adjacency relations. Left: hi-
erarchical relations form a radial bar shell; descen-
dants are positioned inward relative to their parent.
Middle: a separate set of adjacency edges is added.
Right: the adjacency edges are bundled to create a
less cluttered diagram. The graphs were generated
using GLOW on the Wine ontology [14], displaying
classes, individuals and relations.

2. RELATED WORK

2.1 Ontology Visualization Methods
The OWL language, which has become a W3C standard

for describing ontologies in the Semantic Web [2], has serial-
ization formats (e.g., XML) that do not lend themselves to
direct viewing by humans. For this purpose, one needs tool
support. Many methods and tools for ontology visualiza-
tion currently exist. Katifori et al. [12] have provided tax-
onomies of visualizations. We briefly touch upon the major
techniques in use today, and discuss their merits and draw-
backs as they relate to visualization of complex ontologies
(e.g., containing hundreds of classes and individuals, and
thousands of relations).

2.1.1 Node–link
Node–link techniques display an ontology as a structure

of interconnected nodes. The resulting graph diagrams are
intuitive to users, and can provide a good preservation of the
structure, even for large ontologies. Different relation types
can be represented, for instance by line colors or spatial
separation.

Node–link visualizations are generally not very efficient in
use of screen space, although this is helped by choosing a
specialized layout [9]. The force-directed layout determines
node positions dynamically to optimize the use of screen
space, causing an animation effect. It prevents visual clutter
by minimizing the number of edge crossings, and attempts
to fill the screen space optimally by equalizing distances be-
tween parent and child nodes.

Trees are a special form of node–link graphs. They are
commonly used as models in ontology visualization, even if
multiple inheritance is not applicable to tree structures, and
therefore the true ontology structure cannot always be pre-
served. Most tree-based visualizations cope with multiple
inheritance by duplicating child nodes and placing them un-
der each parent node [12], which introduces an inaccuracy.
An example of a tree-based visualization is the well-known
Protégé plug-in OWLViz [10].

3D visualizations use an extra dimension to represent ex-
tra information or increase visual clarity. A 3D implementa-
tion can be found in GViz [5], where instances of classes are
drawn in separate parallel planes connected by edges that
represent ‘type-of’ relations.

2.1.2 Zoomable
These methods embed consecutive layers of lower-level

nodes within a higher-level node. They hold potential for
large ontologies, as they can show the large-scale structure
first, then allow the user to ‘drill down’. On the other hand,
the lack of global context inhibits preservation of struc-
ture. Also, problems appear when relation edges cross zoom
boundaries: in this case, it is not clear where the end point
of a relation lies. The Protégé visualization plug-in Jambal-
aya [16] uses zooming techniques in its ‘Nested View’, shown
in Fig. 2.

2.1.3 Focus + context or distortion
These methods can be used in conjunction with other

methods, to give more detail to an area of interest by dis-
torting the view of the graph in reaction to user input.
Arguments for and against these methods are similar to
those of zooming. An implementation of this method can be

(a) Nested view visualization

(b) Tree visualization

Figure 2: Visualizations of the Wine ontology [14] with individuals and relations in Jambalaya.

found in TGVizTab [1], a Protégé plug-in that uses a spring-
layout technique, displaying selected nodes in the center of
the graph and dynamically grouping related nodes around
it. The focus + context approach on selection has received
mixed reviews in an experimental setting, with some users
finding it ‘playful’ and ‘nice’ and others calling it ‘dizzying’
and ‘chaotic’ [13].

2.2 Visualization of Adjacency Relations
Holten [9] identifies the need for visualizations that al-

low for relations of interest to be overlayed on a ‘structural’
background layout, such as the inclusion (type) hierarchy.
Few visualization implementations currently allow for such
a configuration.

A notable counterexample is Jambalaya [16]. It uses var-
ious layouts, allowing for adjacency relations to be mapped
on top of a zoomable layout of the structural graph. The
visualizer contains many useful predefined scenarios, and is
easy to configure. The provided versatility makes it an at-
tractive choice for ontology visualization.

However, its layout options are limited and are not opti-
mized for large ontologies. Also, displaying individuals and
relations is still imperfect, as Jambalaya’s arc rendering pro-
cess does not use any algorithm to prevent visual clutter.

In an experimental comparison of ontology visualizers [13],
almost all users complained that after browsing concepts,
the relation edges became so many that they obstructed the
visualization. In Fig. 2, we show examples where the visual-
ization techniques fail to provide a clear picture. Here, the
classes, individuals and relations in the Wine ontology [14]
are displayed.

Another example of a visualizer that allows for displaying
of relations over a structural background is TGVizTab [1].
It uses a focus + context technique, dynamically arranging
related nodes around the selected node. In an experiment, it
was observed that there was much clutter when displaying
role relations and instances [13]. Furthermore, TGVizTab
can only display small numbers of nodes efficiently at one
time, as the layout suffers from screen clutter. It prevents
this situation by using focus and thresholds (e.g., nodes with
many edges are not displayed), which is less fit for visualizing
large ontologies as it does not preserve the structure.

Exploring an ontology visualization technique that fully
takes into account a compound graph of structural and re-
lation edges, focused on large ontologies, is the primary mo-
tivation for this research. Such a visualization should allow
for a clear display of ontologies containing hundreds of nodes
and thousands of edges.

3. THE GLOW FRAMEWORK

3.1 Reference Model
The information visualization reference model [7] forms a

template for common functions, components and interfaces
inherent to the task of visualization. In the context of the
GLOW framework, the components of the reference model
are mapped as follows. The data source component loads
the data sets to be visualized. The input of this phase is
a set of OWL ontologies, as well as a choice of rule sets for
extracting hierarchies and relations, and a choice of reasoner.
The selection of axioms from the ontology takes place here.
The output is the data set to be visualized.

Our data set is a compound graph [9]. The first part of the
compound graph is the inclusion hierarchy, which takes the
form of nodes (concepts) and edges (the ‘structural’ relations
between the nodes). In our case, the inclusion hierarchy is
generated from OWL classes, optionally OWL individuals,
and the type relations between them. The second part of
the compound graph is a set of adjacency edges (represent-
ing a possibly more ‘dynamic’ set of relations between the
objects). The adjacency edges are generated from non-type
relations between the concepts. Which nodes and edges are
selected depends on the chosen rule sets, which are described
in more detail in Subsect. 3.2.

In the visualization phase, the abstract compound graph is
transformed into a collection of ‘visual items’ which contain
information such as position, size, and shape. The world
coordinates of the compound graph elements are calculated
by applying one of several layouts. The adjacency edges,
later rendered as splines, receive their end points and con-
trol points here. We give more details on this process in
Subsect. 3.3.

The view is responsible for managing the visual items on
the screen. The visual items (e.g., nodes, inclusion edges,
adjacency edges) are rendered by object-specific renderers,
which transform the items to screen coordinates. The coor-
dinates of the Hierarchical Edge Bundles [9] are also calcu-
lated here. Other responsibilities of the view are panning,
zooming, and rotation.

Control components allow the user to change configura-
tion parameters, such as layout type, bundling coefficient,
colors, selected root node, et cetera. Also, events from the
environment are caught; for instance, in Protégé, selecting
an OWL class in the class browser limits the GLOW view
to only that class and its descendants.

Methodologically, the most notable parts of the framework
are the data selection phase, which maps OWL objects and
relations to a compound graph, and the visualization, which
combines several layouts with Hierarchical Edge Bundling to
enable viewing of large ontologies. These parts are described
in the next subsections.

3.2 Data Selection

3.2.1 Rule sets
The data selection converts OWL objects and their re-

lations to a compound graph, consisting of a tree part (the
inclusion hierarchy) and a set of adjacency edges. The ontol-
ogy reader depends on a set of OWL ontologies (for instance,
a main ontology and its imports), and a choice of rule sets
to generate the inclusion hierarchy and the adjacency edges.
The rule sets determine which OWL axioms or objects are

used. If no sub-selection of classes is made, the Thing class
becomes the root of the tree, but the user can choose to fo-
cus on a sub-tree by selecting a specific class. Fig. 3 shows
how a small example graph is created by each rule set.

The Classes rule set uses ‘subclass-of’ relations to build
the inclusion hierarchy. Each node in the graph corresponds
to an OWL class in the provided ontologies. One adjacency
edge is created from a class Cd to a class Cr, for every prop-
erty that has these classes as its domain and range. This
rule set allows us to quickly assess the class hierarchy, and
the coverage of property ranges and domains. For instance,
in the Pizza ontology [3], we find that the property hasBase

connects the classes Pizza (domain) and PizzaBase (range).
The Classes + Individuals rule set uses ‘subclass-of’ as

well as ‘type-of’ relations to build the inclusion hierarchy.
Interior nodes are always OWL classes; leaves may be ei-
ther OWL individuals or OWL classes. Relations between
individuals map to adjacency edges. One adjacency edge is
drawn from individual Is to individual Io for every relation
that has these individuals as subject and object. The Hier-
archical Edge Bundles approach does not consider adjacency
edges from classes (domain) to other classes (range), as it
requires the instances (in this case, individuals) to be part
of a hierarchical (tree) structure. Furthermore, it assumes
adjacency relations only between the leafs of the tree (rela-
tions involving non-leafs are interpreted as hierarchical and
non-adjacent). The Classes + Individuals rule set is an in-
terpretation of the ontology with the classes as tree nodes
(non-leafs), individuals as leafs, and adjacency relations as
relations between instances. The rule set gives us a complete
view of classes, individuals, and their relations. The user can
also choose to filter the relations on their property. For in-
stance, in the Wine ontology [14], one who is interested in
geographical relations between objects might choose to view
only the relations defined by property locatedIn.

3.2.2 Reasoner support
An optional reasoner can be used through the OWL API.

If the user selects a reasoner, subclasses and individuals will
be queried via the reasoner, instead of through the ontol-
ogy’s axioms. Also, retrieved classes are checked for satisfi-
ability.

Thing

Class Cd Class Cr

property

domain range

(a) Classes rule set

Thing

Class Cd Class Cr

relation

Individual Is Individual Io

subject object

(b) Classes + Individuals
rule set

Figure 3: A small ontology demonstrates how OWL
objects are mapped to the compound graph under
the two rule sets. Continuous lines represent edges
in the inclusion hierarchy; a dotted line represents
an adjacency edge.

(a) Force-directed graph (b) Node-link tree (c) Inverted radial tree

Figure 4: Available layout algorithms in GLOW.

If fully semantically correct results are desired, a reasoner
must always be used. Using a reasoner will generally pro-
duce a more extensive graph, as the inferred knowledge gives
rise to extra inclusion and adjacency edges.

If no reasoner is available or selected, objects are selected
by only using syntactic rules on the asserted facts. This
might yield results that are semantically incorrect. For in-
stance, inconsistent classes may be present in the output,
and relations which are not explicitly stated will be miss-
ing. Nevertheless, it can be useful to visualize ontologies
without a reasoner. For instance, it is generally faster and
generates more compact output, while still preserving the
ontology’s structure to a large degree. Also, it allows the
user to visualize inconsistent ontologies that would be re-
jected by a reasoner’s checker, for instance during ontology
development.

3.2.3 Class hierarchy limitations
There are some limitations to our current data selection

implementation. The Hierarchical Edge Bundles technique
necessarily depends on a hierarchical inclusion structure.
Multiple inheritance cannot easily be modeled using this
algorithm. We handle multiple inheritance by duplicating
child nodes and their adjacencies. This is also the approach
taken by most visualizations [12]. We feel that this solution
is sufficient for most purposes, as completeness of represen-
tation is not compromised, e.g., it does not hide information
that is present in the ontology. Also, when considering only
a sub-tree restricted by one parent, it gives a correct repre-
sentation of the objects below it.

3.3 Visualization

3.3.1 Compound graph
After the data selection phase has completed, the resul-

tant compound graph G = 〈V, 〈Ei, Ea〉〉 is used to gen-
erate an abstract visual description of the data. The gen-
eration is a two-step process, where V represents the ver-
tices of the graph, and Ei and Ea denote the inclusion and
adjacent edges, respectively. First, the inclusion hierarchy
Gi = 〈V,Ei〉 is used to perform the tree layout for the visual
representation. Then, the tree layout is combined with the
adjacency graph Ga = 〈V,Ea〉 to generate a representation
of the edges to be drawn.

3.3.2 Inclusion hierarchy layouts
Various tree layouts are available in GLOW. These are

the force-directed graph, which positions the nodes such that
edge crossings are minimized and a node’s child edges are
of comparable length; the inverted radial tree, where the
top concept is placed in the outer ring having sub-concepts
placed in consecutive inner circles; and the node–link tree,
which places every hierarchical level of the inclusion tree on
a vertically separate layer.

The chosen layout prescribes the coordinates of the in-
clusion hierarchy elements, i.e., the placing of the nodes in
the diagram. The layouts and their properties are depicted
in Fig. 4, which was generated using GLOW on the Wine
ontology [14].

3.3.3 Hierarchical Edge Bundles
Next, a visual description for the adjacency edges is gener-

ated. We choose the Hierarchical Edge Bundles approach [9]
to describe these edges, as this approach significantly re-
duces visual clutter in graphs with large numbers (e.g., thou-
sands) of edges. Furthermore, the bundling coefficient β can
be manipulated in real-time, which provides the user with
variable levels of detail over a continuous interval.

Essentially, the Hierarchical Edge Bundles approach de-
scribes edges as curves, whose paths are defined by control
points generated from the inclusion hierarchy: the control
points correspond to the inclusion hierarchy nodes found
along the shortest path from the edge source node to the
edge target node. In effect, the generation of control points
from the inclusion hierarchy curves the edges according to
semantic relatedness.

The degree of curvature is determined by the bundling
coefficient β. Fig. 5 shows the effects of changing the coeffi-
cient. We use Holten’s formula for control point straighten-
ing [9]:

P ′i = β · Pi + (1− β)(P0 +
i

N − 1
(PN−1 − P0)) , (1)

where N is the number of control points, i ∈ {0, ..., N − 1}
is the control point index, and β ∈ [0, 1] the bundling coeffi-
cient. The bundling coefficient β effectively determines the
amount of interpolation between the original control point
Pi and a point on the line from the edge source node P0 to
the edge target node PN−1.

We use Uniform Non-Rational Basis Splines (UNRBS) [4]
to draw the adjacency edges. Computationally, UNRBS
are relatively cheap to generate, enabling us to display a
greater number of edges while still allowing real-time an-
imation. UNRBS, however, come at the cost of reduced
control over the curve pathing, but this proves only to be
an issue at the edge endpoints. To force the curve to in-
terpolate through the endpoints, we duplicate the endpoints
twice, P−2 = P−1 = P0 and PN−1 = PN = PN+1, to arrive
at the control point series (P−2, ..., PN+1).

3.3.4 Control point mirroring
For the inverted radial tree layout, if we let the control

points coincide with the inclusion nodes, we find that adja-
cency edges occlude the inclusion graph, while much of the
screen space in the center of the visualization goes unused.
Therefore we perform a radial mirroring, reflecting the origi-
nal control points into the circumference of the circle defined
by the lowest level in our tree structure to arrive at a new set
of control points. These new control points preserve the con-
cept of semantic relatedness, but curve the adjacency edges
towards the unused central space. This approach is a simple
variant on Holten’s [9] radial layout construction.

The mirroring strategy, however, presents a problem when
one or both of the adjacency endpoints are not at the low-
est level in the hierarchy. In such cases, common in OWL
ontology hierarchies, the mirrored endpoints do not coincide
with the nodes in the inclusion hierarchy, and the adjacency
edge is disconnected from the inclusion graph. We solve the
issue by applying the mirroring only to intermediate control
points, and leaving the endpoints untouched.

(a) β = 0 (b) β = 0.25

(c) β = 0.5 (d) β = 0.75

(e) β = 1

Figure 5: Effect of β on adjacency edges. The figure
was created using GLOW to display classes and in-
stances of the ‘IPDfull’ ontology, limited to objects
under class TCMSelectionSystem.

Similar applications of reflection symmetry, such as re-
flection into an axis, may aid the legibility of a number of
other graphs, such as the Node-Link Tree graph. This lay-
out is unclear because large parts of the adjacency edges are
collinear, obscuring individual relations.

4. IMPLEMENTATION OF GLOW
GLOW has been implemented as a Java application, as

Java is the de facto standard platform for Semantic Web ap-
plications, with many tools and libraries available, such as
the OWL API and Protégé. Due to their open-source nature
and a lively community, these tools are thought to be the
most ‘future-proof’ choices for OWL-related development.
The GLOW software, as shown in Fig. 6, has been designed
as a set of loosely-coupled components that allow for effi-
cient reuse in various scenarios, such as a Protégé plug-in,
stand-alone OWL API applications, or other applications
requiring visualization of compound graphs or Hierarchical
Edge Bundles. The implementation distinguishes between
visualization, bridging OWL API and visualization, and a
Protégé 4.0 plug-in wrapper. Two common libraries, i.e., the
prefuse visualization toolkit [8] and JOGL [6] were bundled,
in order to allow for easy installation under Protégé.

Data selection is done by means of user defined rule sets.
When the rule sets are configured, the compound graph is
built. The rule sets add inclusions and adjacency edges to
the graph, which fully described the data set by means of
abstract data (nodes and edges). For visualization, we make
use of OpenGL (through the JOGL interfaces [6]), as this
provides access to advanced rendering techniques, such as
blending algorithms, color interpolation, and spline model-
ing. In addition, OpenGL is highly performant, enabling
real-time animation of complex graphics. Finally, the choice
for a 3D graphics API provides later opportunities for 3D
visualization. The design of the GLOW visualization com-
ponents is largely modeled after the prefuse Visualization
Toolkit [8], which itself is based on the Information Visual-
ization Reference Model [7]. Extensions to the prefuse com-
ponents were made to support OpenGL graphics; specifi-
cally, we provided an extension to prefuse’s Display to han-
dle input and animation events and delegate rendering to
a set of specialized GLRenderer objects. The Inverted Ra-
dial Tree layout was added to the set of layout algorithms
already provided by prefuse.

5. EVALUATION
To assess the user acceptance of the GLOW visualization,

we have carried out an initial small-scale user-based eval-
uation, comparing GLOW to Jambalaya [16], arguably the
most well-known ontology visualizer that can handle rela-
tions (an example of its display of complex ontology rela-
tions is seen in Fig. 2). Experiments only focused on the
visualization aspect of both GLOW and Jambalaya. The
participants (n = 7) were selected based on their scientific
profiles from a group of students and faculty staff, having a
broad scientific background in the fields of computer science
and informatics, with at least a basic understanding of the
Semantic Web. Participants’ OWL experience ranged from
basic experience (e.g., followed classes on OWL) to advanced
experience (e.g., published papers on OWL). Participants
had no previous experience with GLOW and Jambalaya,
and hence were explained the basics of both visualizers.

Figure 6: Screen shot of a GLOW view inside Protégé, visualizing the classes and object properties of the
Wine ontology [14] using a force-directed graph layout. Colored adjacency edges represent properties, such
as madeFromFruit and hasWineDescriptor. The endpoints of the adjacency edges correspond with the domains
and ranges of the properties.

Participants were explained the main goals of GLOW and
given instructions on how to install both visualizers. The
Wine ontology [14] was provided as an example of a reason-
ably complex ontology (345 classes and individuals, 181 non-
type relations). No mandatory assignments were handed
out, but participants were provided a list of sample tasks to
assess the two visualizations:

Class-related tasks

• How ‘deep’ is the ontology in terms of subclass rela-
tions?

• Which are the classes of wines that comprise the Loire
class?

Individual-related tasks

• How many wine grapes (individuals of the WineGrape

class) are there?

• For which wines is defined where they come from (the
locatedIn property) and for which wines is this not
yet defined?

• There is one wine which has the vintage year 1998
(hasVintageYear property); which wine is this?

After allowing the participants to spend some time us-
ing the visualizations (e.g., updating β values, changing dis-
play types, etc.), the participants were asked to complete
questionnaires containing forced ranking questions and open
questions. In the ranking questions, participants appeared
to prefer GLOW on all criteria (see Table 1), although due to
the low number of participants, statistical significance could

only be reached on the ‘displaying relations’ criterion (two-
tailed binomial test; H0: users have no preference, i.e., the
preference probability for GLOW equals 50%; α = 0.05).

In open questions, participants provided rationales for
their rankings. GLOW was generally preferred, with de-
scriptions such as ‘nicely organized’, ‘pretty’, ‘immediately
clear what is shown’ and ‘clearer trees’, while Jambalaya’s
layouts were overall judged as ‘messy’, ‘unclear’, and ‘easily
cluttered’. Additionally, five out of seven participants felt
that GLOW’s hierarchical edge bundling feature increased
the visual clarity of the diagrams. The adjacency edge color
gradient, which shows arc direction without the necessity for
arrow symbols, was also well rated.

When comparing GLOW’s various layouts for the purpose
of ontology analysis, five participants preferred the force-
directed graph layout, while one participant preferred the
node–link tree layout and one stated no preference. The
force-directed feature was not universally praised: two par-
ticipants felt that the animation of the force-directed layout
was too ‘bouncy’ and never stabilized. One user, for this
reason, preferred navigating the ontology in Jambalaya.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we identified a need for visualization meth-

ods that preserve the large-scale structure of complex on-
tologies, while still enabling the representation of classes and
individuals, as well as the relations between them. There-
fore, we have explored techniques that enable visualization
of these complex ontologies and their relations, and demon-
strate the utility of the Hierarchical Edge Bundles tech-
nique. Furthermore, we have proposed the GLOW frame-
work, a flexible visualization engine that uses Hierarchi-
cal Edge Bundles to prevent visual clutter. Its reusable

Table 1: Numbers of participants who preferred either GLOW or Jambalaya on various evaluation criteria.
Left column: evaluation criterion. Middle columns: numbers of participants choosing a preferred visualiza-
tion. Right column: 95% confidence interval for the preference probability for GLOW.

Which visualization do you prefer... GLOW Jambalaya 95% CI
... in terms of diagram clarity? 6 1 42.0–99.6%
... for displaying relations? 7 0 59.0–100.0%
... in terms of visualization performance on large ontologies? 5 2 29.0–96.0%
... to answer the example queries about classes? 5 2 29.0–96.0%
... to answer the example queries about individuals? 5 2 29.0–96.0%

component-based implementation ensures that Semantic
Web developers will be able to experiment with GLOW and
add it to their own programs, as well as provide extensions
of their own by adding new rule sets and layouts.

GLOW’s inverted radial tree layout allows for drawing
of large numbers of adjacency relations within an ontology,
without causing visual clutter. However, in our evaluation
using the reasonably complex Wine ontology, most partici-
pants chose the force-directed graph layout as most appro-
priate for analysis of ontologies instead. The evaluation par-
ticipants largely preferred GLOW’s diagrams to those of the
well-known relation visualizer Jambalaya. On all criteria,
participants generally ranked GLOW above Jambalaya. On
the evaluation criterion ‘visualization of relations’, all par-
ticipants preferred GLOW. This indicates that the methods
employed by GLOW hold promise for improving the visual-
ization of complex ontologies and their relations.

Essentially, the Hierarchical Edge Bundles technique is
the generation of spline control polygons based on short-
est paths along inclusion/inheritance relationships. The re-
quirement for the inclusion graph to have a proper tree form,
however, can be prohibitive. The constraint requires dupli-
cation of nodes exhibiting multiple inheritance, and limits
the development of new visualization rule sets. Therefore,
for future work, we suggest to explore whether the Hierar-
chical Edge Bundles technique can be extended to handle
arbitrary graphs. An adapted algorithm could gather infor-
mation from the shortest path between nodes in the graph,
or a minimum spanning tree could be used. Furthermore,
additional rule sets could be useful for visual analysis of on-
tologies. One example is a hierarchy rule set that extracts
‘part-whole’ relations to create the inclusion hierarchy. An-
other example is an edge rule set that creates adjacency
edges from N-ary relations; N-ary relations are currently
very hard to visualize as there are no OWL primitives to de-
scribe these, resulting in the use of ‘cross classes’ that have
no domain counterparts and obfuscate diagrams heavily.

7. REFERENCES
[1] H. Alani. TGVizTab: An Ontology Visualisation

Extension for Protégé. In: Workshop on Visualization
Information in Knowledge Engineering, Knowledge
Capture (KCAP 2003), 2003.

[2] S. Bechhofer, F. van Harmelen, J. Hendler,
I. Horrocks, D. McGuinness, P. Patel-Schneijder, and
L. A. Stein. OWL Web Ontology Language Reference.
W3C Recommendation, 10 February 2004.
http://www.w3.org/TR/owl-ref/, 2004.

[3] N. Drummond, M. Horridge, R. Stevens, C. Wroe, and
S. Sampaio. Pizza Ontology, Pizza Tutorial.
http://www.co-ode.org/ontologies/pizza/, 2007.

[4] J. D. Foley, A. van Dam, S. K. Feiner, and J. F.
Hughes. Computer Graphics: Principles and Practice
in C. Addison-Wesley Professional, 2nd edition, 1995.

[5] F. Frasincar, A. Telea, and G.-J. Houben. Adapting
Graph Visualization Techniques for the Visualization
of RDF Data. In Visualizing the Semantic Web,
chapter 9, pages 154–171. Springer, 2006.

[6] S. Gothel. JOGL: Java Binding for the OpenGL API.
http://kenai.com/projects/jogl/pages/Home, 2009.

[7] J. Heer and M. Agrawala. Software Design Patterns
for Information Visualization. IEEE Trans. Vis. &
Comp. Graphics, 12(5):853–860, 2006.

[8] J. Heer, S. K. Card, and J. A. Landay. prefuse: A
Toolkit for Interactive Information Visualization. In
15th Conf. on Human Factors in Computing Systems
(CHI 2005), pages 421–430. ACM, 2005.

[9] D. Holten. Hierarchical Edge Bundles: Visualization of
Adjacency Relations in Hierarchical Data. IEEE
Trans. Vis. & Comp. Graphics, 12(5):741–748, 2006.

[10] M. Horridge. OWLViz.
http://www.co-ode.org/downloads/owlviz/, 2004.

[11] M. Horridge and S. Bechhofer. The OWL API: A Java
API for Working with OWL 2 Ontologies. In 6th Int.
Workshop on OWL: Experiences and Directions
(OWLED 2009). CEUR-WS.org, 2009.

[12] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis,
and E. Giannopoulou. Ontology Visualization
Methods – A Survey. ACM Computing Surveys,
39(4):1–43, 2007.

[13] A. Katifori, E. Torou, C. Halatsis, G. Lepouras, and
C. Vassilakis. A Comparative Study of Four Ontology
Visualization Techniques in Protege: Experiment
Setup and Preliminary Results. In 10th Int. Conf. on
Information Visualization (IV 2006), pages 417–423.
IEEE Computer Society, 2006.

[14] M. K. Smith, C. Welty, and D. L. McGuinness. Wine
Ontology, OWL Web Ontology Language Guide.
http://www.w3.org/TR/owl-guide/wine.rdf, 2004.

[15] Stanford Center for Biomedical Informatics Research.
Protégé. http://protege.stanford.edu/, 2009.

[16] M.-A. Storey, M. Musen, J. Silva, C. Best, N. Ernst,
R. Fergerson, and N. Noy. Jambalaya: Interactive
Visualization to Enhance Ontology Authoring and
Knowledge Acquisition in Protégé. In: Workshop on
Interactive Tools for Knowledge Capture (KCAP
2001), 2001.

[17] Y. Tzitzikas and J.-L. Hainaut. On the Visualization
of Large-sized Ontologies. In 8th Working Conf. on
Advanced Visual Interfaces (AVI 2006), pages 99–102.
ACM, 2006.

