
An Information Gain-Driven Feature Study for
Aspect-Based Sentiment Analysis

Kim Schouten, Flavius Frasincar, and Rommert Dekker

Erasmus University Rotterdam
Burgemeester Oudlaan 50, 3062 PA Rotterdam,

the Netherlands
{schouten, frasincar, rdekker}@ese.eur.nl

Abstract. Nowadays, opinions are a ubiquitous part of the Web and
sharing experiences has never been more popular. Information regarding
consumer opinions is valuable for consumers and producers alike, aiding
in their respective decision processes. Due to the size and heterogeneity
of this type of information, computer algorithms are employed to gain
the required insight. Current research, however, tends to forgo a rigorous
analysis of the used features, only going so far as to analyze complete
feature sets. In this paper we analyze which features are good predictors
for aspect-level sentiment using Information Gain and why this is the
case. We also present an extensive set of features and show that it is
possible to use only a small fraction of the features at just a minor cost
to accuracy.
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1 Introduction

Nowadays, opinions are a ubiquitous part of the Web and sharing experiences
has never been more popular [4]. Information regarding consumer opinions is
valuable for consumers and producers alike, aiding in their respective decision
processes. Due to the size and heterogeneity of this type of information, com-
puter algorithms are employed to gain insight into the sentiment expressed by
consumers and on what particular aspects that sentiment is expressed, and re-
search into this type of algorithms has enjoyed increasingly high popularity over
the last decade [8].

Research has led to a number of different approaches to aspect-level senti-
ment analysis [13], that can be divided into three categories. The first group
consists of methods that predominantly use a sentiment dictionary (e.g., [6]).
Sentiment values are then assigned to certain words or phrases that appear in
the dictionary and using a few simple rules (e.g., for negation and aggregation),
the sentiment values are combined into one score for each aspect. The second
type is categorized by the use of supervised machine learning methods (e.g., [3]).
Using a significant amount of annotated data, where the sentiment is given for



each aspect, a classifier can be trained that can predict the sentiment value for
yet unseen aspects. Last, some methods based on unsupervised machine learn-
ing are also available, but these usually combine aspect detection and sentiment
classification into one algorithm (e.g., [14]).

Supervised learning has the advantage of high performance, and given the
fact that sentiment is usually annotated as a few distinct classes (i.e., positive,
neutral, and negative), traditional statistical classifiers work remarkably well.
Unfortunately, most of these methods are somewhat of a black box: once provided
with enough input, the method will do its task and will classify aspect sentiment
with relatively good accuracy. However, the inner workings are often unknown,
and because of that, it is also not known how the various input features relate to
the task. Since most classifiers can deal with large dimensionality on the input,
one tends to just give all possible features and let the classifier decide which
ones to use. While this is perfectly fine when aiming for performance, it does not
give much insight into which particular features are good predictors for aspect
sentiment. Knowing which features are relevant is important for achieving insight
into the performed task, but it also allows to speed up the training process by
only employing the relevant features with possibly only a minor decrease in
performance.

This focus on performance instead of explanation is most typically found
in benchmark venues, such as the Semantic Evaluation workshops [12]. Here,
participants get annotated training data and are asked to let their algorithm
provide the annotations for a non-annotated data set. The provided annotations
are then centrally evaluated and a ranking is given, showing how each of the
participating systems fared against each other. Scientifically speaking, this has
the big benefit of comparability, since all of the participants use the same data
and evaluation is done centrally, as well as reproducibility, since the papers
published in the workshop proceedings tend to focus on how the system was
built. The one thing missing, however, is an explanation of why certain features
or algorithms perform so great or that bad, since there usually is not enough
space in the allowed system descriptions to include this.

Hence, this paper aims to provide insight into which features are useful, using
a feature selection method based on Information Gain [11], which is one of the
most popular feature filtering approaches. Compared to wrapper approaches,
such as Forward Feature Selection, it does not depend on the used classification
algorithm. Using Information Gain, we can compute a score for each individual
feature that represents how well that feature divides the aspects between the
various sentiment classes. Thus, we can move beyond the shallow analysis done
per feature set, and provide deeper insight, on the individual feature level.

The remainder of this paper is organized as follows. First, the problem of
aspect-level sentiment analysis is explained in more detail in Sec. 2, followed
by Sec. 3, in which the framework that is responsible for the natural language
processing is described, together with the methods for training the classifier and
computing the Information Gain score. Then, in Sec. 4, the main feature analysis
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is performed, after which Sec. 5 closes with a conclusion and some suggestions
for future work.

2 Problem Description

Sentiment analysis can be performed on different levels of granularity. For in-
stance, a sentiment value can be assigned to a complete review, much like the
star ratings that are used on websites like Amazon. However, to get a more
in-depth analysis of the entity that is being reviewed, whether in a traditional
review or in a short statement on social media, it is important to know on which
aspect of the entity a statement is being made. Since entities, like products or
services, have many facets and characteristics, ideally one would want to assign
a sentiment value to a single aspect instead of to the whole package. This chal-
lenge is known as aspect-level sentiment analysis [13], or aspect-based sentiment
analysis [12], and this is the field this research is focused on.

More precisely, we use a data set where each review is already split into
sentences and for each sentence it is known what the aspects are. Finding the
aspects is a task that is outside the scope of this paper. Given that these aspects
are known, one would want to assign the right sentiment value to each of these
aspects. Most of the annotated aspects are explicit, meaning that they are lit-
erally mentioned in the text. As such, it is known which words in the sentence
represent this aspect. Some aspects, however, are implicit, which means that
they are only implied by the context of the sentence or the review as a whole.
For these aspects, there are no words that directly represent the aspect, even
though there will be words or expressions that point to a certain aspect. Both
explicit and implicit aspects are assigned to an aspect category which comes
from a predefined list of possible aspect categories.

For explicit aspects, since we know the exact words in the sentence that
represent this aspect, we can use a context of n words before and after each
aspect from which to derive the features. This allows for contrasting aspects
within the same sentence. For implicit aspects, this is not possible and hence we
extract the features from the whole sentence. Note that each aspect will have
a set of extracted features, since it is the sentiment value of each aspect that
is the object of classification. An example from the used data set showing both
explicit and implicit aspects (i.e., target="NULL" for implicit features) is shown
in Fig. 1.

3 Framework

In this section we present the steps of our framework. First, all textual data is
preprocessed, which is an essential task for sentiment analysis [5], by feeding it
through a natural language pipeline based on Stanford’s CoreNLP package [10].
This extracts information like the lemma, Part-of-Speech (PoS) tag, and gram-
matical relations for words in the text. Furthermore, we employ a spell checker
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<sentence id="1032695:1">

<text>Everything is always cooked to perfection , the

service is excellent , the decor cool and understated.</

text>

<Opinions >

<Opinion target="NULL" category="FOOD#QUALITY" polarity="

" from="0" to="0"/>

<Opinion target="service" category="SERVICE#GENERAL"

polarity="" from="47" to="54"/>

<Opinion target="decor" category="AMBIENCE#GENERAL"

polarity="" from="73" to="78"/>

</Opinions >

</sentence >

Fig. 1: A snippet from the used dataset showing an annotated sentence from a
restaurant review.

called JLanguageTool 1 to correct obvious misspellings and a simple word sense
disambiguation algorithm based on Lesk [7] to link words to their meaning, rep-
resented by WordNet synsets. Stop words are not removed since some of these
words actually carry sentiment (e.g., emoticons are a famous example), and the
feature selection will filter out features that are not useful anyway, regardless of
whether they are stopwords or not.

The next step is to prepare all the features that will be used by an SVM [2],
the employed classifier in this work. For example, if we want to use the lemma
of each word as a feature, each unique lemma in the dataset will be collected
and assigned a unique feature number, so when this feature is present in the
text when training or testing, it can be denoted using that feature number. Note
that, unless otherwise mentioned, all features are binary, denoting the presence
or absence of that particular feature. For the feature analysis, the following types
of features are considered:

– Word-based features:
• Lemma: the dictionary form of a word
• Negation: whether or not one or more negation terms from the General

Inquirer Lexicon2 are present;
• The number of positive words and the number of negative words in the

context are also considered as features, again using the General Inquirer
Lexicon;

– Synset-based features:
• Synset: the WordNet synset associated with this word, representing its

meaning in the current context;
• Related synsets: synsets that are related in WordNet to one of the synsets

in the context (e.g., hypernyms that generalize the synsets in the con-
text);

1 wiki.languagetool.org/java-api
2 http://www.wjh.harvard.edu/~inquirer
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– Grammar-based features:

• Lemma-grammar: a binary grammatical relation between words repre-
sented by their lemma (e.g., “keep-nsubj-we”);

• Synset-grammar: a binary grammatical relation between words repre-
sented by their synsets which is only available in certain cases, since not
every word has a synset (e.g., “ok#JJ#1-cop-be#VB#1”);

• PoS-grammar: a binary grammatical relation between words represented
by PoS tags (e.g., “VB-nsubj-PRP”), generalizing the lemma-grammar
case with respect to Part-of-Speech;

• Polarity-grammar: a binary grammatical relation between synsets rep-
resented by polarity labels (e.g., “neutral-nsubj-neutral”). The polarity
class is retrieved from SentiWordNet [1], with the neutral class being the
default when no entry was found in SentiWordNet;

– Aspect Features:

• Aspect Category: the category label assigned to each aspect is encoded
as a set of binary features (e.g., “FOOD#QUALITY”).

Note that with grammar-based features, we experiment with various sorts of
triples, where two features are connected by means of a grammatical relation.
This kind of feature is not well studied in literature, since n-grams are usually
preferred by virtue of their simplicity. Apart from the effect of Information Gain,
the benefit of using this kind of feature will be highlighted in the evaluation
section.

With all the features known, the Information Gain score can be computed for
each individual feature. This is done using only the training data. Information
Gain is a statistical property that measures how well a given feature separates
the training examples according to their target classification [11]. Information
Gain is defined based on the measure entropy. The entropy measure characterizes
the (im)purity of a collection of examples. Entropy is defined as:

Entropy(S) = −
∑
i

p(i|S) log2 p(i|S)

with S a set of all aspects and p(i|S) the fraction of the aspects in S belonging
to class i. These classes are either positive, negative, or neutral. The entropy
typically changes when we partition the training instances into smaller subsets,
i.e., when analyzing the entropy value per feature. Information Gain represents
the expected reduction in entropy caused by partitioning the samples according
to the feature in question. The Information Gain of a feature t relative to a
collection of aspects S, is defined as:

Information Gain(S, t) = Entropy(S)−
∑

v∈V alues(t)

|Sv|
|St|

Entropy(Sv)

where Values(t) is the set of all possible values for feature t. These values again
are either positive, negative, or neutral. Sv is the subset of S with aspects of
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class v related to feature t. St is the set of all aspects belonging to feature t. | · |
denotes the cardinality of a set.

In this paper, we will analyze the optimal number of features with Informa-
tion Gain, one of the most popular measures used in conjunction with a filtering
approach for feature selection. This is executed as follows. First, the Information
Gain is computed for each feature. Next, the IG scores of all the features are
sorted from high to low and the top k% features are used in the SVM. This per-
centage k can either be determined using validation data or it can be manually
set.

Afterwards, the training data is used to train the SVM. The validation data
is used to optimize for a number of parameters: the cost parameter C for the
SVM, the context size n that determines how many words around an explicit
aspect are used to extract features from, and the value for k that determines
percentage-wise how many of the features are selected for use with the SVM.

After training, new, previously unseen data can be classified and the perfor-
mance of the algorithm is computed. By employing ten-fold cross-validation, we
test both the robustness of the proposed solution and ensure that the test data
and training data have similar characteristics.

4 Evaluation

Evaluation is done on the official training data of the SemEval-2016 Aspect-
Based Sentiment Analysis task3. We have chosen to only use the data set with
restaurant reviews in this evaluation because it provides target information, an-
notating explicit aspects with the exact literal expression in the sentence that
represents this aspect. An additional data set containing laptop reviews is also
available, but it provides only category information and does not give the target
expression. The used data set contains 350 reviews that describe the experi-
ences people had when visiting a certain restaurant. There were no restrictions
on what to write and no specific format or template was required. In Table 1
the distribution of sentiment classes over aspects is given and in Table 2, the
proportion of explicit and implicit aspects in this dataset are shown (cf. Sec. 2).

Table 1: The sentiment distribution over aspects in the used data set
sentiment nr. of aspects % of aspects

positive 1652 66.1%
neutral 98 3.9%
negative 749 30.0%

total 2499 100%
To arrive at stable results for our analysis, we run our experiments using 10-

fold cross-validation where the data set is divided in ten random parts of equal
size. In this setup, seven parts are used for training the SVM, two parts are used
as a validation set to optimize certain parameters (i.e., the C parameter of the
SVM, k, the exact percentage of features to be kept, and n, encoding how many

3 http://alt.qcri.org/semeval2016/task5/
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Table 2: The distribution of explicit and implicit aspects in the used data set
type nr. of aspects % of aspects

explicit 1879 75.2%
implicit 620 24.8%

total 2499 100%

Fig. 2: The Information Gain for all features with a non-zero score, in descending
order of Information Gain.

words around an aspect should be used to extract features from), and the last
part is used for testing. This procedure is repeated ten times, in such a way that
the part for testing is different each round. This ensures that each part of the
data set has been used for testing exactly once and so a complete evaluation
result over the whole data set can be obtained.

From one of the folds, we extracted the list of features and their computed
Information Gain. As shown in Fig. 2, the distribution of Information Gain scores
over features is highly skewed. Only about 8.6% of the features actually receives
a non-zero score.

Grouping the features per feature type, we can compute the average Infor-
mation Gain for all features of a certain type. This plot, shown in Fig. 3, shows
how important, on average, each of the feature types is. Given the fact that the
y-axis is logarithmic, the differences between importance are large. Traditional
feature types like ‘Negation present’ and ‘Category’ are still crucial to having
a good performance, but the new feature type ‘Polarity-grammar’ also shows
good performance. The new ‘Related-synsets’ and ‘POS-grammar’ category are
in the same league as the traditional ‘Lemma’ category, having an average In-
formation Gain. Feature types that are less useful are ‘Lemma-grammar’ and
‘Synset-grammar’, which are very fine-grained and are thus less likely to gener-
alize well from training to test data.

In Fig. 4, the average in-sample accuracy, as well as the accuracy on the
validation and test data are presented for a number of values for k, where k means
that the top k percent ranked features were used to train and run the SVM. It
shows that when using just the top 1% of the features, an accuracy of 72.4% can
be obtained, which is only 2.9% less than the performance obtained when using
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Fig. 3: The average Information Gain for each feature type.

all features. This point corresponds to a maximum in the performance on the
validation data. Other parameters that are optimized using validation data are
C, which is on average set to 1, and n, which is on average set to 4. Note that since
all parameters that are optimized with validation data are optimized per fold,
their exact value differs per fold and thus an average is given. The picture is split
into five different levels of granularity on the x-axis, providing more details for
lower values of k. In the first split, the method start at the baseline performance,
since at such a low value of k, no features are selected at all. Then, in the second
block, one can see that, because these are all features with high Information
Gain, the performance on the test data closely tracks the in-sample performance
on the training data. However, in the third split, some minor overfitting starts
to occur. The best features have already been used, so lesser features make their
way into the SVM, and while in-sample performance goes up, out-of-sample
performance does not grow as fast. This effect is illustrated even stronger in
the fourth block, where performance on the training data goes up spectacularly,
while performance on the test data actually goes down. The features that are
added here all have a very low Information Gain.

The last block is slightly different because for almost all of these features,
roughly 90% of the total number, the Information Gain is zero. However, as
is made evident by the upward slope of the out-of-sample performance, these
features are not necessarily useless and the SVM is able to use them to boost
performance with a few percent. This is possible due to the fact that, while
Information Gain is computed for each feature in isolation, the SVM takes in-
teraction effects between features into account. Hence, while these features may
not be useful on their own, given the features already available to the SVM,
they can still be of use. This interaction effect accounts for the 2.9% penalty to
performance increase when using feature selection based on Information Gain.

The diminishing Information Gain is also clearly illustrated in Fig. 5. It
follows roughly the same setup in levels of detail as Fig. 4, with this exception
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Fig. 4: The average accuracy on training, validation, and test set for each of the
subsets of features.

Fig. 5: The average Information Gain score for each of the subsets of added
features.

that the first split is combined into the first bar, since not enough features
were selected in the first split to create a meaningful set of bars. Furthermore,
while Fig. 4 has a cumulative x-axis, this figure does not, showing the average
Information Gain of features that are added in each range (instead of all features
added up to that point). Given that the lowest 90% of the features has an
Information Gain of zero, there are no visible bars in the last split.

For each of the feature selections, we can also look at how well each type of
feature is represented in that subset. Hence, we plot the percentage of features se-
lected belonging to each of the feature types in Fig. 6. Features whose proportion
decrease when adding more features are generally more important according to
the Information Gain ranking, while features whose proportion increases when
adding more features are generally less important since they generally have a
lower Information Gain. This corresponds to the feature types with high bars in
Fig. 3. It is interesting to see that ‘Negation’ and ‘Category’ are small but strong
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Fig. 6: Proportion of each feature type for each of the cumulative subsets of
features.

feature sets, and that ‘Related-synsets’, while not having many strong features,
has many features that get a non-zero Information Gain, making it still a useful
category of features.

Analyzing the top ranked features per feature type in Table 3, some of the
features are easily recognized as being helpful to detect sentiment. For instance,
the lemma ‘not’, as well as its corresponding synset in WordNet are good indi-
cators of negative sentiment. Other features, like the ‘SERVICE#GENERAL’
category feature are not so self-evident. These more generic features, while not
directly pointing to a certain sentiment value, are still useful by virtue of their
statistics. Again looking at the ‘SERVICE#GENERAL’ category, we check the
dataset and see that about 56% of all aspects with this category have a negative
sentiment, whereas overall, only 30% of the aspects are negative. This is such a
sharp deviation from the norm, that having this category label is a strong sign
for an aspect to be negative. It seems that in the used data set, people tend to
be dissatisfied with the provided service.

Sometimes features that appear in different categories might still represent
(almost) the same information. For instance, the two top ‘Lemma-grammar’
features are basically the same as the two top ‘Synset-grammar’ features, corre-
sponding to a phrase like “some aspect is ok” or “some aspect is good”. Another
example of this is the lemma ‘ok’ and its corresponding synset ‘ok#JJ#1’.

An interesting type of features is the ‘Related-synsets’ category. In Table 3,
we seen that any synset that is similar to concepts like ‘big’, ‘alarming’, and
‘satisfactory’ are good predictors of sentiment, and this corresponds well with
our intuition. Sometimes, a high ranked feature can give insight into how con-
sumers write their reviews. A good example is the ‘CD-dep-$’ feature in the
‘POS-grammar’ category, which denotes a concrete price, such as “$100”, and is
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Category Synsets Polarity-grammar
1 SERVICE#GENERAL 3 not#RB#1 6 neutral-amod-positive
40 FOOD#QUALITY 27 ok#JJ#1 7 neutral-amod-neutral
42 RESTAURANT#PRICES 37 good#JJ#1 11 neutral-neg-negative

Related-synsets POS-grammar Lemma-grammar
2 Similar To big#JJ#1 9 NN-amod-JJ 28 ok-cop-be
8 Similar To alarming#JJ#1 25 JJ-cop-VBZ 35 good-cop-be
10 Similar To satisfactory#JJ#1 34 CD-dep-$ 374 good-punct-.

Synset-grammmar Lemma Negation Present
29 ok#JJ#1-cop-be#VB#1 5 not 4 Negation present
45 good#JJ#1-cop-be#VB#1 22 do
705 average#JJ#1-cop-be#VB#1 26 ok

Table 3: Top 3 features for each feature type with their Information Gain based
rank.

predominantly used in conjunction with a negative sentiment. Apparently, when
people are upset about the price of a restaurant, they feel the need to prove their
point by mentioning the exact price.

Last, the ‘Polarity-grammar’ features also score well in terms of Information
Gain. The three top features in this category would match phrases such as “good
service”, “big portions”, and “not returning”, respectively. Even the ‘neutral-
amod-neutral’ is used in a positive context about 80% of the time and is therefore
a good predictor of positive sentiment. The first and third feature are obvious
predictors for positive and negative sentiment, respectively.

In terms of computing time, if we define the training time when using all
features to be 100%, we find that training with 1% of the features takes about
20% of the original time, whereas employing only 0.1% of the features requires
just over 1% of the original time.

5 Conclusion and future work

In this paper, filtering individual features using Information Gain is shown to
provide good results. With only the 1% best features in terms of Information
Gain, an accuracy is obtained that is only 2.9% below the accuracy obtained
when using all features. Furthermore, training the SVM with 1% of the features
takes only 20% of the time required to train it using all features. Apart from fea-
ture selection, we have shown the effectiveness of a number of relatively unknown
types of features, such as ‘Related-synsets’ and ‘Polarity-grammar’. For future
work, the set of features can be expanded even further to include a comparison
of grammar based features against n-gram based features. Also of interest is the
context of an aspect from which we compute the sentiment score. Currently, this
is determined using a simple word distance around the aspect words, but this
could be done in a more advanced way, for instance using grammatical relations
or even Rhetorical Structure Theory [9].
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