
Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 493

Engineering Semantic Web Information Systems

Richard Vdovjak, Flavius Frasincar, Geert-Jan Houben, and Peter Barna

Department of Computer Science, Technische Universiteit Eindhoven,
PO Box 513, Eindhoven, the Netherlands

{richardv,flaviusf,houben,pbarna}@win.tue.nl

Abstract

Web Information Systems (WIS) use the Web paradigm and technologies to retrieve
information from sources connected to the Web, and present the information in a web or
hypermedia presentation to the user. Hera is a design methodology that supports the design
of WIS. It is a model-driven method that distinguishes integration, data gathering, and
presentation generation. In this paper we address the Hera methodology and specifically
explain the integration model that covers the different aspects of integration, and the
adaptation model, that specifies how the generated presentations are adaptable (e.g. device
capabilities, user preferences). The Hera software framework provides a set of
transformations that allow a WIS to go from integration to presentation generation. These
transformations are based on RDF(S), and we show how RDF(S) has proven its value in
combining all relevant aspects of WIS design. In this way, RDF(S) being the foundation of the
Semantic Web, Hera allows the engineering of Semantic Web Information Systems (SWIS).

Keywords

WIS, SWIS, RDF(S), Semantic Web, XSLT, Hera

Introduction
On the basis of its number of users and the attention it attracts, it is fair to say that the World
Wide Web is the most popular source of information. With its overwhelming success and its
considerable influence on the way in which we exchange information, some compare it to
Gutenberg's invention of the printing press. Computer applications make information
available for a very diverse audience on different platforms worldwide and 24 hours a day. In
this context of the Web, the nature of information systems has changed.

Early applications on the Web were mainly applications that presented data in terms of
carefully authored hyperdocuments. The author hand-crafted a static collection of pages and
links between these pages in order to convey information to the users. Since more and more
data sources get connected to the Web, more information has become available and we see
that the typical Web application is now data-intensive. The application uses for example data
generated from databases in order to deliver the right information to the user. This trend has
changed the notion of information system in the sense that a modern professional information
system has become a web application: a Web Information System (WIS), as introduced by
Isakowitz et al. (1998), uses the Web paradigm (and technologies) to retrieve information
from the available sources and deliver it to the users.

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 494

Typical for the spirit of the Web is that a WIS needs to bridge the gap between a collection of
heterogeneous and dynamic data sources and a group of users with different preferences using
different platforms for accessing the information. This aspect of WIS makes the early
proposals for designing and implementing web applications not applicable anymore.
Developing a hyperdocument typically meant ad-hoc programming and a mix of content and
presentation design. The data-intensive nature of a WIS requires a more rigorous
development process. One reason is that the one-size-fits-all approach is not suitable for
delivering information at run-time to different users with different platforms (e.g. PC, PDA,
WAP phone, WebTV) and different network connections (e.g. dial-up modem, network
copper cable, network fiber optic cable).

This paper follows up on the model-driven approach of Hera described in Frasincar at al.
(2002) and introduces the transformation software that builds the heart of the hypermedia
presentation generation process. These transformations help to generate step-by-step the
hypermedia presentation for the data requested by the user. Having chosen RDF(S) (Lassila
and Swick 1999; Brickley and Guha 2003) as the primary format for the data to be
transformed, a nice advantage is that it is easy to re-use parts of the data transformation
process in connection with other (outside) components, allowing this presentation generation
software to be modularly combined with other software and/or data. Moreover, the paper
specifies how ontologies expressed in RDF(S) help in the entire process of integrating and
retrieving data and generating presentations. With the central role for RDF(S) we are building
first Semantic Web Information Systems (SWIS).

Figure 1. Integration and data gathering

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 495

Hera Methodology
The main target of the Hera project is to provide support for WIS design and implementation.
A typical WIS generates a hypermedia presentation from data that is gathered as a response to
a user query from several, possibly heterogeneous, data sources. This entire process of
retrieving data and presenting it in hypermedia format needs to be specified during the design
phase and the WIS has to be programmed in such a way that it can automatically execute that
specification.

Figure 2. Presentation generation

Hera's approach adopts the principle of separation of concerns and builds the application
model on top of the conceptual model. This facilitates model-driven transformations to
populate the model of the application with the retrieved data. The Hera methodology
distinguishes two principal phases each consisting of several different data transformations
that are necessary to generate the hypermedia output in response to a user query.

• integration and data gathering (depicted in Figure 1)

• presentation generation (depicted in Figure 2)1

1 In these figures the ellipses denote the transformations (in XSLT or Java), and the squares denote models or
data. The shapes in grey denote application-independent items, the shapes in white with bold lines denote
application-dependent items, while the others are query-dependent items.

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 496

RDF(S) is the main format used in both of these phases. One of the reasons for choosing
RDF(S) is that it is a flexible (supporting schema refinement and description enrichment) and
extensible (allowing the definition of new resources/properties) framework that effectively
enables web application interoperability.

Related Work
Most of the web engineering approaches do not consider adaptation, as opposed to what is the
case in our Hera methodology. We note that models like AHAM (De Bra et al. 1999) or
MRM (Koch and Wirsing 2002) consider adaptation, but only in the context of adaptive
hypermedia documents: the generation of hypermedia presentations in WIS poses different
requirements. As notable exceptions among the web engineering approaches we mention
XAHM (Cannataro et al. 2002), an XML-based methodology, UWE (Koch et al. 2001), a
UML-based methodology, and XWMF, an RDF-based modeling framework. Given its RDF-
based nature we address XWMF here in more detail.

The eXtensible Web Modeling Framework (XWMF) (Klapsing and Neumann 2000) consists
of an extensible set of RDF schemas and descriptions to model web applications. The core of
the framework is the Web Object Composition Model (WOCM), a formal object-oriented
language used to define the structure and content of a web application. WOCM is a directed
acyclic graph with complexons as nodes and simplexons as leaves. Complexons define the
application's structure while simplexons define the application's content. Simplexons are
refined using the subclassing mechanism in different variants corresponding to different
implementation platforms. While Hera provides both a modeling framework and a
methodology for developing web applications, XWMF appears to be only a modeling
framework.

Integration and Data Gathering
The main task of this phase is to connect the conceptual model with several autonomous
sources by creating channels through which on request the concepts from the conceptual
model will be populated with data. This involves identifying the right concepts occurring in
the source ontologies and relating them to their counterparts in the conceptual model. Note
that as opposed to classical database schema integration we do not aim at integrating all
source concepts, but rather select only those that are relevant with respect to the defined
conceptual model.

Running Example
The running example used throughout the paper describes the design of a WIS serving as a
virtual art gallery that allows visitors to create on-the-fly exhibitions (browseable
presentations) featuring their favorite painters, paintings, and painting techniques. These are
assembled on demand, based on the visitor's query, from the exhibits coming out of different
(online) museums and annotated with relevant descriptions from an online art encyclopedia.
All this data is offered from a single entry point, semantically represented by the conceptual
model.

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 497

The conceptual model (CM) provides a uniform semantic view over multiple data sources.
The CM serves as an interface between data gathering and presentation generation. The CM
is composed of concepts and concept properties that together define the domain ontology.
There are two types of concept properties: concept attributes which associate media items to
the concepts and concept relationships that define associations between concepts.

Figure 3 presents the CM of our example. It defines a domain ontology composed of five
concepts and three concept relationships together with their inverse counterparts. Each
concept has specific concept attributes associated.

ArtifactTechnique Creator

Painting

pi
ct

ur
e

Image

biography

Integer

String

Conceptual Model (cm)

year

String

Painter

String

String

String

xy property "xy"
subPropertyOf
subClassOf

exemplified_by

exemplifies

ex
em

plif
ies

tname

aname

aname
created_by

creates

painted_by

paints

Figure 3. Conceptual model

Integration
The Hera framework provides the designer with an integration template that takes a form of a
predefined integration model / ontology. During the integration phase the designer tailors this
predefined model by extending it to meet the application specifics. This model is
subsequently instantiated. This instantiation effectively establishes mappings between the
concepts from the CM and those from the data sources. The process of specializing and
instantiating the integration model is performed only once, prior to the user asking the query.
Figure 1 (top) depicts the sequence of the design steps involved in the integration phase.

In our previous work (Vdovjak and Houben 2001, 2002) we discussed how to overcome the
syntactic heterogeneity of different source formats by introducing a layered approach starting
with a layer of wrappers. In this paper we focus on the issues regarding the semantic
heterogeneity. Disregarding the issue of syntactical differences, we consider for integration
only those sources that are capable of exporting their schema in an RDFS based ontology and
their data upon request (an RQL query) in RDF. In other words, we assume that each source
offers its data on the Semantic Web platform providing RQL (Karvounarakis et al. 2001)
query services.

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 498

Art Encyclopedia
Art Encyclopedia (ae)

nam
e

ArtTechniqueLiteral

Literal

title

description

Artist

Literal

u
s

e
d

T
e

c
h

n
i

q
u

e

biography

ArtPiece

Literal
title au

thor

Literal date

Literal

xy property "xy"
subPropertyOf
subClassOf

Art Catalogue (ac)

Exhibit

VisualArt

Music Piece

AudioArt

author

Painting

Literal
Literal

Movie
Photo

Literalexhibited

Literalvisualized

creationDate
title

Literal

Figure 4. Integrated sources

It is often the case on the Web that the information is duplicated and offered from several
sources. We group such sources into semantically close clusters and provide a means to order
them dynamically within a cluster, based on several notions of quality introduced by the
designer. Sources within a cluster do not necessarily have the same structure but should
provide approximately the same semantic content.

In our example we use two such sources/clusters to fill the CM with data. The source
ontologies describing schemas of these sources are presented in Figure 4. The first source is
an online encyclopedia providing data about different art pieces, offering their title, date of
creation, author, used technique etc. This source yet rich in content is purely text-based. So if
we want to obtain an actual image of a painting we have to consult the second source. This
source represents an online multimedia catalogue of exhibits of different kinds including their
digitalized versions. Note the abbreviated names in parentheses, which denote different
namespaces that later will uniquely identify the sources in the integration model.

Integration Model

The integration model (IM) addresses the problem of relating concepts form the source
ontologies to those from the CM. This problem can also be seen as the problem of merging or
aligning ontologies. We currently rely on the designer or a domain expert to articulate CM
concepts in the semantic language of sources. What we offer the designer, is an integration
ontology by instantiating which he specifies the links between the CM and the sources.

The integration model ontology (IMO) depicted in Figure 5 is a meta-ontology describing
integration primitives that are used both for ranking the sources within a cluster and for

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 499

specifying links between them and the CM. The IMO is expressed in RDFS allowing the
designer to tailor it for a particular application. The main concepts in the IMO are
Decoration and Articulation.

Integration Model
Specialization

Integration
Model Ontology

ReproductionQuality

ResponseTime

Decoration

source

Articulation To

Fromvalue

Literal

com
pare

Comparator

PathExpression
starts

Node

rdfs:Resource

Edge

rdf:Property

begins

ends

starts ToNode

starts FromNode

PrimaryNode

ProcInstruction

Transformer

Literal2String

Literal2Image

xy property "xy"
subPropertyOf
subClassOf

backtrack

follow

target

applies

obtainedFrom

transformedBy

id
ByU

RI

srcAddress

idByValue

Literal

Figure 5. Integration model ontology and a specialization

Decorations serve as a means to label “appropriateness” of different sources (and their
concepts) grouped within one semantically close cluster. By having a literal property value
they offer a simple way of ranking otherwise equivalent sources from several different points
of view. There are some general decoration classes that are predefined in the framework (e.g.
ResponseTime). However, which ordering criteria are of interest depends mostly on the
application. That is why the concept of Decoration is supposed to be extended by the
designer. In this way we allow the designer to capture in the IM his (mostly background)
knowledge regarding the sources. For instance in our painting gallery example sources in the
catalogue cluster are graded based on the reproduction quality of the digitalized paintings
they offer. Hence the ReproductionQuality decoration is introduced as shown in Figure 5
(bottom).

Articulations describe actual links between the CM and the source ontologies and clarify also
the notion of the concept's uniqueness, which is necessary to perform joins from several
sources. Before we explain the concept of Articulation we need to introduce the notion of a
path expression.

A path expression is a chain of concepts (represented by the class Node) connected by their
properties (represented by the class Edge). If the property has the given node as its domain
(in other words we follow the arrow in the RDF graph) we connect them with the follow

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 500

meta-property. If the property has the given node as its range (going against the arrow in the
graph), we connect the two by the backtrack meta-property. This allows us to define inverse
relationships even in the case when they are not present in the source ontologies.

Each path expression starts with a link to PrimaryNode which is a special node that can be
uniquely identified either by a URI (idByURI) or by value (idByValue). The first points to a
resource whose URI serves as an ID, the second points to a property (the Edge type) the
value of which serves as an ID.

Each articulation contains two path expressions: the target path expression To pointing into
the CM and the path expression called From pointing to a source (note the srcAddress
property, value of which is the source URL). The target path expression contains nodes of
type -ToNode that extends the Node with two properties: obtainedFrom and producedBy.
The first links this node to its counterpart in the From path expression, the second points to a
converting processing instruction called Transformer, which is called by the mediator to
transform the source to the target. Processing instructions are resources containing a piece of
Java code, an XSLT transformation, an RQL query or a combination of those. They are used
by the mediator for changing and comparing values. Some general processing instructions are
provided by the framework (e.g. the Literal2String transformer); those that are application-
dependent are introduced in the specialization of IMO by the designer (e.g. the
Literal2Image transformer).

d 1 _ 1 0.5

d 1 _ 2 v a l u e

a 1 _ 1

a 1 _ 2

0.5

v a l u e

p e _ t o 1

p e _ f r o m 1

star ts c m : T e c h n i q u e

ae :A rtT e c h n i q u e

fo l l ow

fo l low

c m : t n a m e

ae:t i t le

e n d s

endsL L itera l

p e _ t o 2

p e _ f r o m 2

s t a r t s
c m : T e c h n i q u e

ae :A rtT e c h n i q u e

fo l l ow cm:exem p lified_by

a e : u s e d T e c h n i q u e

e
n

d
s

cm:Ar t i f ac t

c m : A r t P i e c e

i dByV a l u e

idByV a l u e

S tr ing

d 2 _ 1 0.9

a 2 _ 1

v a l u e

p e _ t o 3

p e _ f r o m 3

star ts c m : P a i n t i n g

ac :Pa in t ing

cm:p i c tu r e

ac :v i sua l ized L i tera l

I m a g e

c m : a n a m e

ac:t i t le

e n d s

idByV a l u e

idByV a l u e

e n d s L

ob ta inedFromob ta inedFrom

source

t a r g e t

t a r g e t

source

star tsapp l ies

app l ies

app l ies

ob t a inedFrom ob ta inedFrom
star t s

ob t a inedFromob ta inedFrom
t a r g e t

source

b e g i n s

star ts

b a c k t r a c k

fol low

follow

srcA d d r e s s

ht tp : / /www. . . ae

s rcA d d r e s s

ht tp : / /www. . . ac

s rcA d d r e s s

ht tp : / /www. . . ae

Figure 6. Articulations in the integration model instance

Integration Model Instance

The integration model instance is produced by the designer by instantiating the IMO. Even
though it is an ontology instance, it deals with the sources and the CM at the schema level,
i.e. it makes statements about their concepts, not their instances. Figure 6 shows three
articulation examples.

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 501

The first is a simple articulation linking the cm:Technique and its property cm:tname with
their counterparts from the art encyclopedia source. The prime nodes are defined by the value
of the labeling properties: cm:tname and ae:title.

The second articulation defines cm:exemplified_by. There is no direct counterpart for this
relationship in the art encyclopedia, however there exists its reverse called
ae:usedTechnique. This relationship is reached in the from path by means of the
aforementioned backtrack meta-property.

The third articulation maps the concept cm:Painting and its property cm:picture with their
counterpart from the art catalogue. It also defines that each painting is uniquely identified by
the value of the property cm:aname. Note that these articulations were simplified in the
sense that the links to the processing instructions (i.e. transformers that transform source
values into the target values) are omitted.

Figure 7. User query and its extension

Data Gathering
While the integration phase (instantiating the IM) is performed only once, prior to the user
asking the query, the data gathering phase is performed for every query. In this phase the
query is extended and split into several sub-queries which are then routed to the appropriate
sources. Subsequently the results are gathered and transformed into a CM instance. Figure 1
shows the dataflow of this phase with three processing blocks involved: the query extension,
the mediator, and the result extension.

In the sub-phase of query extension the RQL user query, an example of which is depicted in
Figure 7 (top), is extended to contain all relevant data, which is used by the presentation
generation phase. The extension algorithm traverses the CM from a given concept(s)
(X:Technique) and adds all concepts and/or literal types that can be reached by following
property edges in the CM graph. Figure 7 (bottom) depicts the result of the query extension
for the mentioned user query.

In the sub-phase of data mediation the mediator finds an answer to the extended query by
consulting the available sources based on the integration model instance. The mediator takes
the extended query as its input and proceeds as follows: for every variable occurring in the -
Select clause of this query it locates an articulation(s) which contains this variable. From this

select X from {X:Technique}tname{Xtname} where Xtname = "Chiaroscuro"

select X, Y, Z, Xtname, Xdescription,
 Yaname, Yyear, Ypicture, Zcname, Zbiography
from {X:Technique}tname{Xtname},

 {X}exemplified_by{Y}.created_by{Z}, {X}tname{Xtname},
 {X}description{Xdescription}, {Y}aname{Yaname},
 {Y}year{Yyear}, {Y}picture{Ypicture}, {Z}cname{Zcname}
 {Z}biography{Zbiography}

where Xtname = "Chiaroscuro"

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 502

articulation the mediator determines the name of the concept occurring in the source and also
the way how to obtain that concept, i.e. the necessary transformer(s) for the concept values,
the address of the source, and the path expression to the concept of interest within the source
schema. This path expression can be seen as a query executed on a particular source. Hence,
consulting articulations in the IM instance in fact means query unfolding as it is known in the
Global-As-View (GAV) approach.

However, as opposed to GAV that requires changes in the definition of the global schema
each time a new source is added or removed, our framework in this scenario changes only the
IM instance (new articulations are added or removed). From this point of view, we keep the
CM independent from the sources, similarly to Local-As-View (LAV). Details concerning
GAV and LAV approaches are beyond the scope of the paper and we refer the interested
reader to a comparison presented in Ullman (1997).

If there are more articulations found for a given variable, that means there are several
competing sources offering values for this variable. In this case the decorations attached to
each articulation are used to decide the order in which the sources will be consulted.

After the sources are consulted, i.e. appropriate RQL queries are routed to them, the mediator
waits for the response. Subsequently, it collects the results and assembles them into an
answer that consists of a collection of tuples (in RDF terminology a bag of lists).

The last subphase is the result extension. The answer provided by the mediator is a valid
response to the RQL query that was asked, however it is not yet a CM instance. The result
extension module transforms the “flat” collection of tuples by adding the appropriate
properties into a valid RDF graph that adheres to the CM. This (query-dependent) CM
instance serves as a basis for the presentation generation phase.

Presentation Generation
In the presentation generation the retrieved data is transformed in a hypermedia presentation
suitable for the user platform and for the user preferences. The presentation generation is
composed from three steps: the application model generation, the application model instance
generation, and the presentation data generation.

Application Model
The application model (AM) describes the navigational aspects of the hypermedia
presentation. AM is composed of slices and slice properties that together define the
navigation ontology. A slice is a meaningful presentation unit of some media items. These
media items may originate from different CM concepts. There are two types of slice
properties: slice composition, a slice encloses another slice, and slice navigation, a slice is the
anchor of a hyperlink pointing to another slice. The most primitive slices are containing only
a media item. Higher-level slices contain (using slice composition) other slices. At the top of
the composition hierarchy are top-level slices that correspond to pages to be present on the
user's display.

The AM distinguishes several types of slice properties: owner that associates a slice to a
concept, slice-ref which denotes slice composition, link represents slice navigation, and
media refers to the actual media.

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 503

A relationship-ref property is attached to slice-ref to make explicit the concept relationship
involved in the association. From the CM one can derive new concept relationships by
composing the existing ones. Using these new concept relationships as a value for the
relationship-ref property enables the embedding in the same slice of media items coming
from concepts not directly linked in the CM. The class Link has two properties source and
destination referring to the hyperlink anchor and hyperlink target respectively. Additionally,
the AM defines the SetOfSlices and SetOfLinks classes to be used for one-to-many
associations between concepts.

Figure 8 presents the AM for our running example. It defines a navigation ontology
composed of two slices and two slice navigation properties. Since the relationship between
technique and painting concepts is one-to-many we introduced a set of links when
navigating from technique to painting.

Figure 8. Application model

In order to realize adaptation one can associate appearance conditions to slice references
(Frasincar and Houben 2002). The appearance conditions enable two kinds of AM adaptation:
conditional inclusion of fragments (slices in our context) and link hiding (Brusilovsky 2001).
A link is hidden when its destination slice has an invalid condition. The slice appearance
conditions use attribute-value pairs from the user/platform profile described below or from
the user model details of which are outside of the scope of this paper. Conditions that use the
user/platform profile elements (prefix prf) specify adaptability and conditions that use the
user model elements (prefix um) specify adaptivity. Adaptability is done prior to the
presentation browsing while adaptivity is done dynamically as the user model changes during
the presentation browsing2. The user/platform profile is static information (prior to
presentation generation) while the user model represents dynamic information (generated on
the fly as the user is browsing the presentation). Figure 9 gives an example of a condition for
adaptability and two conditions for adaptivity.

2 Here we mainly focus on adaptability leaving the details concerning adaptivity out of scope of this paper.

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 504

Figure 9. Adaptation (adaptability/adaptivity) in the application model

The user/platform profile defines the device (display) capabilities and the user preferences.
From Figure 2 one can see that the user/platform profile is an RDF description that
instantiates two CC/PP vocabularies. One of the main advantages of RDF(S) is the ability to
reuse existing RDFS vocabularies. UAProf is such a vocabulary developed by WAP Forum to
model device capabilities (e.g. ImageCapable attribute). A new CC/PP vocabulary was
created to model user preferences (e.g. ExpertiseLevel attribute).

Application Model Generation
In the application model generation step the AM is converted to an AM template. This step
contains two substeps: the application model unfolding that generates the AM template and
the application model adaptation that executes the adaptability specifications on the AM
template.

In the application model unfolding the AM template is generated by an XSLT stylesheet. The
AM template represents the structure of an AM instance (RDF) based on the AM schema
(RDFS). Such a template will ease the specification of an XSLT stylesheet used to convert a
CM instance to an AM instance. By unfolding the AM we mean repeating the process of
adding properties inside the subject classes until slice references or media items are reached.
In this way one obtains an AM template that will be filled later on with appropriate instances.

The AM template needs to be adapted based on the specified slice appearance conditions. In
this substep the AM adaptability is executed by an appropriate stylesheet. This stylesheet has
two inputs: the AM template and the user/platform profile. The user/platform attributes are
replaced in the conditions by their corresponding values. The slices that have the conditions
not valid are discarded and the hyperlinks pointing to these slices are disabled. For the
example depicted in Figure 9 the picture (primitive) slice will be suppressed for a user using
a WAP phone (in the user/platform profile prf:ImageCapable=No).

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 505

Application Model Instance Generation
In the application model instance generation the AM is instantiated with the retrieved data.
This step is composed of two substeps: the application model instance transformation
generation and the application model instance generation.

The application model instance transformation generation builds the transformation stylesheet
that will convert a CM instance to an AM instance. This step is using an XSLT stylesheet that
will generate another XSLT stylesheet. One should note that an XSLT stylesheet is a valid
XML file that can be produced by another XSLT stylesheet. This technique was also
successfully used in the previous version of Hera which was XML-based (Frasincar and
Houben 2001). The previously adapted AM template has all the information needed to
specify such a transformation (remember the slice owner property that associates a slice to a
concept). The implemented algorithm is straightforward: instantiate all slices for all the
corresponding retrieved concept instances and each time a slice-ref is encountered refer to its
identifier. We used the following name convention: a slice instance name (e.g.
Slice.painting.main_ID1) is obtained from the slice name (e.g. Slice.painting.main)
concatenated with the suffix (e.g. ID1) of the associated concept instance identifier (e.g.
Painting_ID1).

In the application model instance generation the CM instance is converted to an AM instance.
The XSLT stylesheet obtained in the previous substep is applied to the CM instance to yield
an AM instance. As opposed to the previous transformations, this stylesheet will operate for
inputs and outputs that are both query dependent. For each query Hera will dynamically
instantiate the AM with the query result, i.e. a CM instance.

Figure 10. Hypermedia presentation in different browsers

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 506

Presentation Data Generation
The presentation data generation produces code specific for the user's browser. Figure 10
gives three snapshots of the hypermedia presentations generated for a HTML, WML, and
SMIL browser. For each type of serialization a specific stylesheet is used. The stylesheets
used for the HTML and SMIL use the ability of XSLT 2.0 (Kay 2002) to generate multiple
outputs. In the code generation we used a media directed translation scheme: for each media
type appropriate code is generated. For example, strings were represented in normal font and
integers in italic font. For the WML browser images are not present and one may need to
scroll down in order to view the full text. A back button similar to the back button from
existing HTML/SMIL browsers was implemented for the WML serialization.

Conclusions
Taking in consideration the Web evolution we extended the Hera methodology for the design
of Semantic Web Information Systems. Such information systems make use of Semantic Web
technology to support web application interoperability. Hera is a model-driven methodology
that uses different models (e.g. integration model, application model, adaptation model) for
different aspects involved in the design of web information systems. This paper focuses on
the design of the integration model and the adaptable/adaptive application model in order to
support an automated process of generating adaptable/adaptive hypermedia presentations
from different sources. As a web ontology language is still in its infancy we chose to
represent Hera models in RDF(S) which is the foundation of the Semantic Web. In order to
represent the different Hera models we provided appropriate RDF(S) extensions. The
RDF/XML model serialization enabled the use of XSLT stylesheets as transformation
specifications between the different model instances. This approach proved to be satisfactory
if one does not need to use the RDF(S) inference rules in the transformation specification. As
future work we plan to use (depending on their existence): a mature web ontology language
for representing the Hera models, a web ontology-aware (or at least an RDF(S)-aware)
transformation language to be used for the specification of the Hera transformations and an
execution engine for this transformation language.

References
Brickley, D & Guha, RV (2003), ‘RDF Vocabulary Description Language 1.0: RDF Schema’,

W3C Working Draft, http://www.w3.org/TR/rdf-schema/.

Brusilovsky, P (2001), ‘Adaptive Hypermedia’, User Modeling and User-Adapted
Interaction, vol. 11, no. 1-2, pp. 87-110.

Cannataro, M, Cuzzocrea, A, Mastroianni, C, Ortale, R & Pugliese, A (2002), ’Modeling
Adaptive Hypermedia with an Object-Oriented Approach and XML’ in Proceedings of
the Second International Workshop on Web Dynamics.

De Bra, P, Houben, GJ & Hongjing, W (1999), ‘AHAM: A Dexter-based Reference Model
for Adaptive Hypermedia’ in Proceedings of the 10th ACM Conference on Hypertext
and Hypermedia, pp. 147-156.

Frasincar, F & Houben GJ (2001), ‘XML-Based Automatic Web Presentation Generation’ in
WebNet 2001 World Conference on the WWW and Internet, pp. 372-377.

Vdovjak R, Frasincar F, Houben GJ & Barna P Engineering SWIS

7th Pacific Asia Conference on Information Systems, 10-13 July 2003, Adelaide, South Australia Page 507

Frasincar, F, Houben, GJ & Vdovjak, R (2002), ‘Specification Framework for Engineering
Adaptive Web Applications’, The Eleventh International World Wide Web Conference,
Web Engineering Track, http://www2002.org/CDROM/alternate/682/

Frasincar, F & Houben GJ (2002), ‘Hypermedia Presentation Adaptation on the Semantic
Web’ in proceedings of the Adaptive Hypermedia and Adaptive Web-Based Systems
Second International Conference, (AH’02), vol. 2347, pp. 133-142.

Isakowitz, T, Bieber, M & Vitali, F (1998), ‘Web Information Systems’, Communications of
the ACM, vol. 41, no. 1, pp. 78-80.

Karvounarakis, G, Christophides, V, Plexousakis, D, Alexaki, S (2001), ‘Querying RDF
Descriptions for Community Web Portals’ in 17iemes Journees Bases de Donnees
Avancees,pp. 133-144.

Kay, M (2002), ‘XSL Transformations (XSLT) Version 2.0’, W3C Working Draft,
http://www.w3.org/TR/xslt20/.

Klapsing, R & Neumann, G (2000), ‘Applying the Resource Description Framework to Web
Engineering’ in Proceedings of the First International Conference on Electronic
Commerce and Web Technologies, vol. 1875, pp. 229-238.

Koch, N, Kraus, A & Hennicker, R (2001), ‘The Authoring Process of the UML-based Web
Engineering Approach’ in Proceedings of the First International Workshop on Web-
Oriented Software Technology.

Koch, N & Wirsing, M (2002), ‘The Munich Reference Model for Adaptive Hypermedia
Applications’ in Proceedings of the Adaptive Hypermedia and Adaptive Web-Based
Systems Second International Conference, vol. 2347, pp. 213-222.

Lassila, O & Swick, R.(1999), ‘Resource Description Framework (RDF) Model and Syntax
Specification’, W3C Recommendation, http://www.w3.org/TR/REC-rdf-syntax/.

Ullman, JD (1997), ‘Information integration using logical views’ in Proceedings of the 6th
International Conference on Database Theory, (ICDT'97), vol. 1186, pp. 19-40.

Vdovjak, R & Houben GJ (2002), ‘Providing the Semantic Layer for WIS Design’ in
Proceedings of the 14th International Conference on Advanced Information Systems
Engineering, (CAiSE’02), vol. 2348, pp. 584-599.

Vdovjak, R & Houben, GJ (2001), ‘RDF-Based Architecture for Semantic Integration of
Heterogeneous Information Sources’ Design’ in Proceedings of the International
Workshop on Information Integration on the Web.

