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ABSTRACT
Hermes is a Web-based framework designed to build per-
sonalized news services using Semantic Web technologies. It
makes use of ontologies for knowledge representation, nat-
ural language processing techniques for semantic text anal-
ysis, and semantic query languages for specifying the de-
sired information. This paper presents the Hermes Graph-
ical Query Language (HGQL). HGQL makes it possible to
create structured queries in Hermes. Structured queries use
disjunctive, conjunctive, negation, and pattern operators. In
addition, this paper presents a ranking algorithm based on
the queries made using HGQL.

1. INTRODUCTION
The Web is a great source of information, which is easy to

access. However, the user confronts himself with informa-
tion overflow. This calls for a way to filter this information
such that the results represent the user’s wishes. Many tech-
niques are available for information searching of which the
most common probably is keyword matching. Basically, this
means the user enters words that are important to his query
and the system selects information that matches these words
in order of relevance. However, this immediately creates a
problem: how will a computer system cope with the mul-
tiple meanings of the keywords that are used? Let us take
the word ‘apple’ for example: it could be the fruit, the com-
pany behind Macintosh computers or it could be a person’s
last name. At the current moment search engines do not
make use of word sense disambiguation techniques to find
the correct meaning of polysemous words.

Another often used format for retrieving news is Really
Simple Syndication (RSS). In RSS information is grouped
in ‘feeds’. A user can subscribe to a certain feed, which has
a certain subject. In this way information on a certain topic
can be retrieved, for example: health or financial.
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The strengths of the aforementioned techniques are em-
ployed in the Hermes framework [4, 16], used for news per-
sonalization, along with Semantic Web technologies to define
the meaning of domain concepts. This overcomes the prob-
lem with keywords, which have no well-defined semantics.
In addition, a graphical query language would allow users,
with little understanding of query languages, to create fairly
complex structured queries in an intuitive way. Structured
queries use AND, OR, and NOT operators, and can also be
pattern-based. Pattern-based queries follow the form of a
sentence: they have a subject, a predicate, and an object.

The graphical query language in turn calls for a ranking
algorithm to provide the user with a list of news items sorted
by relevance. In this paper we present the graphical query
language and evaluate the corresponding ranking algorithm.

Several weighting schemes for concept importance have
been proposed in the literature. Most of the schemes can
cope with AND and/or OR operators for queries, but few
solutions have been devised to use these operators together
with the NOT operator. Here we propose to enhance the
popular extended Boolean model [13] with negation.

The contributions of this paper are threefold: it proposes
a graphical query language for searching news that goes be-
yond current keyword-based approaches, it devises a rank-
ing algorithm for sorting news relevant for a user query, and
it evaluates several weighing schemes for the proposed al-
gorithm. The structure of the paper is organized as fol-
lows. Section 2 describes related work on graphical query
languages and relevance sorting algorithms. Section 3 pro-
poses the Hermes Graphical Query Language (HGQL). Sec-
tion 4 devises a ranking algorithm for HGQL. Section 5
discusses the implementation of HGQL and its ranking al-
gorithm. Section 6 evaluates the ranking algorithm with
different weighting schemes. Last, Section 7 presents our
conclusions and suggestions for future work.

2. RELATED WORK

2.1 Graphical Query Languages
Often graphical representations are considered easier to

comprehend by humans than textual representations, as-
suming that the representations are not too complex. Addi-
tionally textual representations often require the user to be
familiar with a certain syntax, raising the learning threshold.
In order to cope with these issues we introduce a graphical



query language which can be used in the Hermes frame-
work [4, 16]. This section provides an overview of the re-
search on the topic of graphical query languages.

In [5] a technique for building graphical queries for RDF
is introduced. RDF and OWL are used in Hermes as well.
RDF is built up from triples, which are composed of a sub-
ject, predicate, and object. The language discussed in [5]
uses rounded rectangles with a predicate and optionally an
object to visualize queries. Multiple of these rounded rect-
angles can be interconnected, creating conjunctive queries
(logical AND). Object nesting is also supported providing
the possibility to link different resources to each other. This
means it is possible to create a query, for which the object is
defined by another query. A disadvantage of this language
is that no functionality is given for disjunctive queries.

RDF-GL [7] is a graphical query language for RDF and
it is based on the query language SPARQL. It uses boxes,
circles, and arrows in different colors to represent differ-
ent elements. RDF-GL covers the SELECT statement from
SPARQL. However, it is not a very intuitive language as the
different lines, shapes and colors can confuse the user.

Another graphical query language is GLOO [3], in which
the user can specify concepts, individuals, relations, and log-
ical operators (AND/OR). Ovals, squares, and arrows are
the building blocks for GLOO. GLOO is a powerful graph-
ical query language, allowing the user to make relatively
complex queries in an intuitive way. However, there is no
method discussed for the implementation of filters, such as
those in RDF-GL, nor it has support for negation.

2.2 Relevance Sorting Algorithms

2.2.1 Models
Many models for information retrieval and relevance sort-

ing have been developed throughout the years. The most ba-
sic one is the Boolean model, developed by George Boole [2].
The Boolean model uses the structured query operators
AND representing the logical product, OR representing the
logical sum, and NOT representing the logical difference.
This model does not provide any ranking mechanism for
text querying.

One of the earliest models for ranked retrieval is the Vec-
tor Space model [14]. The Vector Space model is based on
measuring the similarity between a query and a document.
The simplest of similarity measures is the vector inner prod-
uct [9] which just calculates the sum of the products of com-
ponents of the query vector and the document vector. The
document vector is d = (d1, d2, ..., dm) of which each com-
ponent dk (1 ≤ k ≤ m) is associated with an index term;
for the query there is a similar vector q = (q1, q2, ..., qm) of
which the components are associated with the same terms.
Terms are usually words, keywords, or longer phrases. If the
words are chosen to be terms, the dimensionality of the vec-
tor is the number of words in the vocabulary. The vectors
can handle binary values to indicate if a term occurs or not
in the document or query, and positive integers to indicate
the importance of a term in the document or query. The
Vector Space model maps every term to a different dimen-
sion. The query and document are considered vectors in the
high dimensional Euclidean space determined by the terms.
The similarity measure is the cosine of the angle between
the query vector and the document vector (if terms are nor-
malized to the unit length the cosine becomes the scalar

product). This model needs an additional term weighting
model, because it does not describe what the values of the
vector components should be. Also, the model is only able
to cope with conjunctive queries.

The Vector Space model can be extended to the p-norm
extended Boolean model so it is able to support disjunctive
queries as well. Let us consider a query of 2 terms and the
vectors are normalized to unit length. Point (1,1) represents
the situation that both query terms are present with weight
1. Point (0,0) represents the situation that both query terms
are not present. Documents in point (1,1) have the highest
relevance for conjunctive queries while documents in point
(0,0) have the lowest relevance if the query is disjunctive.
Therefore, the documents should be ranked in order of in-
creasing distance from the point (1,1) for conjunctive queries
and in order of decreasing distance from point (0,0) for dis-
junctive queries. This reasoning gives the definition of the
following scores [14]:

score (d, a OR b) =

√
(da − 0)2 + (db − 0)2

2
.

score (d, a AND b) = 1−
√

(1− da)2 + (1− db)2

2
.

(1)

Generalizing these formulas and extending them with term
weights introduces a p-norm which provides a certain soft-
ness to Boolean operators [14].

score
(
d, q OR(p)

)
=

(∑m
k=1(qk)p(dk)p∑m

k=1(qk)p

)1/p

.

score
(
d, q AND(p)

)
= 1−

(∑m
k=1(qk)p(1− dk)p∑m

k=1(qk)p

)1/p

.

(2)

Salton et al. propose a recursive algorithm based on the
two formulas above in order to cope with queries which con-
tain both conjunctive and disjunctive operators [13]. The
use of ‘-1’ for query terms with the NOT-operator is men-
tioned in literature [8] in order to cope with negation queries.
Terms which do not appear in the document are represented
as ‘-1’ in the document vector. This approach has neverthe-
less no theoretical nor empirical support so far. The vector
space model and the p-norm extended Boolean model both
work with all the terms appearing in all documents and in
the query. In Hermes concepts are used instead of terms, so
with this adjustment these models can be reused for Hermes.

Another solution aiming at incorporating negation in vec-
tor spaces is based on linear algebra [18]. A negated concept
is represented as its orthogonal complement under the scalar
product. Compared to this approach, our research aims to
build on the simplicity of the extended Boolean model pro-
posed by Salton [13] by enhancing it with negation.

Fuzzy set theory uses degrees of membership to a certain
set. Fuzzy set models in information retrieval rank the doc-
uments based on this degree of membership of the document
to the terms in the query. Paice’s model [11] extends the ba-
sic fuzzy models by adding different computations of mem-
bership for disjunctive and conjunctive queries, but it does
not support negation queries. Like the Vector Space model,
this model needs an additional term weighting algorithm.



2.2.2 Term Weighting
Most of the discussed models need an additional term

weighting algorithm. Many term weighting algorithms have
been developed in the past 25 years [6]. We will briefly dis-
cuss some of the most successful ones.

The weighting algorithms treat the query like a docu-
ment. Both the document and the query terms are assigned
a weight, and then the similarity of the weights of the query
and the document are calculated using one of the models
described in the previous section.

Term Frequency (TF) weighting simply counts how often
a term occurs in the document and query. The more often a
term occurs in a document, the more relevant that term is
considered to be to the particular document. Inversed Doc-
ument Frequency (IDF) weighting is the inverse of the count
of the number of documents a term occurs in. A term which
occurs in a low number of documents is considered to be
specific and therefore documents with this term should get
a high weight. TF and IDF weighting combined results in
TF.IDF weighting [15]. Most modern weighting algorithms
are based on this concept. TF.IDF weighting simply mul-
tiplies the weights obtained by TF and IDF weighting and
normalizes the outcome using cosine normalization.

In 1988 it was discovered that it is better to map the
document and query weights differently [12]. Many varia-
tions of TF.IDF have been proposed for this purpose. They
are named by 2 three letter combinations, of which the first
combination represents the document term weight and the
second combination the query term weight. The first let-
ter of such a combination indicates the TF component, the
second letter the IDF component, and the third letter indi-
cates the normalization. An example of this is the tfc.nfc
algorithm, which uses a normalized TF factor for the query
weights. The original TF.IDF algorithm as previously de-
scribed is called tfc.tfc.

An important discovery is that weights that are logarith-
mic in TF outperform weighting algorithms which are linear
in TF [1]. An example of this is the lxc.ltc formula, where
the ‘l’ stands for weights with a logarithmic TF or IDF com-
ponent. The normalization part of these formulas is left out
here because it follows the usual cosine normalization. The
lxc.ltc formula is shown in Eq. 3.

dk = 1 + log TFk

qk = (1 + log TFk) ∗ log
N + 1

dfk
. (3)

A more recent algorithm which is said to be outperforming
the cosine normalization is the Lnu.ltu algorithm [17]. This
algorithm uses a combination of the document length and
the average document length for normalization.

dk = L ∗ u
qk = l ∗ t ∗ u
l = 1 + log TF

L =
1 + log TF

1 + log TFavg

t = log
N + 1

df

u =
1

(1− s) + s uw
uwavg

. (4)

TFavg = Average TF of all terms in document
uw = Number of unique words in document
uwavg = Average number of unique words in a

document (taken over all documents)
s = Slope factor dependent on the number of

unique terms in the document and which is
determined experimentally

The best value for the slope s is experimentally determined
to be 0.25 when using pivoted unique normalization [10], as
in this formula.

3. HERMES GRAPHICAL QUERY
LANGUAGE

This section discusses the theoretical framework for the
Hermes Graphical Query Language (HGQL). Any query in
HGQL is a directional graph, with differently colored
rounded rectangles (nodes). A set of elements provide the
building blocks for a query in HGQL.

Concepts represent classes or individuals from the knowl-
edge base. They can be people, countries, companies, etc.
Concepts are labeled with representative lexical representa-
tions and their label is purple.

The relations allow the user to employ HGQL’s triple-
based pattern querying. A triple-based pattern query is con-
structed with the structure: concept→ relation→ concept;
which returns all news items matching that relation. The
possible instances of a relation are extracted from the knowl-
edge base. Relations are represented by verb phrases. In-
stances of the relation category are denoted as green nodes.

Edges are used to model the triple-based pattern query
structure. There are two groups of edges: logical connec-
tivity edge and pattern connectivity edges. Logical connec-
tivity edges always point from the operator to its children
and are denoted as gray arrows. Pattern connectivity edges
follow the structure: concept → relation → concept and
are denoted by black arrows. Figure 1 shows a combined
query consisting of a pattern-based query and a concept-only
query. The query shown in this figure represents the tex-
tual query ‘(EBAY Buys UNKNOWN) OR (GOOG AND
YHOO)’.

Wild cards are partially or entirely unknown concepts or
relations to the user. Partially unknown concepts are based
on a text match; the concept or relation for which a lexical
representation best matches a given text is considered rele-
vant. Entirely unknown concepts can be used if the user is
interested in a certain relationship, but wants to leave out
the subject or object. For example, the user is interested
in every event in which Google buys something. The query
“Google buys Unknown” can be constructed. Unknown rela-
tions can be constructed as well, allowing the user to retrieve
information about all interactions between certain concepts.
For example, “United States Unknown France”. Wild card
colors depend on what they map: concepts or relations (use
the samelxc.ltc colour as these).

Operators are used to model logical operations. In the
HGQL there are two different types of operators: intra-
query and inter-query operators. The first group are op-
erators used within one query, while the second group is
used to connect different queries together. Although these
are logically the same they provide the user with a better
conceptual distinction (they are convenience operators used



Figure 1: A combined query consisting of a pattern-based query and a concept-only query with legenda.

to split the query into subqueries). Inter-query operators
point to the root of each query. Inter-query operators are
denoted as yellow nodes and intra-query operators as blue
nodes.

A set of rules is defined to provide the syntax for HGQL.
Firstly, nodes or groups of nodes that ‘float’ are not allowed.
This means that every node in the graph is either directly or
indirectly connected to another node in the graph. Secondly,
every query should contain at least one node of type con-
cept, with an additional rule for triple-based pattern queries:
every pattern query has to have at least one subject, one
predicate, and one object. Thirdly, it is not allowed to con-
nect a node to a node of the same type, with an exception
for operator nodes. An operator connected to another op-
erator creates a nested query. Finally, a set of connection
conditions is specified, which denotes for every node type
the allowed number of incoming and outgoing edges.

4. HERMES RANKED RESULTS
Hermes is a framework aimed at personalizing news. In

order to show the news items desired by a user, Hermes has
to rank all news items based on the queries created by this
user. Hermes Ranked Results is an extension to the Her-
mes framework which sorts the news on relevance based on
queries created in HGQL, the querying language of Hermes.

It is impossible to define different formulas for each pos-
sible query, so we need to normalize the query form. An ex-
ample of a normal form is the negation normal form (NNF).
A query is in negation normal form if negation is only ap-
plied to single concepts or patterns, and if only disjunctive,
conjunctive, and negation operators are used. Two possible
extensions of NNF are the disjunctive normal form (DNF)
and the conjunctive normal form (CNF). A query is in DNF
if this query is a disjunction of clauses, where a clause is
a conjunction of possibly negated concepts or patterns. All
rules for NNF also apply to DNF. A query is in CNF if it is a
conjunction of disjunctive clauses, where a clause consists of
concepts or patterns which are possibly negated. Basically
it is the same as DNF, except the disjunction and conjunc-
tion operators are swapped. Each query can be converted
to NNF, DNF, or CNF.

For Hermes, DNF is used as normal form, interpreting a
query as a disjunction of its conjunctive subqueries. The

queries made in HGQL are converted to DNF using double
negation elimination, De Morgan’s laws, and the distributive
law. In order to be able to also rank the news for queries
which, besides concepts, also contain patterns, patterns are
treated like concepts. To reach this goal, we first need to
convert pattern queries to a form which is compatible with
the ranking algorithm. In HGQL, one can create a pattern
based query with logical operators within a single pattern.
The ranking algorithm can only process queries which con-
sist of simple patterns with operators between them. Such
a simple pattern has only one subject, one predicate, and
one object, and represent a so-called complex concept. A
complex pattern, a pattern that uses logical operators in a
pattern, is reduced to simple patterns (complex concepts)
connected by logical operators by outer moving the logical
operators.

Chained queries are not explicitly part of Hermes HGQL.
This type of query is simulated by two complete patterns
connected by a conjunctive operator, where the first pat-
tern’s object is the same as the second pattern’s subject.

4.1 Ranking Algorithm
Now that we discussed the conversion of any possible query

created in HGQL to DNF, we discuss the actual ranking al-
gorithm which uses these queries to sort the news based on
their relevance to the user.

4.1.1 Document and Query Representation
To be able to use a relevance sorting algorithm we need

to represent query and documents as weight vectors. We
discussed some term weighting algorithms for this purpose
in Section 2.2.2. In this study we calculate term weights
with four different algorithms to check which one returns
the best results.

The first method we use is a simple binary weight. We call
this method the extended Boolean method, because it uses
Boolean weights. The document weight is 0 if the concept
does not occur and 1 if it does occur at least one time in the
document. The same goes for the query weights. Please note
that this method is an extension of the original extended
Boolean model by Salton et al. [13], which does not support
negation operators.

As second method, the basic TF.IDF weighting algorithm
with cosine normalization is used. This method is called



tfc.tfc with the two three letter combinations naming sys-
tem. The third method used is lxc.ltc. This is a TF.IDF
variation with logarithmic TF and IDF weights, as depicted
in Eq. 3. The purpose of using the second and third method
is to check if the third method (lxc.ltc) also outperforms the
second method (tfc.tfc) in a concept space. The fourth and
last method used is the Lnu.ltu algorithm as described in
Eq. 4 which is said to be outperforming the previous al-
gorithms using cosine normalization. This algorithm uses a
combination of the document length and the average doc-
ument length for normalization. As slope we use a value
of 0.25, since it is proven that this value provides the best
results.

4.1.2 Disjunctive & Conjunctive Queries
Hermes uses a combination of the two formulas of the p-

norm extended Boolean model with p = 2. One of these
formulas addresses conjunctive queries, whereas the other
copes with disjunctive queries. The input queries for this
model are in DNF. This means that there are basically two
parts, a disjunctive query and a collection of conjunctive
subqueries. At first, all the weights of the subqueries are cal-
culated by the formula which addresses conjunctive queries.
After this, the formula which addresses disjunctive queries
calculates the total relevance of the document using the ob-
tained weights of the subqueries. The query weights in the
formula which calculates the total score of the document are
1 because all subqueries are present one time. The results
are shown in Eq. 5.

score(wi OR(p)) =

(∑n
k=1(wi)

p

n

)1/p

.

wi

(
d, q AND(p)

)
= 1−

(∑m
k=1(qk)p(1− dk)p∑m

k=1(qk)p

)1/p

.

(5)

d = Document’s index representation vector
q = Query’s index representation vector
m = Total number of terms in documents and query
n = Total number of conjunctive clauses
wi = Weight of clause i

4.1.3 Negation
The previously stated relevance scoring does not take in

consideration the negation operator. Therefore we make an
adjustment to the query and document weights to cope with
this operator. The query weights for concepts which are not
part of the query are 0, and the query weights for concepts
which occur in the query and are not negated are calcu-
lated with the four different methods described above. The
weights of query concepts which are negated are computed as
formerly mentioned, however now they are multiplied with
-1. Document weights remain the same for concepts which
occur in the document, while concepts which do not occur
in the document are given weight -1 instead of 0.

With the original vector inner product, this approach is
correct with respect to the intended query semantics. The
query and document weights are simply pairwise multiplied
in this approach. Therefore, documents get a negative rele-
vance when the query concept is negated while the concept
does occur in the document, or when the query concept is

not negated but the concept does not occur in the document.
The relevance will be positive when a non-negated concept
of the query occurs in the document, or a negated query
concept does not occur in the document. Concepts which
do not occur in the query will not affect the relevance score
as the assigned 0 weight to these concepts will be multiplied
with the document weight, resulting in a relevance score of
0.

The ranking model described above was made for a
Boolean weighting model using only weights between 0 and
1, where 0 represented absence and any value higher than 0
presence of a term. As we changed the term weighting, we
need to change the ranking algorithm itself correspondingly.
In some cases, the original ranking algorithm gives the same
results for negated queries as for non-negated queries. If the
document weight is 1, the query weight is multiplied with
0 according to Eq. 5. This results in 0, independent from
the value of the query weight. The equation also provides
incorrect relevance scores for document weights of -1. In this
case, the query weight will be multiplied with a value higher
than 1, which may result in values below 0. Eq. 5 is only
normalizing to query weights. Therefore, the outcome of the
formula could be below 0, which is not within the desired
positive weight range.

In order to be able to calculate the relevance score of news
items based on structured queries consisting of disjunctive,
conjunctive, and negation operators, we need to adjust the
equations. We need to change Eq. 1, where the OR part is
based on the distance to the worst case (0,0). With negation
we have a new worst case, namely (−qa,−qb) for the specific
case of two query terms a and b. In general, the worst case
is −qk. The AND part of this formula is based on best case
(1,1). The new best case for negation queries in case of two
query terms a and b is (qa, qb), so in general, the best case
is qk. The old formulas adjusted with this knowledge to
make them compatible with negation queries result in Eq.
6. Because the only case when da > qa is when da = 1 and
qa = −1, the scaling factor is (2 ∗ qa)2. As the scaling factor
is squared, this value is always bigger than (da + qa)2.

score (d,Qor) =

√
(da + qa)2 + (db + qb)2

(2 ∗ qa)2 + (2 ∗ qb)2
.

score (d,Qand) = 1−

√
(qa − da)2 + (qb − db)2

(2 ∗ qa)2 + (2 ∗ qb)2
.

(6)

Qor is either a ∨ b, a ∨ ¬b, ¬a ∨ b, or ¬a ∨ ¬b, and Qand is
either a∧ b, a∧¬b, ¬a∧ b, or ¬a∧¬b. From these formulas
we can deduce the generalization as in Eq. 2 for negation
queries. This results in Eq. 7.

score
(
d, q OR(p)

)
=

(∑m
k=1(qk)p(dk + qk)p∑m

k=1(2 ∗ qk)p

)1/p

.

score
(
d, q AND(p)

)
= 1−

(∑m
k=1(qk)p(qk − dk)p∑m

k=1(2 ∗ qk)p

)1/p

.

(7)

Based on these formulas, we can instantiate our formula for
combined disjunctive and conjunctive queries as in Eq. 5
compatible with negation queries. Because the range of the
weights from the AND part of the formula is now from 0



to 1, we do not have to change the OR part of the formula
which calculates the disjunction of the subquery weights.
The obtained model is shown in Eq. 8.

score(wi OR(p)) =

(∑n
k=1(wi)

p

n

)1/p

.

wi

(
d, q AND(p)

)
= 1−

(∑m
k=1(qk)p(qk − dk)p∑m

k=1(2 ∗ qk)p

)1/p

.

(8)

d = Document’s index representation vector
q = Query’s index representation vector
m = Total number of terms in documents and query
n = Total number of conjunctive clauses
wi = Weight of clause i

5. IMPLEMENTATION
In this section we discuss the implementation of the HGQL

and the ranking algorithm based on this query language as
described in this paper. These are implemented in such a
way that the user can use our implementation to access all
features of the Hermes framework. The implementation is
called the Hermes News Portal (HNP), and can be inte-
grated in the standard implementation of Hermes. In HNP
the user searches for news by selecting the concepts (s)he is
interested in using the Original Graph tab. The user can
choose either single concepts or concepts which are related
to a certain concept. These concepts can be stored in the
Search Graph from the Original Graph. When the user se-
lected all the concepts of his interest, he can query the news
based on these using the Search Graph tab. He can also se-
lect time constraints for the resulting news items, and start
the querying procedure. The HNP automatically switches
to the Results tab, presenting a ranking of news items along
with a relevance score between 0 and 100 percent.

In the HGQL tab, the user is able to build queries us-
ing the Boolean operators AND, OR, and NOT. HGQL also
offers the ability to create pattern queries, consisting of a
subject, a predicate, and an object. Once the query is fin-
ished, the user can search the news by means of it by clicking
the ‘Execute Query’ button. The system switches to the Re-
sults tab, showing only the news items which exactly match
the query. If the user tries to retrieve news with an invalid
query, an error message will pop up, generated by the query
validator.

The ranked list of news items based on the relevance algo-
rithm of HGQL can be obtained by checking the ‘Ranked’
box in the HGQL tab. The user also has to select one of
the radio buttons in order to choose a weighting algorithm.
After the ‘Execute query’ button is pressed, the system will
rank all news items in the database based on the given query.
The HNP automatically switches to the Results tab showing
the ranked list of news items, as shown in Figure 2.

HNP uses OWL as ontology language and is written in
Java. OWL is supported by W3C and offers some useful
additional features we need, e.g., the ability to describe dis-
joint classes, cardinality, and symmetry. The classified news
items, the knowledge base, the update rules, the user pro-
file, and queries in HGQL are stored in OWL ontologies.
SPARQL is used to query these ontologies because it is sup-
ported by W3C as the query language for RDF languages in-

cluding OWL. To represent the ontologies in a visual graph
Prefuse is employed. Java has many libraries to manipu-
late, reason with, query and visualize ontologies, like GATE
for the Natural Language Processing steps, ARQ to exe-
cute SPARQL, SPARQL/update to update ontologies, and
OWL2Prefuse for the visualization of the knowledge base.
The conversion of queries to DNF is done by the Orbital
library.

6. EVALUATION
In this section we evaluate the proposed ranking algo-

rithms using the implementation in Hermes. Two different
measures are used in order to evaluate the ranking algo-
rithm. The first measure is the precision for the first ten
documents in our results list. For n different queries we cal-
culate how much of the news items in the top ten of the
ranked list are considered relevant. This is referred to as
the ‘Mean Precision @ 10’ (MP@10).

The second measure that is used to evaluate the ranking
algorithm is the Mean Average Precision. The MAP pro-
vides a single-figure measure of quality across recall levels.
The Average Precision (AP) is the average of the precision
values obtained for the set of top k documents in the search
results before each relevant document is retrieved for a cer-
tain query. We take the mean of this value from n different
queries.

We evaluate the ranking algorithm based on a list re-
trieved for the same queries from various test users. We
consulted 5 test users who have a Computer Science back-
ground and who are familiar with Semantic Web technolo-
gies and Information Retrieval techniques. The list obtained
from these users is regarded as the ultimate goal to com-
pare the ranking algorithm with. The users were told to
select all news items which they considered relevant to the
queries. For this obtained ‘golden standard’ we used only
the results where the majority of annotators agreed. The
test set used is a database of 927 news items about vari-
ous subjects. The methods used for document and query
weight calculation are the extended Boolean Model (Rank
(eB)), the traditional TF.IDF weights (Rank (tfc.tfc)), the
TF.IDF model with logarithmic weights (Rank (lxc.ltc)) as
given in Eq. 3, and the TF.IDF model with a combination
of the document length and the average document length
for length normalization (Rank (Lnu.ltu)), as given in Eq.
4. The calculations for the different possibilities of concept
presence in documents and queries are shown in Table 1.

The results of the comparison to the user list are dis-
played in Table 2. We can note from this table that the
extended Boolean Model performs best on both measures.
Rank(lxc.ltc) performs a bit less good than the extended
Boolean Model. Rank(tfc.tfc) and Rank(Lnu.ltu) have the
lowest scores, with the latter performing slightly better than
the first.

Figure 3 shows the 11-point precision/recall graph aver-
aged over the 10 given queries. As can be noted from this
graph, the extended Boolean model performs best across all
recall levels. From the term weighting methods,
Rank(lxc.ltc) performs best for most recall levels, while
Rank(Lnu.ltu) performs best on high recall levels.
Rank(tfc.tfc) performs poor on all recall levels as expected.

We have used the different TF.IDF weighting schemes for
our ranking algorithm. The previous results [12] showing
that it is better to map the document and query vectors



Figure 2: Ranked query results in HNP.

differently in the vector space have been confirmed here, be-
cause both Rank(lxc.ltc) and Rank(Lnu.ltu) perform better
than the basic TF.IDF model Rank(tfc.tfc) where the query
and document vectors are mapped equally. However, the
previous results about algorithms which use a combination
of the document length and the average document length
for normalization performing better than algorithms which
use cosine normalization [17] could not be confirmed here,
as can be noted from the fact that Rank(Lnu.ltu) does not
perform better than Rank(lxc.ltc).

7. CONCLUSION
The Hermes Graphical Query Language (HGQL) is a

query language developed in the context of news personaliza-
tion by Hermes. Hermes is a Web-based news personaliza-
tion service using Semantic Web technologies. HGQL makes
it possible to build structured queries without any knowl-
edge of SPARQL using building blocks: concepts, relations,
operators, and wildcards as nodes, and edges to connect the
different nodes. Structured queries are queries which consist
of only concepts and logical operators, triple-based patterns,
or a combination of these two. HGQL can either return a
list of news items which completely match the query (the
Boolean Model), or a ranked list of news items based on
their relevance to the query.

The ranking algorithm of HGQL is based on a combina-
tion of the different formulas for disjunctive and conjunctive
queries of the p-norm extended model. Negation operators

are addressed by using negative weights for query and docu-
ment terms. Four different weighting algorithms have been
tested in this study, namely the extended Boolean model
Rank(eB), which uses document weights of 1, 0 and -1, and
three different TF.IDF weighting algorithms, Rank(tfc.tfc),
Rank(lxc.ltc), and Rank(Lnu.ltu). The main contribution
of this paper is the ability to address negation operators

Figure 3: The 11-point precision/recall graph with
the user list as benchmark.



Table 1: Document weight calculation.
Document Weight Query Weight

Concept present Concept absent Concept present Concept absent Concept negated
Rank(eB) 1 -1 1 0 -1
Rank(tfc.tfc) tfc.tfc -1 tfc.tfc 0 -1 * tfc.tfc
Rank(lxc.ltc) lxc.ltc -1 lxc.ltc 0 -1 * lxc.ltc
Rank(Lnu.ltu) Lnu.ltu -1 Lnu.ltu 0 -1 * Lnu.ltu

Table 2: Evaluation results using user list benchmark.
Measure Rank(eB) Rank(tfc.tfc) Rank(lxc.ltc) Rank(Lnu.ltu)
MP@10 0.850 0.470 0.730 0.480
MAP 0.874 0.467 0.694 0.572

within a query which consists of conjunctive and disjunctive
operators using a ranking algorithm.

Our study showed that the extended Boolean model is
performing best with a Mean Precision at 10 (MP@10) of
0.85 and a Mean Average Precision (MAP) of 0.874. The
lxc.ltc algorithm provides the second best results with an
MP@10 of 0.73 and a MAP of 0.694. The Lnu.ltu algorithm
and the tfc.tfc algorithm perform relatively poor with an
MP@10 of respectively 0.48 and 0.47 and a MAP of 0.572
and 0.467, respectively.

In the future we would like to extend the ranking al-
gorithm by employing user-defined weights for query con-
cepts and evaluate its performance with respect to the user-
specified interests. Another research direction that we would
like to pursue is perform a user-based evaluation with re-
spect to the ease of use of the query language.
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