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Abstract. This paper presents Metafrastes, a system that provides users
with the ability to retrieve information from Semantic Web knowledge
bases through queries that are formulated in natural language. The Web
system that we introduce is engineered based on several Semantic Web
tools and techniques. Our contribution consists mainly of a Natural Lan-
guage Processing engine, able to translate queries formulated in natural
language to SPARQL queries that can be applied to existing knowledge
bases. Additionally, we develop a user interface that captures the user
interaction with the system. Last, we evaluate the system based on a
number of pre-defined queries formulated in natural language. The pro-
posed approach has been positively evaluated with respect to precision
and for queries that are aware of the information structure from the
knowledge base.

1 Introduction

Since the introduction of the World Wide Web, the amount of information that
is available via this medium has steadily increased [3]. Nowadays, millions of
Web pages provide enormous amounts of information to anyone with access to
it. When dealing with such massive amounts of information, it is very important
that the information is organised in a structured way in order to optimally serve
the Web user’s information needs. The Semantic Web [5] helps in addressing this
issue. Designed as an extension of the current World Wide Web, the Semantic
Web strives to assign proper meaning to the information, with the ultimate goal
to present the information in such a way that both human users and machines
can use and manipulate the information to better suit their wishes. To support
this vision, numerous technologies have been developed, such as data represen-
tation languages RDF [6,13], OWL [16], and tOWL [17,18], and query language
SPARQL [19]. RDF and OWL enable the representation of self-describing data,
on which queries can be executed using SPARQL. The more recent tOWL lan-
guage extends OWL with a temporal dimension, enabling representations of
change and state transitions, in addition to static information.

In this paper we focus on user interaction with Semantic Web information
systems. The Semantic Web brings numerous useful additions to the current



World Wide Web, but these additions will only be of use if they enable human
users or automated processes to interact with Web information systems. Various
types of user interaction exist, including search term narrowing (which enables
the user to start with a broad term, while narrowing it down to more specific
terms by, e.g., expanding a taxonomy tree filled with search terms) and natural
language input (which enables the user to start his search for information by
formulating a question in natural language). Natural language input can be a
convenient way for the user to retrieve information, because there is no need
to summarise his thoughts in a single keyword; the user can merely type his
information need in natural language in order to retrieve the desired information.

To clarify the usefulness of natural language input, we present an example.
Suppose that a news ontology exists, that automatically collects news items
about, e.g., companies. A user might then be interested in the news items on the
competitors of Google. However, without knowing the structure of the underlying
ontology, this user cannot know which companies are competing with Google.
Being able to formulate a natural language query such as “In which news items
does at least one of Google’s competitors appear?” would be a great feature for
this user, as this user does not need to know exactly which companies compete
with Google, yet he can still obtain relevant answers.

To be able to use natural language input, a natural language processing
engine needs to be in place to convert the user’s question to a format that can
be processed by a computer. This is why we focus on user interaction by using
and analysing some existing natural language processing engines, both designed
for conventional use and for use in Semantic Web environments. Based on this
analysis, a Semantic Web approach to natural language processing of user input
is proposed.

The outline of this paper is as follows. In Section 2 we provide an overview
of related work. In Section 3 we introduce the NLP engine that we develop for
querying knowledge bases based on queries formulated in natural language. An
evaluation of the system is presented in Section 4. Finally, we conclude in Section
5.

2 Related Work

Several systems have already been presented in literature that deal with queries
based on natural language. In this Section we discuss CO-OP, Masque/SQL,
AquaLog, and SemNews, as prolific examples of such systems.

Cooperative Query System (CO-OP) [11] is a portable natural language
database query system which was developed in the mid-1980s and meant to
work with a CODASYL database management system. It focuses on provid-
ing solutions for a number of long-recognised NLP issues, including ambiguity
and vagueness. Additionally, it also aims to reduce the installation effort that is
required whenever an NLP system is applied to a different domain.

Masque/SQL [4] is a portable natural language front-end, which answers
English questions by generating and executing SQL code. It is a modification of



the original Masque (Modular Answering System for Queries in English) sys-
tem, which was focused on working with Prolog queries on Prolog databases. The
Masque system, which was developed at the Artificial Intelligence Applications
Institute and the Department of Artificial Intelligence of the University of Edin-
burgh, strives to combine extensive linguistic coverage, efficiency and portability.
Moreover, it was also developed to be easily configurable for different knowledge
domains.

AquaLog [14] is a question-answering tool that takes an ontology and a natu-
ral language query as input, after which it returns an answer from the ontology.
The natural language queries are translated into logical queries, which are inter-
preted with respect to a given ontology and the corresponding semantic markup.
Being an ontology-compatible system, AquaLog strives to work with Semantic
Web technologies only, thereby trying to be as portable as possible by making
use of the ontology standard representation languages.

SemNews [9,10] is a semantic news service that monitors different RSS news
feeds and provides structured representations of the meaning of the news items
that originate from these news feeds. It strives to make more Semantic Web
content on the Web available by extracting summaries from RSS descriptions of
news items and by processing this natural language input using an underlying
component called OntoSem.

In deciding the usefulness of previous approaches for our current endeavour,
we define four criteria that these approaches should fulfil: i) Semantic Web foun-
dation or orientation, ii) ability to answer natural language questions, iii) ability
to deal with news items, iv) use of an intermediate representation.

Table 1 provides an overview of the related work that was discussed in this
section, along with the four criteria that we deem relevant. From this table,
it follows quickly that AquaLog is the most suitable NLP system to consider.
We apply AquaLog on our domain ontology (a news ontology) and the results
were not adequate. In fact, none of the four complete NLP systems were able to
address our needs, therefore we chose not to use an existing NLP system, but a
partial one in the form of a linguistic parser. Using such a parser as a first step
in our NLP engine provides us with flexibility, as the resulting parse tree can be
altered whenever we deem necessary.

3 NLP Engine

The architecture of the NLP engine that we introduce is shown in Figure 1. We
use the remainder of this section to discuss the design of the architecture.

To start the process, the user formulates an English question and commands
the NLP engine to process his question. The question is then parsed by a parser,

1 The ‘partial’ score was assigned because the underlying data structures of this related
approach resemble the structure of ontologies.

2 The ‘partial’ score was assigned because the used intermediate representation did
not result in adequate portability, as some components of the system would have to
be heavily altered to apply them to a new domain.



Table 1. Overview of the related work and their scores on the four criteria

Criterium CO-OP Masque-SQL AquaLog SemNews

Semantic Web partial1 partial1 yes yes
NL questions yes yes yes no
News items no no no yes
Intermediate partial2 yes yes partial2

Fig. 1. The architecture of our NLP engine

which returns a parse tree. The parse tree is used as input for the triple generator,
which then generates ontology triples based on its input. The ontology triples are
then forwarded to the query generator, which constructs the correct SPARQL
query. The SPARQL query is processed by the query processor, which interacts
with the ontology to obtain the query results. An appropriate answer to the
user question is generated by the response generator, which takes the raw query
results and reformats them in a user-friendly format, as shown in Figure 6.

Our architecture uses a sequential structure, an approach to systems design
that is quite common in the field of natural language processing. This is because
a sequential structure provides flexibility when it comes to the format of the
final results, as the engine can be easily altered to work with a different query
language, e.g., SPARQL 1.1 [8], by just altering two components of the total five
that are involved in the whole process (for the RDQL example, only the query
generator and the query processor would need to be altered). Apart from the



sequential structure, the intermediate representations (the parse tree and the
ontology triples) provide more possibilities to generate multiple types of output.

3.1 Implementation

This section describes the decisions that were made in order to come to a valid
implementation. After describing shortly how the implementation was organ-
ised and set up, we discuss the implementation by focusing on every separate
component of the engine, as displayed in Figure 1.

Organisation and Setup Our NLP engine is implemented as a Java program.
We call the system ‘Metafrastes’ (original Greek word: µǫταϕραστης), liter-
ally meaning ‘translator’ in Greek.

Tools and Languages To be able to implement the engine, a number of different
tools and languages are used: i) The Java Platform (Standard Edition 6 Release),
ii) Resource Description Framework for the Semantic Web (RDF), iii) the Web
Ontology Language (OWL), iv) SPARQL (Query Language for RDF), v) Jena
(Semantic Web Framework for Java) [15], vi) ARQ (SPARQL Processor for
Jena) [1], vii) Hermes (Semantic News Portal) [2], and viii) Stanford Parser
(Statistical Parser) [12].

Parsing With most NLP engines, parsing is the first phase in the process of
translating the user input. It is used to interpret the user input syntactically, so
that the structure of the user input is made available to the NLP engine. The
process of parsing results in a parse tree, which represents the user input in such
a way that it can be handled by the NLP engine.

Stanford Parser The tool that we use for the parsing step is the Stanford
Parser [12]. It consists of a Java implementation of probabilistic natural lan-
guage parsers and can be used to produce the most likely analysis of a user
inputted sentence. An example of a parse tree as it can be produced by the
Stanford Parser is shown in Figure 2. The example question we use is: “Which
company has Steve Ballmer for CEO?”. This example will be used through-
out the remainder of this paper to illustrate the workings of different system
components.

The parse tree in Figure 2 was generated by inputting the example user
question in the lexicalized Probabilisty Context-Free Grammar (PCFG) parser,
which uses various forms of probabilistics and statistics to annotate important
words in the user input as phrasal nodes. These phrasal nodes are all assigned
an annotation, specifying the type of the word or part of sentence.

Domain Ontology The domain ontology was built by means of a wrapper
application on Yahoo! Finance to extract information on the top-100 NASDAQ
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Fig. 2. “Which company has Steve Ballmer for CEO?”: parse tree

companies. The OntoClean approach [7] was used to validate the domain ontol-
ogy composed of entities as companies, products, persons, currencies, CEOs, etc.
Each concept has a number of lexical representations associated (some derived
from the corresponding WordNet entries, where these are available).

Generating Triples The most important step in the process is the generation
of ontology triples. These triples are of the form (subject predicate object).
In this section, we zoom in on how the ontology triples are generated and what
is required in order to carry out this process. We start by first introducing the
Jena tool in more detail. Next, we describe the heuristics that we developed for
Metafrastes.

Jena Jena is a Semantic Web framework for Java. This tool provides function-
ality for communication with RDF data sets and ontologies. We use it in our
NLP engine to query the ontology. Furthermore, Jena contains a separate query
processor called ARQ, which is able to process SPARQL queries and return the
results from the ontology. We use this part of Jena later on in the question
translation process.

Developing Heuristics When a complex problem needs to be solved, it may prove
very helpful to develop heuristics that describe how a solution to the problem
may be obtained.Such heuristics aim to exploit the problem specifics and to



produce a suboptimal solution for a complex problem. The heuristics developed
for our system are shown in the algorithm depicted in Figure 3.

The heuristics take the parse tree as input, which was the result of the previ-
ous step in the question translation process. Then, on lines 1 and 2, two variables
are assigned. The variable currentTerm keeps track of the current term in the
parse tree, while keywords is used when a request for news items needs to be
discovered.

From line 3, we check whether the user asked for news items in his question.
If so, the value of currentTerm is updated with the news item term. The if tag
on line 6 determines whether there are relations linked to the news item term. If
so, the currentValue variable is updated again and ontology triples are added for
this relation. This step repeats itself, but now a link between the current term
and an ontology concept is searched for. If this is found, the ontology triples
are again added and next to updating currentTerm, the previous term is stored.
After that, we check whether there are any links to ontology concepts in the
remaining leaves of the parse tree. If this is so, ontology triples are added for
every link to an ontology concept that exists. If no links are present, a final triple
is added (the synonym triple), after which the ontology triples are returned.

If the user did not ask for news items, the algorithm skips to line 22, where
we check whether the parse tree contains an ontology concept. If this is the
case, an initial ontology triple on the concerned ontology concept is added, after
which the while-loop is entered to search for more linked concepts. Again, they
are added as ontology triples until no more linked concepts exist. The assembled
ontology triples are returned at the end. Figure 4 shows the ontology triples for
our example after they have been returned by the ontology triple generator.

Generating Query The SPARQL query is generated based on the ontology
triples. This is done by the QueryGenerator module, that combines constant
values with the generated ontology triples in order to create the correct SPARQL
query. These queries take the form shown in Figure 5. The starting variables (for
the generated pattern graph) are used in the SELECT clause of the SPARQL
query.

Processing Query After the query is generated, it needs to be processed in
order to retrieve any results. We use ARQ to process the queries and retrieve
the results from the ontology. ARQ is a query processor for SPARQL that was
developed to work with ontologies that are already loaded in Jena. The query
processor returns a result set from the ontology, which our engine alters so that
it represents a list of news items or a direct answer from the knowledge base.

The results of the processed query are displayed as a list of news items, where
each news item is shown together with the concept that triggered the inclusion
of that particular item in the results set. At the top of the screen, the user can
again exclude or include concepts in order to restrict the results set. Figure 6
illustrates this step.



input : A parse tree parseTree which was returned by the Stanford Parser
output: A list ontologyTriples which is filled with the ontology triples

1 currentTerm← “news items”;
2 keywords← “mention, concern, related to”;
3 if parseTree.contains (currentTerm) then

4 currentTerm.update ();
5 ontologyTriples.add (rdfTypeTriple(?news, News);
6 if hasLink (currentTerm, keywords) then

7 currentTerm← keywords;
8 ontologyTriples.add (relationTriple(?news, hermes:relation, ?relation));
9 ontologyTriples.add (rdfTypeTriple(?relation, Relation));

10 if hasLink (currentTerm, ontologyConcept) then

11 currentTerm← ontologyConcept;
12 ontologyTriples.add (relationTriple(?relation, hermes:relatedTo,

?concept));
13 ontologyTriples.add (rdfTypeTriple(?concept,

getOntologyClass(currentTerm)));
14 previousTerm← currentTerm;
15 while more linked concepts exist do

16 if hasLink (currentTerm, ontologyConcept) then

17 currentTerm← ontologyConcept;
18 ontologyTriples.add (relationTriple(?concept,

getRelation(previousTerm, currentTerm),
?anotherConcept));

19 ontologyTriples.add (rdfTypeTriple(?concept,
getOntologyClass(currentTerm)));

20 end

21 end

22 end

23 end

24 else

25 if parseTree.contains (ontologyConcept) then

26 currentTerm← ontologyConcept;
27 ontologyTriples.add (rdfTypeTriple(?concept,

getOntologyClass(currentTerm)));
28 previousTerm← currentTerm;
29 while more linked concepts exist do

30 if hasLink (currentTerm, ontologyConcept) then

31 currentTerm← ontologyConcept;
32 ontologyTriples.add (relationTriple(?concept,

getRelation(previousTerm, currentTerm), ?anotherConcept));
33 ontologyTriples.add (rdfTypeTriple(?concept,

getOntologyClass(currentTerm)));

34 end

35 end

36 end

37 end

38 return ontologyTriples;

Fig. 3. Developed heuristics for generating the ontology triples from the parse tree



(?company rdf:type hermes:Company)

(?company hermes:hasCEO ?ceo)

(?ceo rdf:type hermes:Business_leaders)

(?ceo hermes:name "Steve Ballmer")

Fig. 4: “Which company has Steve Ballmer for CEO?”: ontology triples

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX news: <http://www.jborsje.nl/hermes/news.owl#>

PREFIX hermes: <http://www.jborsje.nl/hermes/news.owl#>

SELECT DISTINCT ?company

WHERE {

?company rdf:type hermes:Company .

?company hermes:hasCEO ?ceo .

?ceo rdf:type hermes:Business_leaders .

?ceo hermes:name "Steve Ballmer" .

}

Fig. 5: “Which company has Steve Ballmer for CEO?”: SPARQL query

Fig. 6: Displaying the results in Metafrastes

4 Evaluation

Evaluating the results that are produced by Metafrastes is equivalent to eval-
uating the generated SPARQL queries, as these queries ultimately provide the
results. Thus, the quality of the results depends on the quality of the generated
SPARQL query. The major part of the generated SPARQL query consists of the



ontology triples that were generated earlier by the triple generator. Thus, the
quality of the generated SPARQL query depends on the quality of the ontol-
ogy triples that are produced by the triple generator. Consequently, we evaluate
the performance of Metafrastes by evaluating the ontology triples that are
produced in order to come to a conclusion on the quality of the results.

The evaluation of the generated SPARQL queries, as well as the quality of
the generated results in terms of soundness and completeness, is done by the
authors. It should be noted that this evaluation is objective, due to the crisp
nature of the responses to the posed queries. At this stage we did not perform
any evaluation of the system based on other criteria such as ease of use of the
system/user experience.

4.1 Evaluating Example Questions

To get to the evaluation results as described in this section, we did one run
in which we asked 9 example questions (assuming that the ontology structure
is knows). The resulting ontology triples were examined for correctness and,
based on this, it was decided whether the NLP system produced an accurate
translation of the question. We consider a query to be correctly translated when
the results of the SPARQL query are sound and complete with respect to the
original natural language query (completeness is considered in relation to the
information stores in the ontology). The example questions are reproduced in
Table 2, along with their translation scores.

Table 2. Selected example user questions and their translation scores

Question Translation

Which news items mention Google? Correct.
Which companies are competitors of Google? Correct.
In which news items does at least one of Google’s competitors appear? Incorrect.
Who is the CEO of Apple? Correct.
Which news items mention the CEO of Apple? Correct.
Which company produces iPhones? Correct.
Which news items mention the company that produces iPhones? Correct.
What is the name of the CEO of the company that produces iPhones? Correct.
Which company has Steve Ballmer for CEO? Correct.

We can see from this table that 8 out of 9 questions were translated correctly.
We can conclude from this that our NLP engine performs quite well on the set
of example questions.

4.2 Evaluating Custom Questions

When evaluating the system based on a set of custom questions, we applied the
same procedure as the one we described in the previous section. Table 3 shows a



list of 9 custom questions. They are questions that we came up with, regardless
of the structure of the ontology. Moreover, we tried to act a bit like ‘layman
users’ ourselves, resulting in questions that are not always formulated in a clear
way.

Table 3. Some custom user questions and their translation scores

# Question Translation

C1 When was YouTube bought by Google? Incorrect.
C2 Which companies have recently experienced a CEO switch? Incorrect.
C3 Give me the names of all software companies. Incorrect.
C4 Is Google situated in the Netherlands? Incorrect.
C5 Does Larry Page work at Microsoft? Incorrect.
C6 Which CEO works for Adobe? Correct.
C7 iPhones are great. Where can I get one? Incorrect.
C8 Who is the CEO of Motion in Research? Correct.1

C9 What does Apple do? Incorrect.

Table 3 shows that our NLP engine performs poorly when it comes to ques-
tions which are not as structured as our example questions. In some cases the
incorrect translation followed from the fact that the question was formulated
in a vague manner(such as question C7 and C9). Some questions were properly
formulated, but just too complex for the NLP engine to translate properly.

5 Conclusions & Future Work

The work we present here enables us to draw some conclusions on ontology-based
information querying using NLP. We conclude that as the use of Semantic Web
technologies are becoming more popular, they are also used more frequently in
various NLP systems. Our work also shows that these technologies can greatly
support NLP through their data representation capabilities. Moreover, our work
shows that current technologies provide a good foundation for new systems that
are able to bridge the gap between expert- and layman users.

As future work we will focus on improving the quality of the NLP process.
Also, we will focus on enabling users of the system to use custom ontologies rather
than the domain ontology provided by the system. In the evaluation we would
like to consider more complex queries, such as, for example, queries containing
constraints on the time frame of news items.

1 The ‘Correct’ score was assigned because no answer was given; the answer was
omitted because the system recognised the use of concepts that were not present in
the knowledge base and as a result threw a proper ConceptNotFoundException.
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