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Abstract. Web pages are designed to be read by people, not machines.
Consequently, searching and reusing information on the Web is a difficult
task without human participation. Adding semantics (i.e meaning) to a
Web page would help machines to understand Web contents and better
support the Web search process. One of the latest developments in this
field is Google’s Rich Snippets, a service for Web site owners to add se-
mantics to their Web pages. In this paper we provide an approach to auto-
matically annotate a Web page with Rich Snippets RDFa tags. Exploiting
several heuristics and a named entity recognition technique, our method
is capable of recognizing and annotating a subset of Rich Snippets’ vocab-
ulary, i.e., all attributes of its Review concept, and the names of Person and
Organization concepts. We implemented an on-line service and evaluated
the accuracy of the approach on real E-commerce Web sites.

1 Introduction

The World Wide Web provides a huge amount of information that humans can
comprehend. Computers on the other hand have almost no understanding of
the information contained in a Web page. To this aim, the Semantic Web [1], an
extension to the World Wide Web in which information is defined semantically
(as concepts with meaning) instead of presented visually, tries to close this gap.
It will allow the Web to match requests of people and machines to Web content
in a more accurate way. Although it may unfold in interesting new function-
ality involving finding, sharing, and combining information on the Web, wide
adoption of the Semantic Web is yet to be waited for.

One of the latest developments in this field is Google’s Rich Snippets [2], a
service for Web site owners to add semantics to their (existing) Web pages using
the Google’s vocabulary [3] (i.e. a list of concepts and their attributes). Although
the existing vocabulary is limited to a small number of simple concepts (i.e
Person, Review, Review Aggregate, Product, and Organization) it is likely only a
matter of time before new concepts will be introduced. Fig. 1 shows an example



of a Rich Snippet in Google’s search results. When a Web site uses Rich Snippets
on its pages, recognized concepts will be highlighted in Google’s search results
using visual cues and a brief display of the concepts’ attributes.

Fig. 1. An example of a Review Aggregate Rich Snippet in Google search results.

Since a highlighted and more explanatory result will stand out in long uni-
form lists of search results, it is hoped that this feature will incentivize Web
site owners to start using Rich Snippets on their Web sites. Future usage of an-
notated Web pages is not limited to displaying Rich Snippets in search results.
It is only a small step to introduce more advanced search capabilities. For ex-
ample, you might search for Web pages about the company “Philip Morris” or
the programming language “Java”, while ignoring Web pages about unrelated
entity types (such as persons and geographical regions) with the same name.
Another example would be to query Google for products sold in a certain price
range with positive reviews.

The success of Rich Snippets depends on the support of search engines on
one hand, and the coordinated adoption by a loosely-knit community of Web
site owners and software companies on the other hand. Although Rich Snip-
pets were introduced quite recently (i.e. May 12, 2009), it appears that Google
seriously commits itself to a future of semantic search. For Web site owners
however, adopting Rich Snippets still requires a considerable effort. If a Web
site owner retrieves their information as structured data from a database, anno-
tating pages with Rich Snippets is a simple exercise, as it is sufficient to identify
its concepts in generated pages and add attributes to the generated HTML out-
put. Fig. 2 shows an example of semantic annotation of a Review entity in a Web
page. It is supported by the RDFa [4] format.

<span xmlns:v="http://rdf.data-vocabulary.org/#" typeof="v:Review">
<span property="v:itemreviewed">Komala Vilas</span>
<span property="v:reviewer">Meenakshi Ammal</span>
<span property="v:rating">3.7</span>
<span property="v:dtreviewed">1st April 2005</span>
<span property="v:summary">Best south Indian vegetarian food in South Bay</span>

</span>

Fig. 2. A Rich Snippets annotation of a Review entity, using the RDFa format.



Nevertheless, automatic pre-generation of annotations is not always possi-
ble. Problems appear for instance when information is not available in struc-
tured database form, or when the Web site owner does not have full control
over the Web page generation process. Other problem instances arise if the site
owner must start from static documents such as those originating from legacy
software systems or OCR methods. Semantically annotating these Web pages
may then become a matter of time-consuming manual labor.

In this paper, we introduce a method to read existing Web pages and auto-
matically annotate them with the necessary RDFa attributes defined by Google
Rich Snippets. We have explored recognizing the Rich Snippets concepts Re-
views, People and Organizations. Using algorithms based on heuristics and Named
Entity Recognition techniques, we have implemented a tool that takes a URL
as an input, and outputs a Google Rich Snippets-compliant Web page. A Web-
based version of the tool is available on-line1.

The remainder of this paper is organized as follows. Section 2 introduces
the state of the art. Section 3 illustrates an architecture of reference to pro-
vide a functional global view of the approach. Section 4 describes in detail the
adopted heuristics and step-by-step the annotation process. Section 5 discusses
the implementation of our framework and evaluates the performance of our
algorithm. Finally, in Section 6 we sketch conclusions and future work.

2 State of the art

Named Entity Recognition. Our work is related to a research field called Named
Entity Recognition (NER). NER aims at processing natural text and identify-
ing certain occurrences of words or expressions as belonging to particular cat-
egories of named entities [5]. These named entities belong to predefined entity
types (categories) such as persons, organizations, locations, expressions of time,
et cetera. Although most techniques rely on gazetteers (lists of names of people,
organizations, locations, and other named entities), NER is not simply a matter
of searching text for known words. Such a word list would be enormously long
and unfeasible to compose. Moreover, certain words can belong to multiple con-
cepts of different entity types. The text “Philip Morris” might be in the list of
names as well in the list of companies, leading to an ambiguity issue. Therefore,
NER involves more advanced techniques.

Most approaches to NER problems can be classified as statistical, grammar-
based, or hybrids of these two approaches. Statistical systems typically make
use of annotated training data from which word lists are generated and fea-
tures are selected. The classifier then uses a statistical model to compute the
probability of a word belonging to one of the output classes based on its con-
text. As mentioned above, NER usually depends on extensive gazetteers. How-
ever, there are researchers that argue against the use of large gazetteers. Par-
ticipants in the Named Entity recognition competition (part of MUC-6) report

1 http://annotator.lfms.nl/



that gazetteers did not make a significant difference to their systems [6,7]. In [5]
the authors avoid large gazetteers by combining rule-based grammars with sta-
tistical (maximum entropy) models. They show that it is sufficient to use rel-
atively small gazetteers of well-known names, rather than large gazetteers of
low-frequency names.

Source code analysis. Our project makes use of NER techniques to recognize
and label the names of Person and Organization entities, two basic concepts from
Google’s Rich Snippets vocabulary. However, not the recognition of every en-
tity that is in the Google vocabulary can be reduced to a NER problem. Review
text bodies for example won’t let themselves be captured by applying NER. To
be able to automatically recognize reviews on a Web page, a set of rules or pat-
terns to extract a review has to be found. This so-called ‘pattern-matching’ on
a Web page can be done either by inspecting the source code of the page or by
analyzing linguistic properties.

Ranking text sections on a Web page in terms of importance is an impor-
tant topic, popularized by search engines like Google, which uses HTML tags
such as h1, h2, et cetera to determine the relevance of information found on
a Web page. This simple heuristic is also useful to find summaries and titles
of text bodies. While actual algorithms used by search engine companies re-
main unpublished, we have implemented a tag ranking heuristic based on cur-
rent assumptions by search engine specialists [8]. An example of more exten-
sive source code analysis is the work of De Virgilio and Torlone [9]. In this
study, the authors reverse engineer data that is contained in (data-intensive)
Web pages by analyzing the structure of that page and how it would be visu-
ally formatted on a screen. The underlying idea is that semantically identical
data is mostly displayed in visually grouped object blocks. Another example
in this field is recognizing a postal address from a Web page. An interesting
algorithm, based on first assessing visual similarity of Web page elements and
then using a grammar-based approach, is sketched in [10]. This method could
be helpful in detecting postal addresses of Person and Organization entities.

Search engines. Google Rich Snippets is not the only service aimed at inte-
grating semantic information into search engines. A similar initiative is Yahoo!
SearchMonkey, a service that also traverses Web sites to find RDFa or Micro-
formats annotations for concepts such as Reviews, Persons and Organizations.
Additionally, it allows Web site owners to create applications that build “en-
hanced results” using this information [11]. Fortunately, Google Rich Snippets
and Yahoo! SearchMonkey have overlapping vocabularies which both include
the entities recognized by our method, which means that the resulting anno-
tated Web pages can be interpreted by both search engines.

3 An Architecture of Reference

Google Rich Snippets supports a vocabulary concerning Reviews on different
Products, as shown in Fig. 3.



Fig. 3. Vocabulary supported by Google Rich Snippets. Entities and attributes
marked with an asterisk (*) will be annotated by our method.

Our main focus is on recognizing Review entities and their attributes. In par-
ticular our framework is able to annotate the following entities and attributes.
In particular in detail we extract the following subset of entities and attributes
from the vocabulary

REVIEW = (itemreviewed, rating, reviewer, dtreviewed, description, summary)

PERSON = (name)

ORGANIZATION = (name)

Our framework for automatically adding Google Rich Snippets annotations
to a Web page is composed of a number of stages. Fig. 4 sketches an architecture
of reference showing the main steps of our framework and their interdependen-
cies.

The process starts with a Preprocessing step to clean and to make uniform the
(X)HTML code of Web pages. Unfortunately, currently a large number of Web
pages are invalid (more than 50% in some survey [12]) which may not pose a
problem for the human user but makes automatic processing harder. Further,
Web pages can be transmitted in various encodings. All encodings should be
converted to a common format, i.e. UTF-8, in order to allow uniform process-
ing.

Requirements to the algorithm are a high sensitivity (low false negative
rate), good specificity (low false positive rate), and reasonable robustness (i.e.
the ability to be used on a variety of Web pages that do not match the trained
set). Of high importance therefore is the task to choose the parts of a Web page
to investigate. We use the term “hotspot” to identify an area of a page that is —



PageData CleaningHTML

n HotspotsHotspot Finders

LbjNer Tagger Attribute 
Parsers

Reviewness 
Calculator r > r��� ? n Reviews

Hotspot Funnel

n Record 
EntitiesEntity Walker

Annotated Page

Annotation Style

Preprocessing

Identification

Entity Recognition

Fig. 4. Stages of our recognition algorithm, their interdependencies and inter-
mediate products.

before intensive analysis — most likely to be a place of interest (e.g a document
section containing a product review to annotate). To this aim an Identification
step provides heuristics to identify the most relevant hotspots and to filter false
positive portions of page. Then the Entity Recognition phase exploits a named
entity recognition algorithm to extract entities and attributes of pages matching
the portion of Review vocabulary discussed above. Finally the Annotation takes
place supported by RDFa format to model the annotations in the page.

In the following section we will describe in detail the entire process in terms
of both identification of hotspots and entity recognition.

4 Automatic annotation of Web pages

4.1 Hotspot identification

Our need to identify hotspots on a Web page starts first from the necessity to
demarcate recognized entities. A recognized review must have a start and end
location that together span over all its properties. Also, we may want to per-
form transformations or computationally expensive analyses on texts. It is not
necessary to know for sure if a hotspot definitely corresponds to a review: it is



not problematic if we are too eager in recognizing an element, but it is unrecov-
erable if we now skip an element for further processing.

What then, should be considered a hotspot? First and foremost, any page
element that contains a reasonable amount of natural text qualifies as a hotspot.
However, this might miss very short or long elements; therefore we can also
use cues such as HTML name, id and class attributes of elements, or their textual
contents. It is simple to realize that an instance of the concept Review will most
likely have a visual cue to the reader indicating this, or a descriptive element
name on the part of the Web page designer. We can match these naively with
a word list. To discover reviews we look for the terms review and rating.
Other heuristics that can be used to find hotspots are the presence of repeating
element structures, which are an indication of automatically generated content
in a page, or similarity of HTML element id attributes (for instance, a common
prefix or Levenshtein distance). However, we have not pursued these heuristics
in our implementation because the first two tests already gave a very good cov-
erage. After that, we must remove duplicates, as multiple hotspot finders will
likely trigger on the same hotspots. Every hotspot finding measure increments
the “hotness” of a hotspot. This measure is retained for subsequent filtering of
hotspots before further processing.

A large portion of a Web page is limited to non-visual and non-textual items
such as navigation sections, styling information, advertisements, et cetera. To
the human user, these are immediately distinct from textual content, but to au-
tomated systems this may not be so clear. For instance, navigations certainly
contain many terms that turn up in our cue word lists. We therefore introduce
the measure tag ratio for a DOM node, which we define in Equation 1:

t =
LH − LN

LH

(1)

where LH is the total character length of the DOM node and its descendants in-
cluding all the HTML tags; and LN is the character length of all natural text
contained within the node. LH is directly taken from the HTML document,
while LN is constructed by removing all the HTML tags, normalizing whites-
pace characters such as newlines and tabs to single spaces, and then trimming
the output. An example of these measures is presented in Fig. 5.

Fig. 5. Example of LH and LN measures of an HTML fragment.



If a hotspot has a high (near 1) value of t, then the element consists almost
entirely of HTML tags. This is uncommon for textual content, so we should dis-
qualify the element for further processing. A reasonable threshold value tmax

must be determined empirically from test data. At the same time, we want to
stop false positive recognition of too short texts that stand on their own in the
page. For instance, a page title or caption may contain some very on-topic terms,
causing it to be recognized as a hotspot. We will disqualify hotspots that con-
tain less than a minimum amount of natural text, Lmin (number of characters).
In a similar fashion we will be throwing away hotspots that are displayed as
inline (with respect to text) by a browser, i.e., they are part of a natural sen-
tence flow. Examples of these are a or b tags. A hotspot demarcated by these
elements is part of a larger block-level element and is not a distinct page area in
its own right. In these cases, we expect the outer element to be recognized as a
hotspot as well. Since we have multiple methods to find hotspots, we filter next
on “best hotness”. Different Web pages may conform more or less to our differ-
ent hotspot-finding heuristics, but within a single Web page, different entities
of the same type generally have the same hotness measures, especially when
the Web pages are generated automatically. When additional hotspot finders
would be added, this filter step could be changed to require for instance 75%
of the maximum hotness found on the whole page, in order to make this step
more robust. An important property of hotspots for a certain entity type is fi-
nally that they are disjunct. Only one review entity can be an “active” hotspot at
any location in the document. As a Web page document is a tree, this means that
hotspots cannot be contained in each other. For instance, it is thinkable that we
would consider two consecutive page elements to be hotspots, but at the same
time consider their combined parent element a hotspot as well, as it certainly
matches most of the criteria that hold for its descendants. In these cases, we
should throw away all the “super-hotspots” that contain other hotspots, so that
only the most minimal valid hotspots remain. After this stage ends, we have
identified a number of hotspot page elements that may correspond to review
entities. We will now inspect these elements more closely.

4.2 Named entity recognition

In the context of Google Rich Snippets’ vocabulary, NER appears mostly useful
in discovering the names of reviewed items and review authors. Similarly, NER
can be used to discover names of person and organization entities.

We have experimented with adding more knowledge to an existing named-
entity tagger by training it on review texts containing product names. These
product names ideally should form a new entity type for the tagger. Merging
them into an existing model encounters the nontrivial problem of “transfer
learning”, i.e., first training the model on one dataset and then trying to add
more knowledge to the existing model. To update the models of the tagger, we
would have to retrain the tagger from scratch using its original datasets in order
to retain its original usefulness. A complicating feature is that product names
are often not mentioned in natural text portions of Web pages, but rather in



Tag name Importance
h1 100
h2 90
h3 80
h4 70
h5 60
h6 50
strong 10
b 10

Table 1. Relative tag importance. When ranking two tags, only the order of the
tags’ scores is considered. The absolute values are not significant, but are chosen
in a way that more tag rankings can later be added.

separate page sections, which prohibits using natural language-based methods.
From our testing data, it appears that named entity recognition alone is often
not successful to determine names of reviewed items and review authors. The
nature of review texts on the Web is such that often the name of the reviewed
item is not mentioned at all. Therefore, additional heuristics are needed to pro-
vide better coverage for detection of the name of the reviewed item and the
review author. These heuristics may use data from the NER phase, the review
text itself, the Web page source code and its properties such as the page title.

As defined in the Google Rich Snippets summary, reviews have some prede-
fined attributes, such as the reviewed item, summary, rating, date and review author.
In our approach, each of these attributes has a separate attribute parser which
follows its own heuristics.

Summary attribute. Tag ranking is a method that we use to discern the docu-
ment element containing the most important title, heading, or summary of a
page section. We rank element tags first according to their relative importance,
which is modeled as shown in Table 1. If two elements are tied, we rank them us-
ing their position on the page, where higher positioned items have a better rank.
This strategy corresponds to the approach that Google is currently assumed to
use when it ranks the importance of information in a Web page for inclusion in
its search index [8].

Author attribute. The author of a review is often supplied on the page within
the review element. We employ two strategies for finding the author’s name.
First, we walk through the DOM subtree of the review to find any elements
that most likely contain a name or nickname of the review author. We look for
tags with HTML class, id and name attributes matching one of the following
strings:

– author
– username



– reviewer

If this approach does not yield a positive result, we inspect the review text
for named entities of type Person. This entity type has been recognized by the
Named Entity Recognition stage earlier. We expect this approach to be more
error-prone, as for instance other person entities may become incorrectly recog-
nized as the author.

Product name attribute. The product name attribute contains the name of the
reviewed item. During development of the methodology, we found that re-
views on Web sites generally do not contain the name of the reviewed item.
Often, a review Web page contains a variable number of reviews, while the
product name is only mentioned once. As discussed earlier, training a NER
tool to recognize product names as a proper entity class is outside the scope of
this work. Therefore we derive the product name from the Web page title. The
page title often contains unnecessary extra information, such as the name of the
Web site and a descriptor text like “Product reviews”. These texts should not
be present in the product name. Therefore, we remove some strings from the
result:

– variants of the name and the domain name of the Web URL of the Page (e.g.,
amazon, amazon.com, www.amazon.com);

– stop words such as reviews and product;
– separator characters such as : - |

Rating attribute. A pattern matching approach is used to discover the rating
of a review, such as “4 out of 5”. Recognizing ratings can be problematic, as
there is no common standard for their notation; for instance, one site may use
a 10-point numerical scale instead of Rich Snippets’ default 5-point scale, while
another site may use a graphical “stars” definition that usually embeds some
kind of reference in the img src attribute. If the text matches a list of predefined
regular expressions, such as:

– 4.0 out of 5.0
– 4.0 / 5.0

we are able to recognize the rating as well as the scale. If we cannot recognize
the scale, we assume the lowest of a 5-point, 10-point, and 100-point scale, such
that the rating is lower than or equal to the scale maximum. Without resorting
to site-specific hints, it is expected that this approach will likely not be very
robust or generalizable. At the same time, it will be possible to recognize multi-
ple similar attributes within an entity’s boundaries (e.g., two person names or
two date strings), and we need to have a tie-breaking algorithm for which we
currently do not have a method. At the moment, we use the naive strategy of
taking the first occurrence as the most authoritative, but it is likely that there
will be false positives.



Date attribute. The date of an entity can be gathered by using a series of regular
expressions for common date formats. This list of regular expressions is now
focused towards a range of date descriptions found in test Web pages, such as:

– 1-11-2009
– 1 Nov 2009
– November 1st, 2009

This list of date formats might be broadened to include phrases such as “3
months ago”. Note that there are some ambiguities in general date formatting
(“1-11-2009” might be in M-D-Y or D-M-Y notation). Google Rich Snippets does
not pose any requirements to this format, so we simply retain the date as it was
found on the page and leave the ambiguity to the interpreter.

4.3 Reviewness filtering

As we have discussed, the strategy during hotspot determination must be suf-
ficiently eager to provide a wide selection of elements to process using the
methods described above. After we have analyzed the elements further, they
should now be annotated with various semantical attributes. In case an ele-
ment slipped by the hotspot funnel that is however clearly not a review entity,
it will most likely not have attributes such as a rating, date, summary or au-
thor. We use this property to perform a calculation of a review’s “reviewness” r.
This measure corresponds to the number of semantical attributes that have been
recognized, excluding the product name attribute, as that attribute is derived
from the page title and therefore its recognition always succeeds. Any element
not satisfying the basic requirements of a review — in our current model, this
is only the presence of a product name — receives a negative reviewness. If the
basic requirement is met, reviewness starts out at zero, and one point is added
for every semantic attribute that was successfully bound to it. After the calcu-
lation step, there is a final filtering step. Any reviews which do not satisfy a
minimal reviewness of rmin will be ignored. The value of this parameter must
be determined during testing.

4.4 Collecting record-based entities

During the main process of recognizing entities, the named entity recognizer
(NER) has been run on all the reviews. In the final recognition stage, the names
of Person and Organization entities are harvested from the review texts. For
record-based entities (Persons and Organizations), in our current method only
the names of the entities (and not their attributes, such as phone numbers,
postal addresses, et cetera) are discovered. The names of these entities are sim-
ply retrieved from the NER output as we incorporate a NER tagger that sup-
ports these entity types by default.



Fig. 6. Annotation of a Web page using the ‘layout’ annotation style. Review
entities are displayed in yellow; review properties are green (and prefixed with
the property name); person entities are purple; organization entities are blue.

4.5 Annotation

RDFa2 is one of the two supported annotation styles in Google Rich Snippets;
the other is Microformats3. The simpler Microformats style uses HTML class
attributes populated with conventional names for certain properties, which
has the advantage of being usable for Web page formatting and easy to write
for humans. However, these advantages are largely irrelevant for our purpose.
RDFa [4] benefits from RDF, the W3C’s standard for interoperable machine-
readable data. RDFa is considered more flexible and semantically rich than Mi-
croformats [13]. Additionally, Rich Snippets in RDFa allow for extended func-
tionality, such as adding URL links to Rich Snippet properties. Therefore RDFa
is a better choice for meta-data annotation than Microformats.

In addition to RDFa, we found it useful to implement a “layout” annota-
tion style where concept boundaries and attributes are displayed visually using
HTML style attributes. This aids debugging and makes it easier to quickly as-
sess the algorithm’s output on a Web page, as is shown in Fig. 6. We recall that
the attributes of an RDFa-annotated entity must remain within its boundaries
(the element annotated with typeof ). If an entity attribute was defined intrin-
sically, we know its textual position in the source HTML and we will rewrite

2 http://www.w3.org/TR/xhtml-rdfa-primer/
3 http://microformats.org/about

http://www.w3.org/TR/xhtml-rdfa-primer/
http://microformats.org/about


an RDFa tag in place. If the attribute does not correspond to an HTML frag-
ment within the entity (for instance when a product name is derived from the
page title), we will write the RDFa tag at the bottom of the element. Google
Rich Snippets supports annotating graphical ratings by placing class and alt at-
tributes on a rating image. This feature can be used to insert rating meta-data
without affecting the Web page layout, as displayed here:

<img class="rating" src="stars.gif" alt="4 Star Rating: Recommended" />

When parsing the page, Google inspects image elements marked with class
rating and parses the alt tag in an undisclosed way. We choose not to im-
plement this Rich Snippets feature, as using non-standard annotations outside
the RDFa format is detrimental to further automatic processing of the gener-
ated document. In these cases, we do not modify the rating image and inject an
additional RDFa-annotated property at the bottom of the element. Finally, after
annotation, a base hrefHTML tag is injected at the top of the Web page body.
This ensures that the resulting Web page can still be displayed using its original
images and styling, even if the page is now served from a different location.

5 Experimental Results

Benchmark System. The approach was developed into a tool with a PHP front-
end to reach it by Web4. It is composed by three modules implementing the
three main steps discussed above. The cleaning of seriously invalid (X)HTML is
achieved by the PHP’s tidy support. For named entity recognition purposes the
Lbj-Based Named Entity Tagger (LbjNer) [14] was used. LbjNer is now one of the
best performing solutions. It reached very promising F-measure (F1) scores. For
instance it obtained a F1 score of 85.74 on the MUC-7 test set5, and 90.74 on the
Reuters2003 test set6. One of the competitors, the Stanford NER tool, achieved a
F1 score of 80.62 and 87.04 on the MUC-7 and Reuters2003 test set, respectively.
The LbjNer tagger is capable of recognizing named entities of types Person, Or-
ganization, Location, and Misc in natural English text with a very impressive ac-
curacy. It employs various statistical methods as well as heuristics. The tagger
comes pre-trained on a large corpus of data extracted from Wikipedia and other
well-known sources. This makes the tagger attractive for reuse in other projects
such as these. A demo of the tagger is available as an on-line service [14].

Design. Overall, an important issue in designing the software was modularity
and extensibility. As the work is mostly exploratory in nature, it is critical to
be flexible during development, which means that the various parts of the tool
should run in relative separation with few dependencies on each other. There-
fore, we have split off the various stages of the algorithm into independently
working classes. Where multiple strategies are used for a certain stage, such as

4 It is available at http://annotator.lfms.nl/
5 http://www.itl.nist.gov/iad/894.02/related projects/muc/index.html
6 http://www.daviddlewis.com/resources/testcollections/reuters21578/

http://annotator.lfms.nl/
http://www.itl.nist.gov/iad/894.02/related_projects/muc/index.html
http://www.daviddlewis.com/resources/testcollections/reuters21578/


during hotspot finding, they are implemented in a ‘pluggable’ fashion so that it
is easy to add further heuristics that expand or focus the recognition. In Fig. 4,
these stages are marked as a composite process (two vertical lines).

The class PageAnnotator takes care of driving the various phases of the
algorithm and is useful as a starting point for reading the source code. Separate
Entity as well as Attribute subclasses take care of their own parsing, so
that it is tractable to extend the tool with other semantics.

Where empirically established constants are used, such as the maximum
tag ratio tmax or hotspot length limits, these are made explicit through class
constants. Should it not be possible to find generally acceptable values for them,
then a phase could be added in the algorithm to discover them on a per-page
basis.

There are various use-cases for a tool such as demonstrated. One might be
to use in an off-line fashion to annotate documents on a local computer, another
might be to run as a Web service. We have implemented two “front-end” scripts,
cli.php and index.php which run on the command line and a Web server
respectively.

Named entity tagger. Statistical and grammar-based named entity recognition
methods require natural text as an input in order to perform well. Also, the used
named entity tagger LbjNer cannot yet handle HTML input, breaking validation
of the output. Therefore, we must collect natural text first, and we should collect
it from only the hotspots in the document, as these are the places where the NER
tagger will work reliably.

Stripping HTML tags to generate a natural text body implies that we no
longer have a 1:1 mapping between the tagger result and the original position of
the tagged entities in the DOM. We will have to improvise in order to write tags
back into our DOM data structure. A problem occurs when there are multiple
occurrences of the recognized entity name in the original text: it becomes hard
to choose which occurrence the entity points to. As a guess, we will place the
entity at the first occurrence of the entity name in the DOM. This is not a perfect
strategy, because we may replace a homonym instead of the right occurrence.

The LbjNer tagger has a large startup penalty due to loading of its gazetteers
and statistical models. The LbjNer author has worked around this problem by
running it as a daemon process controlled by a socket and an additional Perl
client script. We provide a separate adapter to connect to this daemon pro-
cess, which can be chosen at run-time. Since running the tagger on various
hotspots separately would entail longer execution times, we coalesce the vari-
ous hotspots to tag, and send these texts to the tagger in one batch. This requires
a small amount of parsing in the LbjNer result interpretation.

Annotation styles. The debate between RDFa and Microformats is still very
active [13], and the nature of the Web is such that often the simpler yet less
powerful method gets the most traction in the community. Therefore, it is im-
portant that the annotation style is abstracted away from the recognition and
processing logic. This makes it easy to add a visual annotation style, and should



the marketplace decide in favor of Microformats, to annotate documents in that
format instead.

Development set. We have developed the tool while testing on a number of
Web pages containing product reviews, taken from popular Dutch review site
kieskeurig.nl and the well known American shop site amazon.com. During the de-
velopment of the methodology, we have established that a max tag ratio tmax

around 0.7 is a good cutoff value that invalidates recognition of most irrele-
vant page elements such as navigation sections, while retaining detection of
most natural text hotspots. We have found that the algorithm has a tendency
to over-recognize small page elements (such as simple page titles and captions)
as reviews, especially in the absence of proper reviews which would lower the
relative hotness of these elements in relation to the real reviews. This was re-
solved by setting the minimum natural text length Lmin to 100 characters. The
minimum “reviewness” rmin in the final filtering step was set to 2, meaning
that for a review to be included in the annotation step, it must have a minimum
of two recognized properties (such as rating, reviewer, summary and date). We
have excluded the product name (reviewed item) from the reviewness calcula-
tion, as we almost always infer some product name from the page title.

Performance Evaluation. To assess the performance of the review recognition
methodology, the tool was tested on a (non-randomized) selection of English
and Dutch product review Web pages from well known E-commerce sites listed
in Table 2. The tested Web pages were not included in the development set
which consisted of pages from sites amazon.com and kieskeurig.nl. Model param-
eters had been optimized earlier empirically using the development set.

We count the actual number of reviews on the Web page manually, then
present the URL to the tagger. We then review the annotated Web page for:

– the number of correct review recognitions (actual reviews which are recog-
nized by the method);

– the number of false positives (tagger-recognized reviews that were not re-
views in the source);

– and the number of false negatives (actual reviews that were missed by the
method).

The results of these tests are presented in Table 2.
It appears that there is a large variance in performance between different

Web pages, which is a result of the absence of standardization in laying out
Web pages. The algorithm appears reasonably successful, but this property is
certainly not ubiquitous. There is even one site, epinions.com, where reviews
are not recognized at all. On all other sites, the results are reasonable for this
first exploration of the field. False positives are almost never found; however
there are some false negatives. A closer look into these false negatives suggests
that we should explore more methods for finding hotspots, as some slip by
the currently implemented hotspot finding heuristics. This happens on sites



Web site Actual reviews Correct False pos. False neg.
alatest.com 3 1 1 2
bol.com* 11 10 0 1
epinions.com 15 0 0 15
overstock.com 5 2 0 3
pdashop.nl* 5 5 0 0

Table 2. Test results of review recognition. Web site languages are English, or
Dutch when marked with *.

which do not use our listed cues for element names. Also, some of the model
parameters are necessarily a compromise — a more dynamic or fuzzy approach
to these parameters may be necessary to provide broader coverage.

In general the tool provides reasonable results, correctly recognizing reviews
in review Web pages. We find that, for review detection on random (not review-
specific) Web pages, our methods provide reasonable sensitivity, but not much
specificity. This entails that also on Web pages that do not contain reviews, the
heuristics may trigger and the algorithm may unintendedly recognize reviews.
It remains a hard issue to test whether a Web page really concerns product re-
views. Also of concern is the finding that many reviews do not even mention
the name of the reviewed item. Therefore, heuristics for disqualifying a Web
page as a review page are at this moment insufficient. This problem is not rele-
vant when our solution is run on review Web pages solely. The required training
phase of named entity recognition, as well as the recognition of element names
and contents, as we have described in the previous section, possibly limits the
application of our method to English Web pages. It is, however, tractable to
train the NER tagger as well as revise our internal word lists in order to sup-
port other languages. We do note that our English-based name-finding heuris-
tics have been successful on Dutch sites as well, as Web page designers tend
to use English text in their DOM element names and classes. Furthermore, The
LbjNer tagger is accurate at detecting names, and this property carries over
rather well from English into Dutch, the other language present in tested Web
pages. Therefore, our method does not perform worse on Dutch Web sites, even
though the NER training set and the internal word lists are in English only.

6 Conclusions and Future Work

In this paper, we have explored named entity recognition- and heuristic-based
approaches to annotating Web pages with Google Rich Snippets-compliant RDFa
attributes. Heuristics used include source code analysis, pattern matching and
internal word lists for discovery of entity attributes. We conclude that these
approaches form a potential strategy to recognize entities on a Web page and
automatically add them to the page using RDFa attributes. The methods are ro-
bust even in the face of different Web page languages. The tool that was devel-
oped performs reasonably in detecting review entities on review pages, such



as kieskeurig.nl and amazon.com. At the same time, further work is needed to
(1) improve the specificity of entity detection and (2) fully recognize the struc-
ture and properties of record-based entities such as persons and organizations.
In particular one of the difficulties we have experienced involves recognizing
the rating of a review. Although this property is not compulsory in the Rich
Snippets definition, it is one of the key aspects used to display a rich snippet
in Google search results. We have found that many reviews lack an explicit
rating, such as a grade or a number of stars. Rich Snippets accepts a rating
based on a scale of 1–5. To provide a rating for every single review, we would
have to calculate a rating based on the review body text itself. This approach is
known as sentiment classification. Earlier studies on various kinds of reviews
show that satisfying results can be obtained when adopting sentiment classifi-
cation [15,16,17,18]. Analysis and adoption of this approach might be an inter-
esting future research direction.
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