
Pattern Learning for Detecting Defect Reports
and Improvement Requests in App Reviews

Gino V.H. Mangnoesing1, Maria Mihaela Truşcǎ2(�), and
Flavius Frasincar1[0000−0002−8031−758X]

1 Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam,
the Netherlands

2 Bucharest University of Economic Studies, Piata Romana 6, 010374 Bucharest,
Romania

gvh.sing@gmail.com, maria.trusca@csie.ase.ro, frasincar@ese.eur.nl

Abstract. Online reviews are an important source of feedback for un-
derstanding customers. In this study, we follow novel approaches that
target the absence of actionable insights by classifying reviews as defect
reports and requests for improvement. Unlike traditional classification
methods based on expert rules, we reduce the manual labour by employ-
ing a supervised system that is capable of learning lexico-semantic pat-
terns through genetic programming. Additionally, we experiment with
a distantly-supervised SVM that makes use of the noisy labels gener-
ated by patterns. Using a real-world dataset of app reviews, we show
that the automatically learned patterns outperform the manually created
ones. Also the distantly-supervised SVM models are not far behind the
pattern-based solutions, showing the usefulness of this approach when
the amount of annotated data is limited.

1 Introduction

In the two last decades, the growth of user-generated content on the Web has
accelerated enormously due to parallel developments, such as increased Internet
access, technological advancements in mobile devices, the growth of e-commerce,
and many more. An important source of user-generated content with respect to
customer feedback are online reviews. Their interpretation is usually achieved
using Sentiment Analysis (SA) methods which has as the main aim to automati-
cally detect positive, neutral, and negative sentiments [10]. A major downside of
SA is that it measures satisfaction at a certain point in time. In this light, we ar-
gue that in addition to SA, it is important to focus on detecting specific types of
feedback that indicate potential causes and influence factors of satisfaction. We
consider such specific customer feedback as actionable, since it suggests a clear
course of action for addressing the feedback, and thus directly help to modify
and hopefully improve products.

In this paper, we focus on customer feedback related to mobile software
applications which we will refer to as “apps”. We argue that software reviews



Gino V.H. Mangnoesing, Maria Mihaela Truşcǎ �, and Flavius Frasincar

are very important for aggregating valuable feedback. Firstly, because many
companies have come to realise that all the technology required to transform
industries through software is available on a global scale [1]. Secondly, the field of
software engineering has the well-accepted notions of bugs and feature requests,
which we argue, are actionable types of feedback.

There are very few works [4,6,12–14] that aim to detect specific information
in customer feedback. Among the aforementioned works, only the method pro-
posed in [12] is more refined. Namely, in [12] lexical patterns are used to train
a supervised classifier, rather than directly employing patterns for information
extraction, which makes the extraction mechanism more adaptive to the various
representations of feedback. Further on, this system summarizes the extracted
feedback by means of a Topic Model technique called Latent Dirichlet Allocation
(LDA) [2]. However, while the objective is very relevant, the suggested meth-
ods require a vast amount of manual labour to create useful feedback patterns.
We argue this to be a great limitation since analysing customer feedback is an
important process that should ideally be performed in a continuous fashion. Nev-
ertheless, the study conveys a promising direction for future research in opinion
mining, and clear feedback types to focus on, which we adopt in this work.

We approach feedback detection as a multi-label classification problem based
on knowledge-base rules or patterns, in which our goal is to automatically de-
termine if a given review is an example of given actionable feedbacks. Usu-
ally, making a knowledge base of patterns is impractical to manage over time
and across different domains. In this light, we suggest a system that is ca-
pable of performing pattern construction in an automated manner using ge-
netic programming. Keeping in mind the importance of reduction of the hu-
man control over the system’s design, we also tackle the problem of having
a small number of labeled reviews (gold labels) using noisy labels generated
based on patterns in a distantly-supervised way [8, 15]. The employed dataset
and the proposed framework implemented in Scala are available at https:

//github.com/mtrusca/PatternLearning.
The remaining parts of the paper are structured as follows. Section 2 presents

a detailed overview of the proposed framework in this study. In Sect. 3 we evalu-
ate our framework through a series of experiments. Finally, in Sect. 4 we present
our conclusions and suggest future work.

2 Methods

In this research, our goal is to automatically detect actionable feedback in re-
views. More specifically, we aim to detect two specific types of feedback: defect
reports and improvement requests. We approach this task as a binary classifica-
tion problem, meaning that each review is considered a document that requires
two classifications, one for each feedback type. Using this setup it is possible to
classify some reviews as both defect report and improvement request. Our main
contribution to the research problem is to automate the task of discovering and
constructing patterns. Rather than direct supervision, where labels are provided

https://github.com/mtrusca/PatternLearning
https://github.com/mtrusca/PatternLearning


Pattern Learning for Detecting Defect Reports and Improvement Requests

by human annotators, we use a group of patterns to provide (noisy) labels for
each feedback type. These labels are then given as input to a linear SVM model,
often applied for text classification tasks due to its learning capability that is
independent of the dimensionality of the feature space.

Using noisy labels to guide algorithms is a technique called Distant Learning
or Distant Supervision [8,15]. Despite the fact that Distant Supervision is already
a great step towards minimizing the amount of human labour required to perform
feedback detection, the required process for manually constructing groups of
patterns per feedback type, remains rather tedious and time consuming. For
this reason, we suggest another level of automation, which is to automate the
pattern creation procedure (responsible to generate noisy labels) by means of a
learning algorithm.

To solve our problem for learning patterns, we require to select a learning
algorithm that stands out with respect to interpretability and modifiability. A
specific category of algorithms that meets these requirements are Evolutionary
Algorithms (EAs). The most popular type of EA is the Genetic Algorithm (GA),
however we adopt a special case of GA called Genetic Programming (GP) in-
spired by Darwin’s theory of evolution [3]. Genetic Programming and Genetic
Algorithms are very similar. They both evolve solutions to a problem, by com-
paring the fitness of each candidate solution in a population of potential can-
didates, over many generations. In each generation, new candidates are found
by quasi-randomly changing (mutation) or swapping parts (crossover) of other
candidates. The least “fit” candidates are removed from the population. The
primary difference between GA and GP is the representation of the candidate
solutions. In GA a candidate is represented as a vector, and in GP a candidate
is represented as a tree. As the GP representation fits better the specification of
our information extraction patterns, we adopt it in our research.

The learning approach suggested in GP, is to define an environment in which
a collection of randomly generated, simple programs (individuals) evolve through
an analogue of natural selection. Each individual represented by a tree structure
is composed from a collection of nodes. All nodes (except the first, or root node)
have one parent and any number of children. Every node belongs to one of
two types, namely functions or terminals. Function nodes are allowed to have
children nodes, which can be either functions or terminals. Terminal nodes are
not allowed to have child nodes, therefore terminal nodes are considered the
leaves of the tree. In our framework, we consider each individual to be a pattern
for classifying documents (app reviews) with a (recursive) match method.

Function nodes include Boolean operations, such as AND, OR, and NOT,
as well as Sequence and Repetition. The Sequence node can have one or more
child nodes of types function or terminal. It is also the root node of each tree.
A Repetition node enforces two or more consecutive nodes to obey the same
condition. A node of type AND has at least two children, and is useful to pattern
match for multiple features, for example to check whether a given token is both
a specific literal and part of a syntactic category. The nodes of type OR and of
type NOT also follow the Boolean logic, where the OR nodes match as true if at



Gino V.H. Mangnoesing, Maria Mihaela Truşcǎ �, and Flavius Frasincar

least one of the children matches, and nodes of type NOT match as true if none
of its children match for a given token. Terminal nodes are the external points
(or leaves) of the tree. They are assigned a specific value, used to pattern match
for specific tokens. Literal nodes must be exactly matching the specific word
(value) that is assigned the node. For Part-of-Speech (POS) nodes, tokens are
evaluated to match a specific Part-of-Speech tag. A Wildcard node will match
any token, irrespective of its value. Finally, an Entity Type node matches a value
from a manually constructed and populated gazetteer.

Typically gazetteers consists of sets of terms containing names of entities
such as cities, organisations, or weekdays [5]. Since at the time of performing
this research, we could not find gazetteers for our specific domain, we decided to
define our own. Our gazetteer is implemented using a plain key-value mapping,
where a key corresponds to the name of an entity type, and the value stores
a set of lexical representations of that entity type. For example, to detect the
entity type app we employ the following terms: it, app, application, Evernote
(we use a set of Evernote reviews for our experiments). Some other entity types
in our gazetteer are: user, action, object, component, device, and update. The
entity types we employ are inspired by Issue Tracking Systems (ITS), such as
Bugzilla, an open-source issue tracker created by Mozilla. Since ITS involve very
comparable types of feedback to this study, we consider the entity types in ITS
a useful starting point for constructing our gazetteers.

The first step for each genetic program, is to generate an initial population of
N individuals. In our experiments, we use the ramped-half-and-half method [9],
which is commonly used since it produces a wider range of variation in terms
of shapes and sizes of trees compared to the other popular methods like grow
and full. The ramped-half-and-half achieves more variety, by combining both the
grow and full methods, where one half of the population is generated through
the grow method, and the other half through the full method. The algorithm we
employ to generate individual trees in a recursive manner is based on the one
suggested in [7].

During the initialization, nodes are selected randomly to construct trees.
However, for the purpose of stimulating useful combinations of terminals, we
generate a pool of recommended terminal candidates. Whereas the pool contains
all entity types and the wildcard, for the case of POS and Literal terminals
we select only the most relevant nodes. More specifically, we pre-analyse the
training set for frequently occurring unigrams (as terminals) and bigrams (as
pairs of terminals) of types Literal and POS (for bigrams, four specific pair
combinations are considered: (Literal)(Literal), (POS )(Literal), (Literal)(POS ),
and (POS )(POS )). Subsequently, we remove in each sentiment class of a target
feedback type, the 100 most frequent unigrams and bigrams that occur in the
another sentiment class. Then, every time a terminal node is needed we randomly
select it from the pool of recommended terminal candidates.

In Evolutionary learning methods, a population of individuals can evolve for
many generations. However, after a certain amount of generations, the fitness of
the best new individuals will stop increasing. In our problem, we want individual



Pattern Learning for Detecting Defect Reports and Improvement Requests

patterns to be optimized for high precision, which means that we want more
weight on precision than recall. Hence, we employ the Fβ-measure with β = 0.3
instead of the widely used F1-measure. Further on, we employ two criteria for
termination. The first criterium is the maximum number of generations and is
checked when generating a pattern (in the pattern group). The second criterium
is checked per event type and it is triggered if the pattern does not increase the
fitness of the entire group of patterns after a maximum number of iterations. The
fitness measure for a group of patterns is determined by the F1-measure, instead
of the Fβ-measure. Our motivation for using F1 for group fitness is related to
our goal to seek patterns for as many variations of a target feedback type as
possible.

A proper procedure for selection should not find only the strongest individual
of a population, but to allow more individuals to have a chance of being selected.
A common method that addresses this requirement is Tournament Selection.
Precisely, the method allows for a constant selection pressure that determines
the extent to which fit individuals are preferred over less fit individuals. All
the selected individuals are used to produce offspring or the next generation
of individuals. The main objective in producing offspring, is to enhance the
fitness for the next generation based on three genetic operations, namely Elitism,
Crossover, and Mutation.

As discussed earlier, our goal is to learn a group of patterns that detect as
many variations of a target feedback type as possible, in our training examples.
In essence, each pattern can be interpreted as a rule, and each document has
to be categorised as either positive or negative, according to our “knowledge”
of each category, which is stored in a rule base. The set of rules learnt in our
framework is generated through a Sequential Covering Algorithm [11].

3 Experiments

In order to evaluate the approach suggested in our framework, we performed
experiments on a real-life dataset. The dataset contains 4470 reviews about
Evernote, a mobile app for the Android platform. We automatically extracted
the review dataset from the Google Play Store, through Web scraping techniques.
We selected Evernote because it is a widely used app with a large user base, that
publicly share their feedback on the Web, and therefore serves as a great example
for our examined research problem.

We have annotations for 46% of the total review dataset. We hold out 20% of
all reviews for testing purposes in all methods. Therefore, we have the remaining
26% of reviews available for training purposes. However, for the experiments that
employ distant supervision, we generate noisy labels, hence, have 80% of the full
review dataset available for training. The terms “Positive” and “Negative” refer
to the classification labels that were assigned to every review per feedback type
by human annotators. On average 12.6% of our labeled set of reviews contains
one or more actionable types of feedback, in which there are 8.4% more requests



Gino V.H. Mangnoesing, Maria Mihaela Truşcǎ �, and Flavius Frasincar

Table 1: Examples of human (A) and automatically constructed (B) patterns. DR and
IR stand for Defect Report and Improvement Request, respectively. For DR patterns
“:” separates the terminal from its type.

Type Pattern Example

DR OR: The last few months of updates haven’t changed
|-Software Bug: Entity Type or lessened the lag you get when you edit notes.
|-Software Update: Entity Type

IR SEQ: Colour coding of the notes and reminders for
|-5: Literal repetitive tasks can fetch 5 stars.
|-stars: Literal

Table 2: Performance metrics for feedback type classifications in terms of precision,
recall, and F1-measure. The best results are set in bold.

Task Defect Classification Improvement Classification

Method Precision Recall F1-measure Precision Recall F1-measure

Standard SVM 0.39 0.59 0.47 0.78 0.54 0.64
Patterns A (manual) 0.61 0.42 0.50 0.81 0.42 0.56
Patterns B (learned) 0.91 0.39 0.54 0.79 0.51 0.62
SVM Distant Supervision A 0.24 0.67 0.36 0.39 0.48 0.43
SVM Distant Supervision B 0.41 0.59 0.49 0.46 0.44 0.45

for improvement than defect reports. Finally, only 1.3% of our annotated reviews
is labeled as both a defect report and an improvement request.

We collected annotations for both feedback types through CrowdFlower (re-
cently renamed Figure Eight), an online data enrichment platform. The in-
structed task is to label every individual review for both defect reports and
improvement requests. Every review was annotated by at least 3 annotators,
and in some cases even 5 or 7 (when it is recorded a low accuracy of the test
questions that inspect the quality of the annotator).

The employed patterns are constructed both manually and automatically. In
the Evernote dataset, we have five manual and two generated patterns for de-
fects, and eight manual and ten generated patterns for improvements. The most
likely reason for this contrast is the variation in distribution of feedback types in
our dataset, as a result of the fact that Evernote is a popular app, well tested,
and optimised. Furthermore, we noticed that the most effective patterns only
use function nodes of type Sequence and OR. Also, many examples of feedback
can be recognized with a single terminal, such as the Entity Type “software up-
date” for defect reports or the Literal “stars” for improvement requests, which
indicates that the level of specificity does not necessarily have to be high. In that
light, patterns that include the NOT node, which requires feedback examples
in which a very specific word is not mentioned are often not necessary. While
NOT functions can be useful to make a pattern very expressive and precise, it
becomes obsolete when that level of selectivity is not required, as in our case. A
similar line of reasoning can be applied to the AND functions. Table 1 lists two
examples of automatically constructed patterns for the two types of feedback.

To classify defect reports and improvement requests we test the following
methods:



Pattern Learning for Detecting Defect Reports and Improvement Requests

Table 3: Running time for pattern creation per approach. The best results are set in
bold.

Approach Defect Patterns Improvement Patterns Total

Manual (per person) 8.5 hours 10.25 hours 18.75 hours
Automated 3.5 hours 2.4 hours 5.9 hours

Method 0: Standard SVM. In this method, we train an SVM classifier using
only labelled reviews for training. This method can be considered a reference for
the following methods.

Method 1: Patterns A. In this experiment, we use human patterns to per-
form supervised classifications directly (without SVMs). We employ the available
labelled data (26%) for learning patterns.

Method 2: Patterns B. This method is similar to the Method 1, except that
the human patterns are replaced with automatically constructed ones.

Method 3: SVM Distant Supervision A. In this method, we train an SVM
classifier using noisy labels generated based on the human patterns for the entire
training set.

Method 4: SVM Distant Supervision B. This method is similar to the
Method 3, except that the human patterns are replaced with automatically con-
structed ones.

Table 2 displays an overview of performance measures of all proposed meth-
ods. We can notice that the Distant Supervision methods are not far behind
the direct classification through patterns, in terms of F1-scores. Nevertheless,
given that the results are obtained with noisy labels shows the usefulness of this
approach for datasets where the annotated data is limited.

As regards the comparison between the two types of patterns, it is obvious
that the automatically generated patterns perform better than the human ones.
In order to have a complete insight over the pattern creation process (manual
versus automated) we additionally explore the patterns’ efficiency besides their
effectiveness. Table 3 displays the running time for creating patterns both man-
ually and automatically. We can observe that it takes 70% less time to generate
the automatic patterns than the manual ones.

4 Conclusion

In this study we presented a framework for automatically learning lexico-semantic
patterns helpful for detecting specific types of feedback expressed in conversa-
tional customer feedback (defect reports and improvement requests). Using a
custom dataset, we showed that the automatically generated patterns perform
slightly better than the manual ones and there is a 70% reduction in construc-
tion time. Further on, we demonstrated that the distantly-supervised SVM with
noisy labels is not far behind the pattern-based classification. The results reveals
the applicability of this approach when the amount of available labels is limited.



Gino V.H. Mangnoesing, Maria Mihaela Truşcǎ �, and Flavius Frasincar

As future work, we would like to increase the flexibility of our patterns by
considering more complex terminal structures. Using techniques from entity-
learning we would like to explore the automatic generation of our domain-specific
gazetteers lists to increase coverage and the framework’s applicability in other
domains.

References

1. Andreessen, M.: Why Software Is Eating the World. Wall Street Journal 20 (2011)
2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine

Learning Research (JMLR) 3, 993–1022 (2003)
3. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier Systems and Genetic Algo-

rithms. Artificial Intelligence 40(1), 235–282 (1989)
4. Brun, C., Hagege, C.: Suggestion Mining: Detecting Suggestions for Improvement

in Users’ Comments. Research in Computing Science 70, 171–181 (2013)
5. Cunningham, H.: GATE, a General Architecture for Text Engineering. Computers

and the Humanities 36(2), 223–254 (2002)
6. Goldberg, A.B., Fillmore, N., Andrzejewski, D., Xu, Z., Gibson, B., Zhu, X.: May

All Your Wishes Come True: A Study of Wishes and How to Recognize Them.
In: 10th Annual Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL HLT 2009). pp. 263–271. ACL (2009)

7. IJntema, W., Hogenboom, F., Frasincar, F., Vandic, D.: A Genetic Programming
Approach for Learning Semantic Information Extraction Rules from News. In: 15th
International Conference on Web Information Systems Engineering (WISE 2014),
LNCS, vol. 8786, pp. 418–432. Springer (2014)

8. Ji, G., Liu, K., He, S., Zhao, J.: Distant Supervision for Relation Extraction with
Sentence-Level Attention and Entity Descriptions. In: 31st AAAI Conference on
Artificial Intelligence (AAAI 2017). pp. 3060–3066. AAAI Press (2017)

9. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means
of Natural Selection, vol. 1. MIT press (1992)

10. Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cam-
bridge University Press (2015)

11. Mitchell, T.M., et al.: Machine learning (1997)
12. Moghaddam, S.: Beyond Sentiment Analysis: Mining Defects and Improvements

from Customer Feedback. In: 37th European Conference on Information Retrieval
Research (ECIR 2015), LNCS, vol. 9022, pp. 400–410. Springer (2015)

13. Qiao, Z., Zhang, X., Zhou, M., Wang, G.A., Fan, W.: A Domain Oriented LDA
Model for Mining Product Defects from Online Customer Reviews. In: 50th Hawaii
International Conference on System Sciences (HICSS 2017). pp. 1821–1830. Schol-
arSpace/AIS Electronic Library (2017)

14. Ramanand, J., Bhavsar, K., Pedanekar, N.: Wishful Thinking: Finding Sugges-
tions and ’Buy’ Wishes from Product Reviews. In: Workshop on Computational
Approaches to Analysis and Generation of Emotion in Text (CAAGET 2010). pp.
54–61. ACL (2010)

15. Sahni, T., Chandak, C., Chedeti, N.R., Singh, M.: Efficient Twitter Sentiment
Classification Using Subjective Distant Supervision. In: 9th International Confer-
ence on Communication Systems and Networks (COMSNETS 2017). pp. 548–553.
IEEE (2017)


	Pattern Learning for Detecting Defect Reports and Improvement Requests in App Reviews

