Noname manuscript No.
(will be inserted by the editor)

A Reverse Engineering Approach for Automatic
Annotation of Web Pages

Roberto De Virgiliol, Flavius Frasincar?, Walter
Hop?, Stephan Lachner?

the date of receipt and acceptance should be inserted later

Abstract The Semantic Web is gaining increasing interest to fulfill the need of shar-
ing, retrieving, and reusing information. Since Web pages are designed to be read
by people, not machines, searching and reusing information on the Web is a difficult
task without human participation. To this aim adding semantics (i.e meaning) to a
Web page would help the machines to understand Web contents and better support
the Web search process. One of the latest developments in this field is Google’s Rich
Snippets, a service for Web site owners to add semantics to their Web pages. In this
paper we provide a structured approach to automatically annotate a Web page with
Rich Snippets RDFa tags. Exploiting a data reverse engineering method, combined
with several heuristics, and a named entity recognition technique, our method is
capable of recognizing and annotating a subset of Rich Snippets’” vocabulary, i.e.,
all the attributes of its Review concept, and the names of the Person and Organiza-
tion concepts. We implemented tools and services and evaluated the accuracy of
the approach on real E-commerce Web sites.

Keywords RDFa, Rich Snippets, DRE, Web Site Segmentation

1 Introduction

Ever since Tim Berners Lee presented, in 2006, the design principles for Linked
Open Data’, the public availability of Semantic-Web data has grown rapidly. To-
day, practitioners, organizations and universities are all contributing to the Web of
Data by building RDF repositories either from scratch or by publishing data stored
in traditional formats such as relational databases and HTML documents [1]. In
addition, ontology languages such as RDFS and OWL (with all their relatives and

! Dipartimento di Informatica e Automazione

Universitd Roma Tre, Rome, Italy

E-mail: devirgilio@dia.uniroma3.it

2Erasmus University Rotterdam

Erasmus School of Economics

PO Box 1738, NL-3000 DR, Rotterdam, The Netherlands

E-mail: {w.w.hop, s.lachner}@student.eur.nl, frasincar@ese.eur.nl

1 http://linkeddata.org/

http://linkeddata.org/

versions) support this trend by providing a means to annotate Web data with meta-
data enabling different forms of reasoning, depending on the expressiveness of the
adopted language.

In this scenario, the Semantic Web [2] is an extension to the World Wide Web in
which information is defined semantically (as concepts with meaning) instead of
presented visually. It will allow the Web to match requests of people and machines
to Web content in a more accurate way. Although it may unfold in interesting new
functionality involving finding, sharing, and combining information on the Web,
wide adoption of the Semantic Web is yet to be waited for.

One of the latest developments in this field is Google’s Rich Snippets [3], a ser-
vice for Web site owners to add semantics to their (existing) Web pages using the
Google’s vocabulary [4] (i.e. a list of concepts and their attributes). Although the
existing vocabulary is limited to a small number of simple concepts (i.e Person, Re-
view, Review Aggregate, Product, and Organization) it is likely only a matter of time
before new concepts will be introduced. Fig. 1 shows an example of a Rich Snippet
in Google’s search results. When a Web site uses Rich Snippets on its pages, recog-
nized concepts will be highlighted in Google’s search results using visual cues and
a brief display of the concepts’ attributes.

n d BBQ [had the pulled pork sandwich, Drooling Dog
BBQ is a great place to stop at on your way up the hill to Tahoe ..
www.yelp com/biz/drooling-dog-bar-b-g-colfax - 75k - Cached - Similar pages

Fig.1 An example of a Review Aggregate Rich Snippet in Google search results.

Since a highlighted and more explanatory result will stand out in long uniform
lists of search results, it is hoped that this feature will incentivize Web site owners to
start using Rich Snippets on their Web sites. Future usage of annotated Web pages is
not limited to displaying Rich Snippets in search results. It is only a small step to in-
troduce more advanced search capabilities. For example, you might search for Web
pages about the company “Philip Morris” or the programming language “Java”,
while ignoring Web pages about unrelated entity types (such as persons and geo-
graphical regions) with the same name. Another example would be to query Google
for products sold in a certain price range with positive reviews.

The success of Rich Snippets depends on the support of search engines on one
hand, and the coordinated adoption by a loosely-knit community of Web site own-
ers and software companies on the other hand. Although Rich Snippets were intro-
duced quite recently (i.e. May 12, 2009), it appears that Google seriously commits
itself to a future of semantic search. For Web site owners however, adopting Rich
Snippets still requires a considerable effort. If a Web site owner retrieves their infor-
mation as structured data from a database, annotating pages with Rich Snippets is
a simple exercise, as it is sufficient to identify its concepts in generated pages and
add attributes to the generated HTML output. Fig. 2 shows an example of semantic
annotation of a Review entity in a Web page. It is supported by the RDFa [5] format.

Nevertheless, automatic pre-generation of annotations is not always possible.
Problems appear for instance when information is not available in structured databa-

Konal a Vi | as</ span>

Meenakshi Ammal </ span>

3.7

1st April 2005

Best south Indian vegetarian food in South Bay
</ span>

Fig. 2 A Rich Snippets annotation of a Review entity, using the RDFa format.

se form, or when the Web site owner does not have full control over the Web page
generation process. Other problem instances arise if the site owner must start from
static documents such as those originating from legacy software systems or OCR
methods. Semantically annotating these Web pages may then become a matter of
time-consuming manual labor.

In this paper, we define a Data Reverse Engineering (DRE) process to read exist-
ing Web pages and automatically annotate them with the necessary RDFa attributes
defined by Google Rich Snippets. We have explored recognizing the Rich Snippets
concepts Reviews, People and Organizations. Therefore we employed a DRE algo-
rithm [6] and Named Entity Recognition (NER) techniques, implementing a tool
that takes a URL as an input, and outputs a Google Rich Snippets-compliant Web
page. Our approach is related to recent techniques for extracting information from
the Web [7]. As for most of these proposals, we start from the observation that data
published in the pages of large sites usually (i) come from a back-end database and
(ii) are embedded within shared HTML templates. Therefore, the extraction pro-
cess can rely on the inference of a description of the shared templates. Although
this approach is applicable on Web documents, it does not exploit the hypertext
structure of Web documents. Our work focuses on discovering this structure as
well. Some research efforts show that users always expect that certain functional
parts of a Web page (e.g., navigational links, advertisement bars and so on) appears
at certain positions of a page®. Additionally, there exist blocks of information that
involve frequent HTML elements and have a higher coherence. That is to say, in
Web pages there are many unique information features, which can be used to help
the extraction of blocks involving homogeneous information. Once extracted, such
informative blocks are labeled by NER methods supporting recognizing the Rich
Snippets concepts. The overall process results completely automatic.

The remainder of this paper is organized as follows. Section 2 introduces the
state of the art. Section 3 illustrates an architecture of reference to provide a func-
tional global view of the approach. Section 4 describes step-by-step the annotation
process. Section 5 discusses the implementation of our framework and evaluates
the performance of our algorithm. Finally, in Section 6 we outline conclusions and
future work.

2 Related Work

Named Entity Recognition. Our work is related to a research field called Named
Entity Recognition (NER). NER aims at processing natural text and identifying cer-
tain occurrences of words or expressions as belonging to particular categories of

2 For more details see http:/ /www.surl.org/

http://www.surl.org/

named entities [8]. These named entities belong to predefined entity types (cate-
gories) such as persons, organizations, locations, expressions of time, etc. Although
most techniques rely on gazetteers (lists of names of people, organizations, loca-
tions, and other named entities), NER is not simply a matter of searching text for
known words. Such a word list would be enormously long and not feasible to com-
pose. Moreover, certain words can belong to multiple concepts of different entity
types. The text “Philip Morris” might be in the list of names as well in the list of
companies, leading to an ambiguity issue. Therefore, NER involves more advanced
techniques.

Most approaches to NER problems can be classified as statistical, grammar-
based, or hybrids of these two approaches. Statistical systems typically make use
of annotated training data from which word lists are generated and features are
selected. The classifier then uses a statistical model to compute the probability of
a word belonging to one of the output classes based on its context. As mentioned
above, NER usually depends on extensive gazetteers. However, there are researchers
that argue against the use of large gazetteers. Participants in the Named Entity
recognition competition (part of MUC-6) report that gazetteers did not make a sig-
nificant difference to their systems [9,10]. In [8] the authors avoid large gazetteers by
combining rule-based grammars with statistical (maximum entropy) models. They
show that it is sufficient to use relatively small gazetteers of well-known names,
rather than large gazetteers of low-frequency names.

Source code analysis. Our project makes use of NER techniques to recognize and la-
bel the names of Person and Organization entities, two basic concepts from Google’s
Rich Snippets vocabulary. However, not the recognition of every entity that is in the
Google vocabulary can be reduced to a NER problem. Review text bodies for exam-
ple won't let themselves be captured by applying NER. To be able to automatically
recognize reviews on a Web page, a set of rules or patterns to extract a review has
to be found. This so-called “pattern-matching’ on a Web page can be done either by
inspecting the source code of the page or by analyzing linguistic properties.

Ranking text sections on a Web page in terms of importance is an important
topic, popularized by search engines like Google, which uses HTML tags such as
h1, h2, etc. to determine the relevance of information found on a Web page. This
simple heuristic is also useful to find summaries and titles of text bodies. While
actual algorithms used by search engine companies remain unpublished, we have
implemented a tag ranking heuristic based on current assumptions by search en-
gine specialists [11]. An example of more extensive source code analysis is the work
of De Virgilio and Torlone [6]. In this study, the authors reverse engineer data that is
contained in (data-intensive) Web pages by analyzing the structure of that page and
how it would be visually formatted on a screen. The underlying idea is that seman-
tically identical data is mostly displayed in visually grouped object blocks. Another
example in this field is recognizing a postal address from a Web page. An interest-
ing algorithm, based on first assessing visual similarity of Web page elements and
then using a grammar-based approach, is sketched in [12]. This method could be
helpful in detecting postal addresses of Person and Organization entities.

Search engines. Google Rich Snippets is not the only service aimed at integrating
semantic information into search engines. A similar initiative is Yahoo! SearchMon-
key, a service that also traverses Web sites to find RDFa or Microformats annota-

Review* Product Person* Organization*
-itemreviewed” -brand -name* -name*
-rating* -category -nickname -url
-reviewer”® -description -url -address
-dtreviewed* -name -affiliation -street-address
-description* -price -address -locality
-summary* -photo -street-address -region

-url -locality -postal-code
-region -country-name
ReviewAggregate -postal-code -tel
-itemreviewed -country-name
-rating -photo
-average -title
-count -role
-summary

Fig. 3 Vocabulary supported by Google Rich Snippets. Entities and attributes marked with an as-
terisk (*) will be annotated by our method.

tions for concepts such as Reviews, Persons and Organizations. Additionally, it al-
lows Web site owners to create applications that build “enhanced results” using
this information [13]. Fortunately, Google Rich Snippets and Yahoo! SearchMonkey
have overlapping vocabularies which both include the entities recognized by our
method, which means that the resulting annotated Web pages can be interpreted by
both search engines.

3 The overall process

Google Rich Snippets supports a vocabulary concerning Reviews on different Prod-
ucts, as shown in Fig. 3.

Our main focus is on recognizing Review entities and their attributes. In par-
ticular in detail we extract the following subset of entities and attributes from the
vocabulary

REVIEW = (itemreviewed, rating, reviewer, dtreviewed, description, summary)
PERSON = (name)
ORGANIZATION = (name)

Our framework for automatically adding Google Rich Snippets annotations to
a Web page is composed of a number of stages. Fig. 4 sketches the main steps of our
framework and their interdependencies.

The process starts with a Preprocessing step to clean and to make uniform the
(X)HTML code of Web pages. Unfortunately, currently a large number of Web pages
are invalid (more than 50% in some survey [14]) which may not pose a problem for
the human user but makes automatic processing harder. Further, Web pages can be
transmitted in various encodings. All encodings should be converted to a common
format, i.e. UTF-8, in order to allow uniform processing.

L—T\)—v Data Cleaning —vuge |

Preprocessing
| Hotspot Finders H Hotspot Funnel I n Hotspots
Identification
. Attribute Reviewness .
in?
LbjNer Tagger Parsers Calculator > Imin ? n Reviews
) L Entity Walker n Re.c.ord Annotation Style

Entity Recognition Entities

Annotated Page
~— /\

Fig. 4 Stages of our recognition algorithm, their interdependencies and intermediate products.

Requirements to the algorithm are a high sensitivity (low false negative rate),
good specificity (low false positive rate), and reasonable robustness (i.e. the ability
to be used on a variety of Web pages that do not match the trained set). Of high im-
portance therefore is the task to choose the parts of a Web page to investigate. We
use the term “hotspot” to identify an area of a page that is — before intensive analy-
sis — most likely to be a place of interest (e.g a document section containing a prod-
uct review to annotate). To this aim an Identification step is responsible to determine
such hotspots. It is supported by the segmentation algorithm provided by De Vir-
gilio and Torlone [6] that use a Web data model [15] to describe abstract structural
features of HTML pages. Combining cognitive visual analysis and hierarchy-based
algorithms, they identify blocks grouping semantically related objects occurring in
Web pages, and generate a logical schema of a Web site. Exploiting such segmenta-
tion, we select blocks of interest, corresponding to the most relevant hotspots, and
introducing effective heuristics we filter false positive portions of page. Then the
Entity Recognition phase exploits a named entity recognition algorithm to extract en-
tities and attributes of pages matching the portion of Review vocabulary discussed
above. Finally, the Annotation takes place supported by RDFa format to model the
annotations in the page.

In the following section we will describe in detail the entire process in terms of
both identification of hotspots and entity recognition.

o— . .
[discount=d1] |O0— [item=il] @ »
oO— |€&— l<—
o—
[Discounts] [Items]
o—-
5= O
o—
o—
[discount] [Linker1] [Linker2] [cm;imies] [Item] [Linker3]
[H | [Detail]
ome
[category=cl]

Fig.5 The WSM representation of a commercial Web Site

4 Automatic annotation of Web pages
4.1 Hotspot identification

Our need to identify hotspots on a Web page starts first from the necessity to demar-
cate recognized entities. A recognized review must have a start and end location
that together span over all its properties. Also, we may want to perform transfor-
mations or computationally expensive analyses on texts. It is not necessary to know
for sure if a hotspot definitely corresponds to a review: it is not problematic if we
are too eager in recognizing an element, but it is unrecoverable if we now skip an
element for further processing.

Following the approach in [6], we have to select portions of an HTML pages
and map them to constructs of the Web Site Model (WSM) [15]. WSM defines a con-
ceptual modeling of the main structures occurring into a Web page. More precisely,
it organizes a page in a set of meta containers related by links. A metacontainer is
atomic if it represents an atomic portion of a linked page and includes a direct ref-
erence to the elements of a content from which it takes data. It can be basic if it
shows information about a single object (e.g. an instance of an entity) or multi if it
shows information about a set of objects. A metacontainer is a linker if it contains
an anchor between containers. Otherwise a metacontainer is complex if it is articu-
lated in other containers (atomic, complex or linker). So a page represents a complex
container. We can surf the containers through several navigational structures such as
Indexes to show a list of objects without presenting the detailed information of each
one, Guided Tours to show commands for accessing the elements of an ordered set
of objects, and Entries to show edit field for inputting values used for searching
within a set of objects meeting a condition. For instance, Fig. 5 shows a commercial
Web site about several discounted items grouped in categories, represented in the
WSM model. In the Figure, Hore and Det ai | correspond to complex metacontain-
ers. In particular Honme describes different discounted items as basic containers (i.e.
di scount) that can be navigated by an Index structure (i.e. Di scounts).

Implementing the segmentation algorithm of [6], we determine several blocks
into a Web page identified by the HTML tags pattern to reach them. As in [6], the
idea is to identify a set of container tags representing candidates to be mapped. In
particular we refer to HTML tags that bring to information content in a Web page
such as UL, TABLE, DIV, BODY, We call non informative tags HTML tags
that don’t bring to informative content (such as SPAN, B and so on). Each pattern

rooted in a tag container will be translated into a metacontainer using a particu-
lar navigational structure (Index, Guided Tour or Entry). Let’s consider to define
a target pattern t for each construct. For instance the Index navigational structure
presents UL- LI - A as target pattern ¢7,,4.... If we want to map a source pattern s to
trndex We have to find an alignment between s and t7,,4.,. To this aim we will use
the dynamic programming algorithm to calculate the optimal score and to find the
optimal alignment between two patterns (i.e. alignment between two strings) [16].

First, we will compute the optimal alignment for every substring and save those
scores in a matrix. For two strings, s of length m and ¢ of length n, D[i, j] is defined
to be the best score of aligning the two substrings s[1...j] and ¢[1...i]. A scoring
matrix for scoring substitutions, matches, and gap creation is needed. The score is 2
for a match, 1 for a partial match and -1 for a mismatch. The match is based on tags
comparison between patterns. A match (mismatch) is between container tags while
a partial match is between a container tag and a non informative tag. Then we will
consider global alignments: the conditions are set such that we compute the best
score and find the best alignment of two complete strings. Therefore the best score
for the alignment is precisely D[m, n], the last value in the table. We will compute
D[m, n] by computing D[, j] for all values of i and j where ¢ ranges from 0 to m
and j ranges from 0 to n. These scores, the D[, j] are the optimal scores for aligning
every substring, s[1...j] and ¢[1...1].

In general, dynamic programming has two phases: the forward phase and the
backward phase. In the forward phase, we compute the optimal cost for each sub-
problem. In the backward phase, we reconstruct the solution that gives the optimal
cost. For our string matching problem, specifically, we will: (i) use the recurrence
relation to do the tabular computation of all D[s, j] (forward phase), and (ii) do a
traceback to find the optimal alignment.

The recurrence relation establishes a relationship between D[z, j] and values of
D with indices smaller than i and j. When there are no smaller values of i and
J then the values of DJi, j] must be stated explicitly in the base conditions. The
base conditions are used to calculate the scores in the first row and column where
there are no matrix elements above and to the left. This corresponds to aligning
with strings of gaps. After the base conditions have been established, the recurrence
relation is used to compute all values of D¢, j] in the table. The recurrence relation
is:

D[i, j] = maxz{D[i — 1,5 — 1] + sim-mat[s[j], t[i]], D[i — 1, j] + gap-score, D[i, j — 1] + gap-score}

In other words, if you have an optimal alignment up to D[i — 1,j — 1] there are
only three possibilities of what could happen next: (1) the characters for s[i] and ¢[j]
match, (2) a gap is introduced in ¢ and (3) a gap is introduced in s. It is not possible
to add a gap to both substrings. The maximum of the three scores will be chosen as
the optimal score and is written in matrix element D[3, j].

The second phase is to construct the optimal alignment by tracing back in the
matrix any path from D[m,n] to D0, 0] that led to the highest score. More than
one possibility can exist because it is possible that there are more than one ways of
achieving the optimal score in each matrix element D[s, j]. In our case we have to
select the target pattern that presents the best scoring matrix (i.e. the best alignment
with the source pattern s).

For instance consider the pattern s, that is UL- LI - DI V- A. We have to map s into a
metaconstruct of WSM. We have to find an alignment between s and a target pattern
t. The best alignment is with the target pattern UL- LI - A. To this aim, we obtain the
following scoring matrix.

t/s | UL | LI DV | A
UL 2 -1 1 -1
LI -1 2 1 -1
A -1 -1 1 2

The best alignment is UL- LI - #- A, therefore we will map the pattern s with an
Index structure of WSM.

What then, should be considered a hotspot? First and foremost, any WSM ele-
ment that contains a reasonable amount of natural text qualifies as a hotspot. How-
ever, this might miss very short or long elements; therefore we can also use cues
such as HTML name, id and class attributes of elements, or their textual contents. It
is simple to realize that an instance of the concept Review will most likely have a
visual cue to the reader indicating this, or a descriptive element name on the part
of the Web page designer. We can match these naively with a word list. To discover
reviews we look for the terms r evi ew and r at i ng. Other heuristics that can be
used to find hotspots are the presence of repeating element structures, which are
an indication of automatically generated content in a page, or similarity of HTML
element id attributes (for instance, a common prefix or Levenshtein distance). How-
ever, we have not pursued these heuristics in our implementation because the first
two tests already gave a very good coverage. After that, we must remove duplicates,
as multiple hotspot finders will likely trigger on the same hotspots. Every hotspot
finding measure increments the “hotness” of a hotspot. This measure is retained for
subsequent filtering of hotspots before further processing.

A large portion of a Web page is limited to non-visual and non-textual items
such as navigation sections, styling information, advertisements, etc. To the human
user, these are immediately distinct from textual content, but to automated systems
this may not be so clear. For instance, navigations certainly contain many terms
that turn up in our cue word lists. We therefore introduce the measure tag ratio for
a DOM node, which we define in Equation 1:

Ly —Ly

t
r i

)

where Ly is the total character length of the DOM node and its descendants includ-
ing all the HTML tags; and L is the character length of all natural text contained
within the node. Ly is directly taken from the HTML document, while L is con-
structed by removing all the HTML tags, normalizing whitespace characters such
as newlines and tabs to single spaces, and then trimming the output. An example
of these measures is presented in Fig. 6.

If a hotspot has a high (near 1) value of ¢, then the element consists almost
entirely of HTML tags. This is uncommon for textual content, so we should disqual-
ify the element for further processing. A reasonable threshold value 7mq: must be
determined empirically from test data. At the same time, we want to stop false pos-
itive recognition of too short texts that stand on their own in the page. For instance,

10

 Click here

Ly =10characters

T
L, = 37characters

Fig. 6 Example of Ly and L measures of an HTML fragment.

a page title or caption may contain some very on-topic terms, causing it to be rec-
ognized as a hotspot. We will disqualify hotspots that contain less than a minimum
amount of natural text, L,,;, (number of characters). In a similar fashion we will
be throwing away hotspots that are displayed as inline (with respect to text) by a
browser, i.e., they are part of a natural sentence flow. Examples of these are a or b
tags. A hotspot demarcated by these elements is part of a larger block-level element
and is not a distinct page area in its own right. In these cases, we expect the outer
element to be recognized as a hotspot as well. Since we have multiple methods to
find hotspots, we filter next on “best hotness”. Different Web pages may conform
more or less to our different hotspot-finding heuristics, but within a single Web page,
different entities of the same type generally have the same hotness measures, espe-
cially when the Web pages are generated automatically. When additional hotspot
finders would be added, this filter step could be changed to require for instance 75%
of the maximum hotness found on the whole page, in order to make this step more
robust. An important property of hotspots for a certain entity type is finally that
they are disjunct. Only one review entity can be an “active” hotspot at any location
in the document. As a Web page document is a tree, this means that hotspots cannot
be contained in each other. For instance, it is thinkable that we would consider two
consecutive page elements to be hotspots, but at the same time consider their com-
bined parent element a hotspot as well, as it certainly matches most of the criteria
that hold for its descendants. In these cases, we should throw away all the “super-
hotspots” that contain other hotspots, so that only the most minimal valid hotspots
remain. After this stage ends, we have identified a number of hotspot page elements
that may correspond to review entities. We will now inspect these elements more
closely.

4.2 Named entity recognition

In the context of Google Rich Snippets’ vocabulary, NER appears mostly useful in
discovering the names of reviewed items and review authors. Similarly, NER can
be used to discover names of person and organization entities.

We have experimented with adding more knowledge to an existing named-
entity tagger by training it on review texts containing product names. These prod-
uct names ideally should form a new entity type for the tagger. Merging them into
an existing model encounters the nontrivial problem of “transfer learning”, i.e., first
training the model on one dataset and then trying to add more knowledge to the
existing model. To update the models of the tagger, we would have to retrain the tag-
ger from scratch using its original datasets in order to retain its original usefulness.

11

Tag name Importance

h1 100
h2 90
h3 80
h4 70
h5 60
h6 50
strong 10
b 10

Table 1 Relative tag importance. When ranking two tags, only the order of the tags’ scores is con-
sidered. The absolute values are not significant, but are chosen in a way that more tag rankings can
later be added.

A complicating feature is that product names are often not mentioned in natural text
portions of Web pages, but rather in separate page sections, which prohibits using
natural language-based methods. From our testing data, it appears that named en-
tity recognition alone is often not successful to determine names of reviewed items
and review authors. The nature of review texts on the Web is such that often the
name of the reviewed item is not mentioned at all. Therefore, additional heuristics
are needed to provide better coverage for detection of the name of the reviewed
item and the review author. These heuristics may use data from the NER phase, the
review text itself, the Web page source code and its properties such as the page title.

As defined in the Google Rich Snippets summary, reviews have some prede-
fined attributes, such as the reviewed item, summary, rating, date and review author. In
our approach, each of these attributes has a separate attribute parser which follows
its own heuristics.

Summary attribute. Ing ranking is a method that we use to discern the document
element containing the most important title, heading, or summary of a page section.
We rank element tags first according to their relative importance, which is modeled
as shown in Table 1. If two elements are tied, we rank them using their position
on the page, where higher positioned items have a better rank. This strategy corre-
sponds to the approach that Google is currently assumed to use when it ranks the
importance of information in a Web page for inclusion in its search index [11].

Author attribute. The author of a review is often supplied on the page within the
review element. We employ two strategies for finding the author’s name. First, we
walk through the DOM subtree of the review to find any elements that most likely
contain a name or nickname of the review author. We look for tags with HTML class,
id and name attributes matching one of the following strings:

— aut hor
— user nane
- revi ewer

If this approach does not yield a positive result, we inspect the review text for
named entities of type Person. This entity type has been recognized by the Named
Entity Recognition stage earlier. We expect this approach to be more error-prone, as
for instance other person entities may become incorrectly recognized as the author.

12

Product name attribute. The product name attribute contains the name of the re-
viewed item. During development of the methodology, we found that reviews on
Web sites generally do not contain the name of the reviewed item. Often, a review
Web page contains a variable number of reviews, while the product name is only
mentioned once. As discussed earlier, training a NER tool to recognize product
names as a proper entity class is outside the scope of this work. Therefore we derive
the product name from the Web page title. The page title often contains unnecessary
extra information, such as the name of the Web site and a descriptor text like “Prod-
uct reviews”. These texts should not be present in the product name. Therefore, we
remove some strings from the result:

— variants of the name and the domain name of the Web URL of the Page (e.g.,
amazon, AMAzoMN.com, WWw.amazon.com);

- stop words such as r evi ews and pr oduct;

— separator characters suchas: - |

Rating attribute. A pattern matching approach is used to discover the rating of
a review, such as “4 out of 5”. Recognizing ratings can be problematic, as there is
no common standard for their notation; for instance, one site may use a 10-point
numerical scale instead of Rich Snippets’” default 5-point scale, while another site
may use a graphical “stars” definition that usually embeds some kind of reference
in the img src attribute. If the text matches a list of predefined regular expressions,
such as:

- 4.0 out of 5.0
-4.0/ 5.0

we are able to recognize the rating as well as the scale. If we cannot recognize the
scale, we assume the lowest of a 5-point, 10-point, and 100-point scale, such that
the rating is lower than or equal to the scale maximum. Without resorting to site-
specific hints, it is expected that this approach will likely not be very robust or
generalizable. At the same time, it will be possible to recognize multiple similar
attributes within an entity’s boundaries (e.g., two person names or two date strings),
and we need to have a tie-breaking algorithm for which we currently do not have a
method. At the moment, we use the naive strategy of taking the first occurrence as
the most authoritative, but it is likely that there will be false positives.

Date attribute. The date of an entity can be gathered by using a series of regular ex-
pressions for common date formats. This list of regular expressions is now focused
towards a range of date descriptions found in test Web pages, such as:

- 1-11-2009
-1 Nov 2009
— Novenber 1st, 2009

This list of date formats might be broadened to include phrases such as “3 months
ago”. Note that there are some ambiguities in general date formatting (“1-11-2009”
might be in M-D-Y or D-M-Y notation). Google Rich Snippets does not pose any
requirements to this format, so we simply retain the date as it was found on the
page and leave the ambiguity to the interpreter.

13

4.3 Reviewness filtering

As we have discussed, the strategy during hotspot determination must be suffi-
ciently eager to provide a wide selection of elements to process using the methods
described above. After we have analyzed the elements further, they should now
be annotated with various semantical attributes. In case an element slipped by the
hotspot funnel that is however clearly not a review entity, it will most likely not
have attributes such as a rating, date, summary or author. We use this property to
perform a calculation of a review’s “reviewness” r. This measure corresponds to
the number of semantical attributes that have been recognized, excluding the prod-
uct name attribute, as that attribute is derived from the page title and therefore its
recognition always succeeds. Any element not satisfying the basic requirements of
a review — in our current model, this is only the presence of a product name — re-
ceives a negative reviewness. If the basic requirement is met, reviewness starts out
at zero, and one point is added for every semantic attribute that was successfully
bound to it. After the calculation step, there is a final filtering step. Any reviews
which do not satisfy a minimal reviewness of r,,;, will be ignored. The value of
this parameter must be determined during testing.

4.4 Collecting record-based entities

During the main process of recognizing entities, the named entity recognizer (NER)
has been run on all the reviews. In the final recognition stage, the names of Person
and Organization entities are harvested from the review texts. For record-based
entities (Persons and Organizations), in our current method only the names of the
entities (and not their attributes, such as phone numbers, postal addresses, etc.) are
discovered. The names of these entities are simply retrieved from the NER output
as we incorporate a NER tagger that supports these entity types by default.

4.5 Annotation

RDFa® is one of the two supported annotation styles in Google Rich Snippets; the
other is Microformats*. The simpler Microformats style uses HTML class attributes
populated with conventional names for certain properties, which has the advan-
tage of being usable for Web page formatting and easy to write for humans. How-
ever, these advantages are largely irrelevant for our purpose. RDFa [5] benefits from
RDEF, the W3C’s standard for interoperable machine-readable data. RDFa is consid-
ered more flexible and semantically rich than Microformats [17]. Additionally, Rich
Snippets in RDFa allow for extended functionality, such as adding URL links to
Rich Snippet properties. Therefore RDFa is a better choice for meta-data annotation
than Microformats.

In addition to RDFa, we found it useful to implement a “layout” annotation
style where concept boundaries and attributes are displayed visually using HTML
style attributes. This aids debugging and makes it easier to quickly assess the algo-
rithm’s output on a Web page, as is shown in Fig. 7. We recall that the attributes

3 http:/ /www.w3.org/TR/xhtml-rdfa-primer/
4 http:/ /microformats.org/about

http://www.w3.org/TR/xhtml-rdfa-primer/
http://microformats.org/about

14

26 of 27 people found the following review helpful:

h
:First of all, 1 gave to this book 1 start because:
'

'
{Although I don't believe in the perfect C++ textbook that teaches]
:everything and satisfy the absolute novices as well as the seasoned 1]
experts, 'Absolute C++" by is the very first C++1 i1- It is too expensive
\textbook (the book that teaches you the syntax of C++ language) that i 12- You can not see the solution of the programming projects unless you

i

'

'

'

'

'

ireally satisfies me with the completeness of its coverage of the C++ do not subseribe to mycodemate.com

language without verbosity of the... @ 150, I went to mycode.com and guess what? 1 have to pay !!!
i the full review > i

i
iRegistering for: MyCodeMate for Absolute C:++, 3rd edition by Savitch.
Published on April 12, 2002 by NeoTristan |

'
Online..

> See more 5 star, 4 star reviews the fullreview

Published 23 months ago by Giuseppe Bertuccini

> See more 3 star, 2 star, 1 star reviews

<Previous |12 3 | Next» Most Helpful First | Newest First

126 of 27 people found the following review helpful:
 cummerys Absalidtely 3005 FatFree I date A 19,2002
'
1By NeoTristan "NeoTristan" © - See all my reviews
:This review is from: Absolute C++ (Paperback]
'

IAlthough I don't believe in the perfect C++ textbook that teaches everything and satisfy the absolute novices as well as the seasoned experts, "Absolute C++ by |
h is the very first C+ + textbook (the book that teaches you the syntax of C++ language) that really satisfies me with the completeness of its!
\coverage of the C++ language without verbosity of the other countless textbooks available in the market. Its coverage of C++ topics is concise but thorough. Its 1
lorganization is neat and its presentation is very pleasant to the eyes. Each topic s presented in the sensible order which facilitates the readers to learn C++ step
:by step without getting lost or tangled up with the bits of coverage all over the textbook. Each chapter contains the handful of review exercises with the complete
\answers, This textbook is lean and nutritious (100% fat-free). Anyone who really hates textbooks in the remote vidinity of ‘C++ How to Program’ by [IElll and
\Deitel should take a look at this.

Fig. 7 Annotation of a Web page using the ‘layout” annotation style. Review entities are displayed
in yellow; review properties are green (and prefixed with the property name); person entities are
purple; organization entities are blue.

of an RDFa-annotated entity must remain within its boundaries (the element an-
notated with typeof). If an entity attribute was defined intrinsically, we know its
textual position in the source HTML and we will rewrite an RDFa tag in place. If
the attribute does not correspond to an HTML fragment within the entity (for in-
stance when a product name is derived from the page title), we will write the RDFa
tag at the bottom of the element. Google Rich Snippets supports annotating graph-
ical ratings by placing class and alt attributes on a rating image. This feature can be
used to insert rating meta-data without affecting the Web page layout, as displayed
here:
<ing class="rating" src="stars.gif" alt="4 Star Rating: Recommended" />

When parsing the page, Google inspects image elements marked with class r at i ng
and parses the alt tag in an undisclosed way. We choose not to implement this
Rich Snippets feature, as using non-standard annotations outside the RDFa for-
mat is detrimental to further automatic processing of the generated document. In
these cases, we do not modify the rating image and inject an additional RDFa-
annotated property at the bottom of the element. Finally, after annotation, a base
href HTML tag is injected at the top of the Web page body. This ensures that the
resulting Web page can still be displayed using its original images and styling, even
if the page is now served from a different location.

5 Experimental Results

Benchmark System. The approach was developed into a tool with a PHP front-
end to reach it by Web. It is composed by three modules implementing the three

15

main steps discussed above. The cleaning of seriously invalid (X)HTML is achieved
by the PHP’s tidy support. The hotspot identification module implements the seg-
mentation algorithm provided in [6] and the dynamic programming algorithm dis-
cussed in Section 4. For named entity recognition purposes the Lbj-Based Named
Entity Tagger (LbjNer) [18] was used. LbjNer is now one of the best performing so-
lutions. It reached very promising F-measure (F1) scores. For instance it obtained
a F1 score of 85.74 on the MUC-7 test set’, and 90.74 on the Reuters2003 test set®.
One of the competitors, the Stanford NER tool, achieved a F1 score of 80.62 and
87.04 on the MUC-7 and Reuters2003 test set, respectively. The LbjNer tagger is ca-
pable of recognizing named entities of types Person, Organization, Location, and Misc
in natural English text with a very impressive accuracy. It employs various statisti-
cal methods as well as heuristics. The tagger comes pre-trained on a large corpus
of data extracted from Wikipedia and other well-known sources. This makes the
tagger attractive for reuse in other projects such as these.

For our test, we used a dual quad core 2.66GHz Intel Xeon, running Linux Gen-
too, with 4 GB of memory, 2 MB cache, and a 2-disk 1Tbyte striped RAID array:.

Design. Overall, an important issue in designing the software was modularity and
extensibility. As the work is mostly exploratory in nature, it is critical to be flexible
during development, which means that the various parts of the tool should run in
relative separation with few dependencies on each other. Therefore, we have split
off the various stages of the algorithm into independently working classes. Where
multiple strategies are used for a certain stage, such as during hotspot finding, they
are implemented in a ‘pluggable’ fashion so that it is easy to add further heuristics
that expand or focus the recognition. In Fig. 4, these stages are marked as a compos-
ite process (two vertical lines).

The class PageAnnot at or takes care of driving the various phases of the al-
gorithm and is useful as a starting point for reading the source code. Separate
Entity as well as At tri but e subclasses take care of their own parsing, so that
it is tractable to extend the tool with other semantics.

Where empirically established constants are used, such as the maximum tag
ratio Tmaa Or hotspot length limits, these are made explicit through class constants.
Should it not be possible to find generally acceptable values for them, then a phase
could be added in the algorithm to discover them on a per-page basis.

There are various use-cases for a tool such as demonstrated. One might be to use
in an off-line fashion to annotate documents on a local computer, another might be
to run as a Web service. We have implemented two “front-end” scripts, cl i . php
and i ndex. php which run on the command line and a Web server respectively.

Named entity tagger. Statistical and grammar-based named entity recognition meth-
ods require natural text as an input in order to perform well. Also, the used named
entity tagger LbjNer cannot yet handle HTML input, breaking validation of the out-
put. Therefore, we must collect natural text first, and we should collect it from only
the hotspots in the document, as these are the places where the NER tagger will
work reliably.

5 http:/ /www.itL.nist.gov /iad /894.02 /related _projects/muc/index.html
6 http://www.daviddlewis.com/resources/ testcollections /reuters21578 /

http://www.itl.nist.gov/iad/894.02/related_projects/muc/index.html
http://www.daviddlewis.com/resources/testcollections/reuters21578/

16

Stripping HTML tags to generate a natural text body implies that we no longer
have a 1:1 mapping between the tagger result and the original position of the tagged
entities in the DOM. We will have to improvise in order to write tags back into our
DOM data structure. A problem occurs when there are multiple occurrences of the
recognized entity name in the original text: it becomes hard to choose which occur-
rence the entity points to. As a guess, we will place the entity at the first occurrence
of the entity name in the DOM. This is not a perfect strategy, because we may re-
place a homonym instead of the right occurrence.

The LbjNer tagger has a large startup penalty due to loading of its gazetteers
and statistical models. The LbjNer author has worked around this problem by run-
ning it as a daemon process controlled by a socket and an additional Perl client
script. We provide a separate adapter to connect to this daemon process, which
can be chosen at run-time. Since running the tagger on various hotspots separately
would entail longer execution times, we coalesce the various hotspots to tag, and
send these texts to the tagger in one batch. This requires a small amount of parsing
in the LbjNer result interpretation.

Annotation styles. The debate between RDFa and Microformats is still very ac-
tive [17], and the nature of the Web is such that often the simpler yet less powerful
method gets the most traction in the community. Therefore, it is important that the
annotation style is abstracted away from the recognition and processing logic. This
makes it easy to add a visual annotation style, and should the marketplace decide
in favor of Microformats, to annotate documents in that format instead.

Development set. We have developed the tool while testing on a number of Web
pages containing product reviews, taken from the well known American shop site
amazon.com. During the development of the methodology, we have established that
a max tag ratio mmaz around 0.7 is a good cutoff value that invalidates recognition
of most irrelevant page elements such as navigation sections, while retaining detec-
tion of most natural text hotspots. We have found that the algorithm has a tendency
to over-recognize small page elements (such as simple page titles and captions) as
reviews, especially in the absence of proper reviews which would lower the rela-
tive hotness of these elements in relation to the real reviews. This was resolved by
setting the minimum natural text length L,,;,, to 100 characters. The minimum “re-
viewness” ry,;y, in the final filtering step was set to 2, meaning that for a review to
be included in the annotation step, it must have a minimum of two recognized prop-
erties (such as rating, reviewer, summary and date). We have excluded the product
name (reviewed item) from the reviewness calculation, as we almost always infer
some product name from the page title.

Performance Evaluation. To assess the performance of the review recognition method-
ology, the tool was tested on a (non-randomized) selection of English product re-
view Web pages from well known E-commerce sites listed in Table 2. The tested
Web pages were not included in the development set which consisted of pages from
amazon.com. Model parameters had been optimized earlier empirically using the de-
velopment set.

We count the actual number of reviews on the Web page manually, then present
the URL to the tagger. We then review the annotated Web page for:

17

— the number of correct review recognitions (actual reviews which are recognized
by the method);

- the number of false positives (tagger-recognized reviews that were not reviews
in the source);

— and the number of false negatives (actual reviews that were missed by the method).

The results of these tests are presented in Table 2.

Web site Actual reviews Correct False pos. False neg.
alatest.com 3 1 1 1

buy.com 11 10 0 1
epinions.com 15 0 0 15
overstock.com 5 2 0 3

ebay.com 5 5 0 0

Table 2 Test results of review recognition. Web site language is English.

It appears that there is a large variance in performance between different Web
pages, which is a result of the absence of standardization in laying out Web pages.
The algorithm appears reasonably successful, but this property is certainly not ubiq-
uitous. There is even one site, epinions.com, where reviews are not recognized at all.
On all other sites, the results are reasonable for this first exploration of the field.
False positives are almost never found; however there are some false negatives. A
closer look into these false negatives suggests that we should explore more meth-
ods for finding hotspots, as some slip by the currently implemented hotspot finding
heuristics. This happens on sites which do not use our listed cues for element names.
Also, some of the model parameters are necessarily a compromise — a more dy-
namic or fuzzy approach to these parameters may be necessary to provide broader
coverage.

In general the tool provides reasonable results, correctly recognizing reviews in
review Web pages. We find that, for review detection on random (not review-specific)
Web pages, our methods provide reasonable sensitivity, but not much specificity.
This entails that also on Web pages that do not contain reviews, the heuristics may
trigger and the algorithm may unintendedly recognize reviews. It remains a hard
issue to test whether a Web page really concerns product reviews. Also of concern
is the finding that many reviews do not even mention the name of the reviewed
item. Therefore, heuristics for disqualifying a Web page as a review page are at
this moment insufficient. This problem is not relevant when our solution is run on
review Web pages solely. The required training phase of named entity recognition,
as well as the recognition of element names and contents, as we have described in
the previous section, possibly limits the application of our method to English Web
pages. It is, however, tractable to train the NER tagger as well as revise our internal
word lists in order to support other languages.

Finally Fig. 8 shows the average response time, in sec, to annotate one Web page
for each Web site. We analyzed 1000 pages for each Web site, and we measured the
time to process each step of our approach: the preprocessing (PP), the identification
of hotspots (ID), the entity recognition (ER) and the production of the annotated
page (AN). As shown in the Figure, the hotspot identification is the most complex

18

Opp @D OER HAN

=
15}

Average response time (sec)
O B N W A U1 OO N 0 WO

=

ebay.com

alatest.com buy.com epinions.com overstock.com
AN 0,2 0,3 0,8 0,1 0,3
ER 1,1 1,3 2,5 1,2 14
ID 3,1 6,3 4,1 3,2 2,1
PP 0,5 0,1 2 0,2 0,3

Fig.8 Average response time (sec) to annotate one page

task (i.e. computationally) due to the analysis of blocks occurring into a page. How-
ever such processing allows us to reduce the complexity of the following entity
recognition (i.e. 1 sec in average).

6 Conclusions and Future Work

In this paper, we have explored named entity recognition- and heuristic-based ap-
proaches for annotating Web pages with Google Rich Snippets-compliant RDFa at-
tributes. Heuristics used include source code analysis, pattern matching and inter-
nal word lists for discovery of entity attributes. We conclude that these approaches
form a potential strategy to recognize entities on a Web page and automatically add
them to the page using RDFa attributes. The tool that was developed performs rea-
sonably in detecting review entities on review pages, such as amazon.com. At the
same time, further work is needed to (1) improve the specificity of entity detection
and (2) fully recognize the structure and properties of record-based entities such as
persons and organizations. In particular, one of the difficulties we have experienced
involves recognizing the rating of a review. Although this property is not compul-
sory in the Rich Snippets definition, it is one of the key aspects used to display a
rich snippet in Google search results. We have found that many reviews lack an
explicit rating, such as a grade or a number of stars. Rich Snippets accepts a rating
based on a scale of 1-5. To provide a rating for every single review, we would have
to calculate a rating based on the review body text itself. This approach is known
as sentiment classification. Earlier studies on various kinds of reviews show that
satisfying results can be obtained when adopting sentiment classification [19,20,21,
22]. Analysis and adoption of this approach might be an interesting future research
direction.

References

1. Bizer, C., Cyganiak, R.: D2R server: Publishing relational databases on the semantic web. In:
Proc. of the 5th Intl Semantic Web Conf. (ISWC 2006). (2006)

19

10.
11.

12.
13.

14.
15.

16.
. Tomberg, V., Laanpere, M.: RDFa versus Microformats: Exploring the Potential for Semantic

18.

19.

20.

21.

22.

. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284 (2001) 34-43
. Goel, K., Guha, RV, Hansson, O.: Introducing Rich Snippets.

http:/ /googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html (2009)

. Google: Google Webmaster Tools: About review data.

http:/ /www.google.com/support/webmasters/bin/answer.py?hl=en&answer=146645 (2009)

. B. Adida and M. Birbeck: RDFa Primer: Bridging the Human and Data Webs.

http://www.w3.org/TR/xhtml-rdfa-primer/ (2008)

. Virgilio, R.D., Torlone, R.: A Structured Approach to Data Reverse Engineering of Web Appli-

cations. In: 9th International Conference on Web Engineering, Springer-Verlag (2009) 91-105

. Laender, A., Ribeiro-Neto, B., Silva, A.D., Teixeira,].S.: A brief survey of web data extraction

tools. ACM SIGMOD Record 31 (2002) 84-93

. Mikheev, A., Moens, M., Grover, C.: Named Entity Recognition without gazetteers. In: Ninth

Conference on European Chapter of the Association for Computational Linguistics, Associa-
tion for Computational Linguistics (1999) 1-8

. Morgan, R., Garigliano, R., Callaghan, P, Poria, S., Smith, M., Urbanowicz, A., Collingham,

R., Costantino, M., Cooper, C., Group, L.: University of Durham: Description of the LOLITA
System as Used in MUC-6. In: Sixth Message Understanding Conference, Morgan Kaufmann
Publishers (1995)

Krupka, G.R., Hausman, K.: IsoQuest, Inc: Description of the NetOwl(TM) extractor system as
used for MUC-7. In: Seventh Message Understanding Conference. (1998)

Seomoz.org: Search Engine Ranking Factors 2009. http:/ /www.seomoz.org/article/search-ranking-factors

(2009)

Can, L., Qian, Z., Xiaofeng, M., Wenyin, L.: Postal Address Detection from Web Documents.
In: International Workshop on Challenges in Web Information Retrieval and Integration, IEEE
Computer Society (2005) 4045

Yahoo!: SearchMonkey: Site Owner Overview. http://developer.yahoo.com/searchmonkey /siteowner.html

(2009)

Electrum: Valid HTML Statistics. http://try.powermapper.com/demo/statsvalid.aspx (2009)
Virgilio, R.D., Torlone, R.: A meta-model approach to the management of hypertexts in web
information systems. In: ER Workshops (WISM 2008). (2008)

Allison, L., Wallace, C.S., Yee, C.N.: When is a string like a string? In: AI & Maths. (1990)

Interoperability of Mash-up Personal Learning Environments. In: Second International Work-
shop on Mashup Personal Learning Environments, M. Jeusfeld ¢/o Redaktion Sun SITE, Infor-
matik V, RWTH Aachen (2009) 102-109

Ratinov, L., Roth, D.: Design Challenges and Misconceptions in Named Entity Recognition. In:
Thirteenth Conference on Computational Natural Language Learning, Association for Compu-
tational Linguistics (2009) 147-155

Turney, P.: Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Clas-
sification of Reviews. 40th Annual Meeting of the Association for Computational Linguistics,
ACL (2002) 417-424

Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification using Machine Learn-
ing Techniques. Conference on Emprirical Methods in Natural Language Processing, ACL
(2002) 79-86

Ye, Q., Zhang, Z., Law, R.: Sentiment Classification of Online Reviews to Travel Destinations
by Supervised Machine Learning Approaches. Expert Systems with Applications, 36(3) (2009)
6527-6535

Kennedy, A., Inkpen, D.: Sentiment Classification of Movie Reviews Using Contextual Valence
Shifters. Computational Intelligence, 22(2) (2006) 110-225

http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=146645
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.seomoz.org/article/search-ranking-factors
http://developer.yahoo.com/searchmonkey/siteowner.html
http://try.powermapper.com/demo/statsvalid.aspx

