
Connecting Customer Relationship
Management Systems to Social Networks

Hanno Zwikstra, Frederik Hogenboom, Damir Vandic, and Flavius Frasincar

Abstract As the popularity and the commercial potential of social networks such as
LinkedIn and Facebook increase, we present a framework that aims to reuse social
networks data within a customer relationship management (CRM) application. The
framework has been implemented in LinkedInFinder that pulls data from LinkedIn
into the Microsoft Dynamics CRM system. Our proof-of-concept implementation
demonstrates the use of the proposed framework, based on a use case to find second-
degree connections within one’s network that work at a specific company of interest.
A survey amongst target users suggests that the application is useful and adequately
designed for the intended use.

1 Introduction

With the advent of Web 2.0 [6], there has been a growing importance regarding
the social aspects of the Web. Even though social networks have been existing as
long as there have been societies, digital networks – such as Twitter, Facebook,
and LinkedIn – experienced a substantial growth over the last decade. Due to their
promising commercial potential, there has been put an increasing amount of effort
and research into social networks on the Web. Web 2.0 social networks are defined
as sets of social entities (e.g., people, organizations, etc.) connected by a set of social
relationships (e.g., friendship, co-working, information exchange, etc.) [4].

The rich potential of social networks comes from two aspects. First, social net-
works can be utilized to push information to a target group, e.g., company advertise-
ments, blogging, tweeting at Twitter, etc. Second, pulling information from social
networks into a customer relationship management (CRM) system is also possible.

Hanno Zwikstra (e-mail: 265948jz@student.eur.nl) · Frederik Hogenboom (e-mail: fhogen-
boom@ese.eur.nl) · Damir Vandic (e-mail: vandic@ese.eur.nl) · Flavius Frasincar (e-mail: fras-
incar@ese.eur.nl)
Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands



An example is monitoring social network sites for content (conversations, blogs,
tweets on Twitter, etc.) in which a company or brand is mentioned, providing poten-
tially valuable information and means to interact with customers. Microsoft already
provides an add-on for its CRM system that imports tweets from Twitter in which
a company is mentioned, into the CRM application. Oracle, the world’s leader in
CRM, advocates Social CRM actively by offering Oracle Social CRM Applications.

Due to the increasing popularity of social networks as well as their commercial
potential, in this paper we present a framework that aims to reuse LinkedIn data
within a CRM application. We evaluate the framework by means of a proof of con-
cept implementation. In our development, we aim for simplicity, yet we also allow
for future extendability. The remainder of this paper is organized as follows. Related
work is described in Sect. 2. We then discuss our framework and its implementation
in Sects. 3 and 4. The implementation is evaluated in Sect. 5. Finally, we conclude
and provide directions for future work in Sect. 6.

2 Related Work

With the rise of Web 2.0, many new features emerged that enriched the Web en-
vironment, e.g., blogs, wikis, (social) tagging in folksonomies, and mashups that
combine data from one or more other sources to create a new application, usually
using an Application Programming Interface (API). One of the most noticeable fea-
tures of Web 2.0 are social networks, like LinkedIn and Twitter. Social networks –
also known under the common denominator as Social Networking Sites (SNS) – are
a specific type of Social Media. Their content is generated and maintained by its
visitors, without central coordination. Typically, in Social Media Web sites people
form relationships with other users and interact with them [2]. Figure 1 depicts the
number of unique visitors for LinkedIn and Twitter in the Netherlands, illustrating
the immense growth in terms of visitors in the past 18 months. Interestingly, Twitter
is still less popular than LinkedIn in the Netherlands, while in the rest of the world
it is the other way around.

In the early 1990’s the term CRM began to emerge [1]. Nowadays, many CRM
providers exist, which offer Software as a Service solutions, e.g., Salesforce, Mi-
crosoft Dynamics CRM online, Oracle CRM On Demand, and SageCRM. The dif-

Fig. 1 Trend lines of unique visitors of LinkedIn and Twitter.



ference between CRM and traditional marketing is in the focus on customer rela-
tionships. Traditional marketing’s main focus is on acquiring new customers, while
CRM focuses on developing long term relationships with existing customers. Ac-
cording to Payne and Frow [7], three views CRM exist, ranging from a narrow and
tactical view where CRM is a specific technical solution or tool, to a broad and
strategic, or even philosophical view where CRM is a holistic approach for manag-
ing customer relationships.

Driven by changes in customers, starting in 2007 and more rapidly in 2008, CRM
began to transform into what is now known as CRM 2.0 or Social CRM (sCRM) [3].
Both terms hint to Web 2.0 which is also called the Social Web. Today’s customers
are no longer passive customers, but have become social customers, who are active
on the Internet, writing blogs, using Twitter, having discussions and informing them-
selves on social networking sites etc. and thus are well-informed about companies
and products and services that they offer. CRM 2.0 is about joining the conversa-
tion [5] and extending CRM out of the business offices into the Social Media on the
Internet, implying a change in strategy from a focus on customer transactions to a
focus on both customer interactions.

3 Framework

This section discusses a general approach to social network data pulling called So-
cialCRMConnector. The SocialCRMConnector, which is a mashup between an ar-
bitrary social network and a CRM system, can be used for pulling data from social
networks using available APIs to build sCRM applications that use this data. Data
can be pulled from a social network by sending a request to the API, which returns a
response with the requested data. Our framework is targeted at retrieving profile data
of social network members, i.e., personal information about social network mem-
bers that is available by using the API of the social network. Although such profile
data is also available on the social network sites themselves, there are three reasons
why a company might want to retrieve the data by using an API. The first is sim-
plicity. An application can contain specific business rules that are executed without
input that is required from the user. This makes it easier to retrieve the desired data.
The second is control. Data that is retrieved from an API can be processed in other
applications or (temporarily) stored in internal information systems for further pro-
cessing. Third, APIs enable applications to keep information up-to-date by allowing
real-time access to data.

3.1 Entities and Relationships

At its core, a social network consists of Users, i.e., the people who have an account
at the social network, and inter-user Connections define the relationships between



users. Users have several attributes, i.e., a unique ID, nickname and real name, birth-
day, and likely a number of other attributes. With these entities it is already possible
to create a network, though the possibilities of such a network are of course very
limited at this point. Two Users with a Connection between them form a very small
network. This simple model can be extended to better reflect real world online social
networks. We have examined several online social networks, with a focus on Face-
book and LinkedIn. To visualize the model, we have created an entity-relationship
diagram for the model as an example, which is shown in Fig. 2. We focus only
on the entities that may be useful sCRM applications; in practice social networks
have a more complex structure, with additional entities such as Event or School and
support for multiple media types such as videos, photos, and music.

Compared to the simple model that consists only of Users and Connections, we
have introduced some new entities that are common for social networks. The figure
illustrates that the User is the central entity in a social network. The first entity that
we added is Message. Being able to send messages to other members of a social
network is a very important feature of social networks. Without the ability to send
messages, it would be impossible to interact with other users. Messages can be sent
from a user to another user, but also to other entities, for example a user can com-
ment on a photo that is posted by someone else, or post a comment to a discussion
in a Group. For companies who want to monitor social networks for comments on
their brand, the Message entity is an important one.

Instead of an entity that may have been called “MediaItem” to reflect all types of
media items, we have added an entity called Photo, because photos are supported
by all sites, even if it is only to add a picture to the user profile. We assume that the
only useful media item to pull from a social network in relation to sCRM would be
a profile picture. Comments that may have been added to profile pictures by other
users are not really relevant in a business application, nevertheless for completeness
reasons we decided to keep the link between Message and Photo.

Fig. 2 Entity-relationship
diagram of the social network
model.

User

PK UserID

 Nickname
 Firstname
 Lastname
 Birthdate
 Email
 Location
 Gender

Connection

PK,FK1 UserID1
PK,FK2 UserID2

 StartDate
 EndDate

Message

PK MessageID

FK1 SenderID
 Content
FK2 GroupID
FK3 PhotoID
FK4 UserID

Group

PK GroupID

 Name
FK1 GroupOwner

User_Group

PK,FK1 UserID
PK,FK2 GroupID

Photo

PK PhotoID

FK1 UserID
 Content



Another feature of many social network sites is the concept of Groups. Groups
are a convenient way for users to connect with other users who share a similar inter-
est. Groups can have many different forms, for example companies, schools, brands,
persons, and virtually anything else. Groups are basically a collection of users, and
are in many ways similar to individual users, but the concept and purpose is too
distinct to treat them as one entity. The connections in groups are not direct connec-
tions (users do not become “friends” when joining the same group), but it makes
it easier to meet new people. There is a many-to-many relationship between Users
and Groups. There is also a direct relationship between User and Group, because
a group is created by a user who then becomes the group owner. This relationship
might also be displayed as a many-to-many relationship if the group can be owned
by multiple users. Groups make it much easier for companies to find the consumers
that they are interested in and the companies can participate in relevant groups to
join the conversation with the consumers.

CRM databases are relational databases and usually consist of many tables, such
as companies, persons, opportunities, products, orders, quotes, support calls, ap-
pointments, etc. Like the social network structure, our focus is on those entities
that might be useful in the SocialCRMConnector framework. The CRM structure is
shown in Fig. 3. Since we target social applications, the Person entity is an important
entity in our CRM model, just like User is in a social network. However, Companies
are the central entity in a CRM system. A company has a specific type that indicates
the relationship between that company and the super company in which the current
company is listed. Specific company types can be customers, competitors, suppli-
ers, partners, government, etc. A third entity called Lead is also added. Leads, or
prospects, are defined as potential customers that do not yet have a relation with
the company. Finally, an Opportunity entity is used to record a potential sale. An
opportunity is given an estimated value and expected probability that the sale will
be made. Linked to an opportunity must be one or more Products that specify what
is going to be sold.

Fig. 3 CRM entity-
relationship diagram (sim-
plified).

Company

PK CompanyID

 Name
 Address
 Telephone
 Website
 Industry
 Type

Person

PK PersonID

FK1 CompanyID
 Firstname
 Lastname
 Jobtitle
 Email
 Telephone
 Address

Lead

PK LeadID

FK1 CompanyID
 Name
 Email
 Telephone
 Address

Opportunity

PK OpportunityID

FK1 LeadID
FK2 ProductID
 Description
 Value
 Probability
FK3 CompanyID

Product

PK ProductID

 Description



3.2 Framework Architecture

After defining a model that covers the part of social networks that is relevant for
our research, as well as a model that covers the structure of a CRM system, we can
define the framework architecture. The framework consists of the following steps,
which are also depicted in Fig. 4:

1. Generate query for retrieving profile information from a social network;
2. Retrieve data by sending the query to the API;
3. Process the data so it can be used in an application;
4. Present information from the application to the user;
5. Store data in the CRM system (optional, depending on user’s choice).

The content of a query needed for retrieving the necessary data from a social
network depends on a number of input parameters, for example the current user that
uses the application, entity attributes that must be retrieved (dictated by business
rules), and optional other parameters to refine the query such as a specific company
or person to search for. Because the APIs flatten the data before returning it, queries
to retrieve data are relatively simple. Flattening data is the opposite of normalizing
data in the database. For example, a normalized User in a database may store a
user’s country with a foreign key to a record in a Country. The flattened data will
return the data for a specific user with a country attribute that contains the country
name. The pseudo SQL query for retrieving user data is:

SELECT attribute1, attribute2, ..., attributeN
FROM User, ...
WHERE condition1, condition2, ..., conditionN;

Depending on the type of application, information can be inserted into the CRM
system. Some applications might only display additional information without the

Fig. 4 Steps within the So-
cialCRMConnector frame-
work steps.

Generate query

user

at
tr

ib
ut

es

company

Input parameter

Execute query

API

Send API request

Process response

Receive API response

Show information

Additional queries

User input

Save information

B
u

si
n

es
s 

ru
le

s



need to store anything in the CRM system. Caution is required when data is go-
ing to be saved, because while it is technically possible to store data in the CRM
system once it has been retrieved from a social network, not just any data can be
stored without considering issues concerning privacy or obsoleteness. In contrast to
contents of social networks, the IDs of records never change, and hence only insert
queries (i.e., no update queries) are required. An insert query in pseudo SQL is:

UPDATE Person
SET Person.socialnetworkID = ‘ID’
WHERE condition1, condition2, ..., conditionN;

4 Implementation

Now that we have defined the general framework, this section introduces the im-
plementation of the SocialCRMConnector. LinkedInFinder, which integrates Mi-
crosoft Dynamics CRM with the LinkedIn social network, supports a use case where
CRM users aim to find people that have a job at specific companies that are not
yet listed within the CRM and with whom the company that uses the CRM would
like to get into contact. These employees, which are supposedly the connection
to a company of interest, are connected through first-degree connections with the
CRM users. Connections of a second-degree or higher do not really make sense
as it makes communication difficult. For demo and evaluation purposes, we have
developed a stand-alone version of the LinkedInFinder application, which is avail-
able at http://linkedin.hantheman.tk. The main flow of the application is as
follows.

After presenting the user a login page hosted by LinkedIn in order to authorize
LinkedInFinder, first, a list of LinkedIn members that work at a certain company is
retrieved with a call to the LinkedIn Search API. The list is then filtered so that only
second degree connections are displayed to the user. Second degree connections
have a distance of 2 to the user, which is measured as the number of steps from the
user to the LinkedIn member. This means the distance to the own profile is 0, the
user’s connections have a distance of 1 and their connections have a distance of 2.
Second, after selecting a name from the list by the user, more detailed information
is displayed, including how the user is connected to this person. This connection is
presented as a list of one or more of the user’s first-degree connections. This list of
connections actually is a list of mutual connections between the user and the person
that is viewed.

4.1 Application Back-End

The LinkedInFinder application is integrated with Microsoft Dynamics CRM, which
is an ASP.NET Web application that uses .NET Web services to communicate



with the CRM database. For easy integration, our application is therefore also an
ASP.NET Web application. It is built in Visual Studio 2010, using the (ASP).NET
3.5 Framework and C# as programming language. For connecting and interacting
with the LinkedIn API, we employ the LinkedIn Developer Toolkit, which is an
open source library for using the LinkedIn API in .NET applications. This library
provides .NET support for the LinkedIn API, by providing .NET wrapper meth-
ods for most LinkedIn API methods and an implementation of the OAuth (Open
Authentication) protocol that is used by many social network sites to authenticate
requests to their APIs. It should be noted that the LinkedIn API has a number of
technical restrictions that limit the possibilities of building applications that use the
API. More complex applications that require more API calls are expected to suf-
fer more from these limitations than simple applications that only use a few simple
API calls. First, LinkedIn restricts the use of its API by limiting the number of calls
to the API methods, i.e., throttling. Second, the number of results returned for a
people-search query is limited by the account-level of the LinkedIn member.

The entity-relationship diagram underlying our implementation as depicted in
Fig. 5 is a modified version of the entity-relationship diagram discussed in Sect. 3
(Fig. 2), reflecting the LinkedIn structure. In LinkedIn, media items are not as im-
portant as they are in other social networks like Facebook. Only photo items are
available for storing a profile picture of the members. A user profile in LinkedIn has
a large number of attributes and links to other entities. We have added the attributes
and entities that are relevant for our application. For privacy reasons, LinkedIn does
not return exact addresses, but areas, and hence we have added a location attribute
to the model. The email address of LinkedIn members cannot be retrieved by any
API calls, so we have removed it from the model. Phone numbers are optional and
stored in a separate entity PhoneNumber that stores the actual phone number and
type of phone number (e.g., “mobile”). Subsequently, we include a URL attribute,
that stores the public profile URL. Furthermore, the industry attribute indicates in

Fig. 5 Entity-relationship
diagram of LinkedIn.

User

PK UserID

 Firstname
 Lastname
 Location
 URL
 Industry
FK1 PictureID

Connection

PK ConnectionID

FK1 UserID1
FK2 UserID2
 StartDate
 EndDate

Position

PK PositionID

 Title
 StartDate
 EndDate
 Summary
 IsCurrent
FK1 UserID
FK2 CompanyID

ProfilePicture

PK PictureID

 Content
 URL

Company

PK CompanyID

 Name
 Industry
 Location
 Size

User_Company

PK,FK2 UserID
PK,FK1 OrganizationID

PhoneNumber

PK Number

 Type
FK1 UserID



which industry the person is active; this may give some additional background infor-
mation about the person’s job. Then, another important entity in our application is
Company. The relationship between Users and Companies is a many-to-many rela-
tionship, i.e., users can work at multiple companies. In our application we search for
LinkedIn members that work at a specific company. The last entity that we need in
our model is Position. A position describes the actual job that the LinkedIn member
has at a company. The iscurrent attribute indicates whether the position is a current
- or past position. In the LinkedInFinder application we only use current positions.

In our implementation, the application is started from a company record in the
Microsoft Dynamics CRM system, which is opened in a Web form. The company
name of the record is sent to the application as input parameter. The most important
items of the implementation are the API requests that are sent to LinkedIn. The ap-
plication uses a Search API request and a Profile API request. The API request
has three variable parameters, which are the company-name, start and count.
The company-name specifies the company name to search for. The start and
count parameters specify the indexes for a subset of data. For example start=0,
count=10 retrieves the first 10 results. The other parameters will remain the same
for each request. A search for the first ten people that currently work at “Erasmus”
would yield the following request:

http://api.linkedin.com/v1/people-search:(people:(id,distance,
first-name,last-name))?company-name=Erasmus&current-company=1&
sort=relevance&start=0&count=10

This request is divided into several parts. The first part, i.e., http://api.link
edin.com/v1/, is the base URL of the LinkedIn API. The second part is the API
function that is called, i.e., people-search:. The third part contains field selectors
and utilizes a JSON-like syntax, i.e., (people:(id,distance,first-name,last-
name)). The rest of the query, i.e., ?company-name=Erasmus&current-company
=1&sort=relevance&start=0&count=10, comprises an optional query string with
the three variable parameters. In this case we specify that the company name is Eras-
mus, it must be the current company, search results are ordered by relevance (other
options are number of connections and distance), and the number of results that is
returned per request is limited to ten.

The aforementioned request returns ten profiles (assuming at least ten people
work at Erasmus) with the id, distance, first-name, and last-name fields. The
distance field tells the distance between the user that executes the query and the
person that is returned by the API. People with a distance of 1 are first-degree con-
nections, and people with a distance of 2 are second-degree connections. We use the
distance field to filter the search results to contain only second-degree connections
(we cannot specify this in the search query).

The Profile API request has only one variable parameter, which is the profile id.
The request is as follows:



http://api.linkedin.com/v1/people/id=nnl7Qkt7Kb:(last-name,
first-name,num-connections,num-connections-capped,phone-num
bers,three-current-positions,picture-url,location:(name),re
lation-to-viewer:(distance,num-related-connections,related-
connections),positions:(title,company:(name)))

The response for this request contains the relevant profile details and is parsed
and displayed to the user who can then decide to use this information or to discard
it and view another profile.

4.2 Application Front-End

The front-end of the application has three main windows. First, when opening an
account record within the CRM tool, there is a button that will open the LinkedIn-
Finder application shown in Fig. 6. Upon first use, the user will be redirected to a
LinkedIn page to authorize the application using OAuth. Subsequently, the appli-
cation redirects to a secure page on the LinkedIn Web site, and after entering the
LinkedIn account credentials, the user is redirected back to the application. Second,
there is a Web page (Search.aspx) displaying the results of the search query as a
list of hyperlinks. The names of the people that are returned by the search query are
displayed as the hyperlink text. Third, another Web page (Details.aspx) is opened
when a hyperlink is clicked. This page, as depicted in Fig. 7, displays the detailed
information for that person, which requires a Profile API call.

Fig. 6 Account form in Microsoft Dynamics CRM.



Fig. 7 Person details in the LinkedInFinder application (Details.aspx).

5 Evaluation

In terms of evaluation, we first validate our implementation by comparing search re-
sults of LinkedInFinder with the LinkedIn Web site search engine (using advanced
search). For several companies, the search results are identical in all cases. Inter-
estingly, when using the standard search function on the LinkedIn Web site, search
results are different in terms of display order, pointing to a different ranking algo-
rithm.

In order to evaluate the LinkedInFinder tool qualitatively, we conduct a survey
in which participants are asked for their opinion about the following statements in a
questionnaire:

Statement 1: I find the application useful.
Statement 2: The application shows enough information to be useful.
Statement 3: The application offers enough functionality to be useful.
Statement 4: I would use the application for my job.

A five-point Likert scale is used for the available answers (ranging from 1 [totally
disagree] to 5 [totally agree]), which provides an ordinal scale. The results of the
survey (amongst 17 participants that are CRM users and members of the authors’
LinkedIn network) are depicted in Fig. 8. Furthermore, we define two hypotheses to
evaluate the LinkedInFinder application, i.e.:

Hypothesis 1: The LinkedInFinder application is useful.
Hypothesis 2: The LinkedInFinder application design is adequate.

To assess hypothesis 1, we use statements 1 and 4. To assess hypothesis 2 we use
statements 2 and 3. When employing the χ2-test to determine whether the attitude
towards the LinkedInFinder is neutral, we obtain significant outcomes to reject this
null hypothesis (with p-values lower than 0.01) for all statements, which means we
can accept both hypotheses.



Fig. 8 LinkedInFinder evalu-
ation results.

6 Conclusions

In this paper, we presented the SocialCRMConnector framework that aims to feed
CRM applications with Web 2.0 social networks data. The framework has been
implemented as a tool called LinkedInFinder that pulls data from LinkedIn into
the Microsoft Dynamics CRM system. Our implementation validates the proposed
framework by means of a use case to find second-degree connections within one’s
network that work at a specific company of interest. Results from our evaluation
based on a user survey indicate that the application is useful and adequately designed
for the intended use. As future work, we envision implementations of our framework
using other social networks (possibly for other purposes as well) and CRM systems.
Also, one could employ data pulled from social networks to other applications, such
as personalization tools.

References

1. Buttle, F.: Customer Relationship Management: Concepts and Technologies, 2nd edn. Butter-
worth Heinemann (2009)

2. Gilbert, E., Karahalios, K.: Predicting Tie Strength With Social Media. In: 27th International
Conference on Human Factors in Computing Systems (CHI 2009), pp. 210–220. ACM (2009)

3. Greenberg, P.: The impact of CRM 2.0 on Customer Insight. Journal of Business & Industrial
Marketing 25(6), 410–419 (10)

4. Laura Garton, C.H., Wellman, B.: Studying Online Social Networks. Journal of Computer-
Mediated Communications 3(1) (1997)

5. Leary, B.: The Tweet Is Mightier than the Sword. CRM Magazine 13(1), 48 (2009)
6. O’Reilly, T.: What is Web 2.0: Design Patterns and Business Models for the Next Generation

of Software. International Journal of Digital Economics 65(1), 17–37 (2007)
7. Payne, A., Frow, P.: A Strategic Framework for Customer Relationship Management. Journal

of Marketing 69(4), 167–176 (2005)


