
August 1, 2007 13:15 WSPC - Proceedings Trim Size: 11in x 8.5in kmo˙stockwatcher

1

StockWatcher
A Semantic Web Application for Custom Selection of Financial News

Laurens Mast, Alex Micu, Flavius Frasincar, Viorel Milea∗ and Uzay Kaymak

Econometric Institute, Erasmus University Rotterdam,

3062 PA Rotterdam, Netherlands
∗E-mail: milea@few.eur.nl

www.few.eur.nl

In this paper we present StockWatcher, an OWL-based application that enables the extraction of relevant news items
from RSS feeds concerning financial markets. The application’s goal is to present a customized, aggregated view of

the news categorized by different topics and at the same time rate these news items based on their relevance. The

selection of the relevant news items is based on a customizable user portfolio.

Keywords: Semantic Web, financial news, RSS, OWL, stocks

1. Introduction

Unlike printed media or television programs, on the
Web news can be made public as soon as it emerges.
Simultaneously, Web coverage is continually increas-
ing. News websites provide RSS-feeds facilitating the
public to remain up-to-date on nearly any topic of
interest.

One of the domains where access to information,
and implicitly news, plays a crucial role is repre-
sented by financial markets. With the introduction
of new products such as click funds,1 the level of in-
volvement of the general public in investment activi-
ties is on the rise. This increased involvement comes
to underline the need for access to mediums which
can provide relevant and reliable economical news
within short time intervals. The Web comes to meet
this need, while at the same time confronting users
with an overwhelming amount of information. Ques-
tions such as ‘Where does news appear faster?’ or
‘Which news websites are trustworthy?’ have already
risen.

With the emergence of the Semantic Web, lan-
guages such as OWL2 and RDF(S)3,4 help provide
the basis towards speeding up this process. The goal
pursued in this paper is related to this, and consists
of creating an application that helps casual internet
users with a relevant involvement in financial mar-
kets to find relevant news regarding their portfolio.
This effort has resulted in StockWatcher, an applica-
tion that enables the presentation of a customized,
aggregated view of news items categorized by differ-
ent topics, and at the same time rates these news
items based on their relevance.

After this introductory section, we focus on re-
lated projects in Section 2. Next, we present our ap-
plication in Section 3, where we focus on the archi-
tecture and user interaction with the website. A more
visual presentation of the application and the gener-
ated results is given in Section 4. Finally, we con-
clude in Section 5 where we also provide some ideas
for further research.

2. Background

In this section we provide a brief overview of projects
related to our current goal. Due to the practical na-
ture of the research, the focus is on related applica-
tions and technologies.

2.1. Related Projects

The Artequakt5 project is probably one of the most
well-known Semantic Web project currently in de-
velopment. One of the main factors that contributed
to this popularity relates to the symbiosis between
the application and the Semantic Web technologies.
Artequakts goal is to find information on the internet
about artists and paintings, from different sources,
bring that information together, and present it to
different users. The main point of interest is the
information extraction phase. At this stage, Arte-
quakt actively searches for data on the web to fill up
the knowledge base. For this purpose GATE6 is em-
ployed, a natural language engineering framework.7

However the data needed by StockWatcher is avail-
able on websites that already provide extensive meta-
data about the provided information, thus deeming



August 1, 2007 13:15 WSPC - Proceedings Trim Size: 11in x 8.5in kmo˙stockwatcher

2

the use of HTML wrappers sufficient in the case of
StockWatcher.

Another application designed for similar pur-
poses as StockWatcher is Market News Analyzer
(MNA).8 Despite its name, the application does not
analyze the news, but only extracts the information
from various RSS-feeds, such as Yahoo Finance, and
presents specific news segments to the user. It fea-
tures a large range of companies, from which one
can select to receive news, and also plenty of statisti-
cal data about the amount of news found, sorted by
different indicators.

However, not all systems employ a Semantic Web
approach. Examples of such systems are: NewsPiper9

and SpeedResearch Stock Market Browser.10 Not
making use of the benefits provided by the Semantic
Web technology could become a downside for these
applications in the near future. For example, in con-
trast to StockWatchers OWL data representation,
these systems offer no possibility to share the con-
tained data with other applications.

3. StockWatcher

StockWatcher is a web based application that allows
users compose retrieve news from (custom) RSS feeds
that are relevant to their own portfolio. Currently,
the focus is on companies active on Nasdaq, allow-
ing the user to compose his/her portfolio from the
Nasdaq-100 index,11 where heavy hitters such as Mi-
crosoft, Dell or Google can be found. The choice to
restrict the application to these companies is moti-
vated by the requirement of remaining synoptic, a
benefit for the layout of the application. However,
extensions based on the current system are rela-
tively easy to design, e.g. an extension to include
more companies. A customizable HTML-wrapper for
Hoovers.com is used for the extraction of all the in-
formation on the Nasdaq-100 companies. This web-
site is specialized in giving information for more or
less 40.000 public and non-public companies.

The ontology used by the system is created in
OWL, with the use of Protégé.12 By using OWL we
are able to facilitate greater machine interpretability
than by employing other techniques, e.g., XML or
RDF. The ontology itself is also unique as currently
no ontologies with such a focus are available.

StockWatcher uses a Microsoft Access database
to store the relevant information. The primary fac-
tor for choosing Access is its easy to use graphi-

cal interface. Although it falls short of being a fully
object-oriented development tool, it does provide the
required functionality for StockWatcher. The SQL
commands are executed from a Java module, con-
nected to the database through a standard ODBC
driver.

Having briefly outlined the StockWatcher appli-
cation in the previous paragraphs, we focus in the
following on the details regarding the architecture of
the system and the user interface in the following sec-
tions. We describe the main components that make
up StockWatcher and focus on the particular char-
acteristics that render this application as unique.

3.1. Architecture

An overview of the system is depicted in Figure 1.
As shown, the conceptual model (CM) has been sepa-
rated in three parts. Part A of the model, data extrac-
tion, is responsible for extracting information con-
cerning certain companies, and storing it in the local
Access database. Once the database has been pop-
ulated, users can compose their own portfolio from
the companies in the database. By creating the port-
folio, an ontology corresponding to this portfolio is
automatically generated. All this takes place in part
B, ontology creation. In part C, news searching, the
application searches various news feeds for relevant
news based on the custom portfolio ontology. Across
the next three sections we give a more comprehen-
sive description of each of the three parts outlined in
this paragraph.

Fig. 1. The StockWatcher Architecture.

3.1.1. Data Extraction

The first step of using the StockWatcher system is
related to information extraction. Initially, the infor-



August 1, 2007 13:15 WSPC - Proceedings Trim Size: 11in x 8.5in kmo˙stockwatcher

3

mation was extracted realtime from Nasdaq-100 each
time a user logged on. Due to performance issues con-
sisting of loading time and uptime for the various
websites used to extract information, it seems faster
and safer to extract the information once, and place
it in the local database. We registered improvements
in speed from 2 up to 6 seconds.

The module Nasdaq2Database is responsible for
the information extraction and data storage. This
module provides the functionality to extract the com-
pany trade name from Nasdaq-100. This information
along with the company full name is stored in the
database. Additional functionality relates to extract-
ing the rest of the information from Hoovers.com,
by using the ID number corresponding to the trade
name on Nasdaq-100. This information contains the
key people in the company, the competitors and the
industry it is active in.

3.1.2. Ontology Creation

In identifying the concepts involved in the Stock-
Watcher application, we concluded that the appro-
priate starting point is the ontology. There are a lot
of tools available for this purpose, such as Semantic-
Works,13 SWOOP14 or TopBraid Composer.15 The
selection eventually fell on Protégé OWL, for the ob-
vious advantage of its simplicity and widespread pop-
ularity.

One of the main classes represented in the finan-
cial StockWatcher ontology is the Company class.
Additionally, a differentiation needs to be made be-
tween companies in the user’s portfolio and their
competitors. This spawns 2 subclasses of the main
class Company. In addition we identified an Indus-
try class, serving as a pool for all companies. This
enables the grouping of certain companies within a
specific industry, making it easier to recognize com-
petitors when using SPARQL16 queries. Finally, the
class Person denotes the important people in a cer-
tain company.

In order to enable reasoning on the created on-
tologies, a Description Logic Implementers Group
(DIG) compliant reasoner had to be installed next
to Protégé. Our choice fell on RacerPro,17 for vari-
ous reasons. The most important one relates to this
reasoners’ popularity in combination with Protégé,
and the easy way of configuring procedures. Protégé
offers different tests that can be applied on the ontol-

ogy. Most important of them was Classify Taxonomy.
By running this test, the reasoner checks if the classes
and subclasses are built correctly. Matters concern-
ing disjoints and conditions are being tested at this
stage.

After the extracted data from Nasdaq-100 and
Hoovers.com is available in the database, Stock-
Watcher is ready for live use. As soon as a user logs
on to the website and selects his/her portfolio, part B
of the application is activated. Making use of differ-
ent techniques facilitated by the Jena framework,18

StockWatcher is able to manipulate the financial on-
tology, which serves as a frame.

3.1.3. News Searching

As soon as the ontology is complete and the RSS
feeds are retrieved, the search for relevant news is
initialized. In the early stages of the development of
the application, the search engine only considered
whether the title or description of the news items on
the RSS feeds enclosed any words which appeared in
the ontology, such as Google. Eventually this did not
prove to be a good method. Partial matches or very
common words caused many irrelevant news items
to be selected. The search algorithm required refine-
ment. Common words such as ‘systems’ and ‘incorpo-
rated’ were filtered so they would not cause any addi-
tional mismatches. Additionally, the minimal length
for words has been adjusted to three characters for
the same reason. All words have been split up and
only counted as a match when they were exactly the
same. Partial matches such as ‘Dell’ in ‘modelling’
didn’t count as a match.

This add-on improved the search results, but
only marginally. Even if almost every word searched
for was relevant, irrelevant matches still appeared in
the results. Imagine the following scenario: search-
ing for news about ‘Adobe’ the application comes
across a news item called ‘Similar to companies such
as Corel, Microsoft and Adobe. But we are talking
about...’. To fix this problem a score system has been
implemented. A match in the title scores 2 points,
matches in the description only 1. A news item has
to have at least 2 points to appear in the results.
Now the application is able to rank the news items,
by counting the scored points. By ignoring the rest
of the news, i.e., the ones that scored lower than
2 points, the relevance of the results improved sig-



August 1, 2007 13:15 WSPC - Proceedings Trim Size: 11in x 8.5in kmo˙stockwatcher

4

Fig. 2. StockWatcher: User Input.

nificantly. The major improvement is especially no-
ticeable with well-known companies such Dell and
Google. These brand names are often used as refer-
ence or example in articles with little or no relevance
to the company itself.

Furthermore, the score system can be used as
framework for further improvements. It is possible to
include more sophisticated search algorithms which
can further improve the relevance of the returned
news items. Examples of such approaches include
calculating the distance between certain words,19 or
trying to find the meaning of the words in the text.20

To search the RSS feeds we use Informa21 and
SPARQL.16 Informa is a Java framework that brings
together the best of two other Java news reader ap-
plications, namely HotSheet22 and Risotto.23 The
main feature of Informa consists of being able to re-
trieve almost any news feed available on the Internet.
Above that, it offers good documentation making
it easy to use in applications. SPARQL is a query
language and data access protocol for the Seman-
tic Web. Its main use is to extract information from
(RDF(S) or OWL) ontologies.

3.2. User interface

One of the most important aspects in creating the in-
terface for a website is user friendliness. Factors like
usability, design, consistency, navigation and simplic-
ity play a great role in deciding how user-friendly and
effective a website is.? With this in mind we designed
a user interface focused on simplicity and efficiency.

StockWatcher gives the opportunity to be used
with or without making an account: site visitors can
choose between logging in or skip this step and di-

rectly set-up a portfolio. The disadvantage of the sec-
ond choice relates to the fact that the system will not
remember the user’s preferences concerning the com-
panies they were interested in. If an account is cre-
ated, the portfolio is stored in the database, and can
be reloaded each time the system is accessed through
the login interface. Once the user has entered the
website, either way, a menu consisting of four steps
will appear. This is reproduced in Figure 2.

Step 1 shows the companies from Nasdaq-100.
Here the user can set-up his/her portfolio. Exist-
ing users can add new companies to their portfo-
lio, or remove existing ones, an action that will also
change the user’s profile in the database. In Step 2
the user can select which information they are in-
terested in: competitors of the selected companies,
important people engaged to a relevant degree in the
activities of the companies in the user’s portfolio,
news regarding the industry the companies are ac-
tive in, and the NASDAQ stock value, providing nu-
merical data on the current performance of the se-
lected companies. The first three options have di-
rect impact on the ontology, while the fourth only
relates to a real-time quantitative measure of how
the companies are currently performing. Finally, in
Step 3, the users are given the possibility to choose
the RSS feeds from which data should be retrieved.
Also, users are allowed to customize the standard list
of feeds by adding additional ones for the retrieval of
news. StockWatcher supports most of the econom-
ical related news feeds, although a scenario where
users make use of smaller, less popular RSS feeds is
possible.



August 1, 2007 13:15 WSPC - Proceedings Trim Size: 11in x 8.5in kmo˙stockwatcher

5

Fig. 3. StockWatcher: Output.

4. Results preview

For the presentation of the results, StockWatcher
makes use of an application called Timeline,24 de-
veloped within the SIMILE project.25 This visual-
ization tool has been created to properly illustrate
time-based events. Timeline does not require to be
installed, neither server-side nor client-side, and the
events used to fill it can be easily stored in an XML
file. Figure 3 gives an overview of the system’s out-
put when the portfolio consists of only one company,
namely Google. The first column represents news
items generated by searching the feeds for the com-
pany name. Next to this column news concerning
competitors of the company are presented, followed
by news regarding important people. The last two
columns give an overview of the news messages re-
garding the industry in which the company is active
and the latest stock value of that particular company,
respectively. The news items are sorted according to
the received rating.

The additional Timeline bar adds a temporal
dimension to the selected news items by present-
ing them in the order in which they emerged. This
bar gives users the ability to easily spot the latest
news they are concerned with and possible time-
determined interactions between these news items.
However, the Timeline could be the building stone

for additional functionality, such as combining it with
share prices in order to track the correlation between
the emerging news and their corresponding impact
on the value of stocks.

5. Conclusions and Further Research

The main focus of this paper is on presenting the
StockWatcher application. The previous chapters
provide a description of its architecture, and offer
details about the programming tools that were used,
such as the Jena framework and Informa. By attach-
ing a rating system to the proposed algorithms we
were able to rate the news on their reliability and rel-
evance. This resulted in a web application that can
display trustworthy news items regarding the user’s
portfolio, on subjects considered relevant by the user.

The main goal of the OWL Web Ontology
Language relates to making web data machine-
understandable. With StockWatcher we have laid a
strong basis for future development in this direction.
Thanks to the ontology-driven character of the ap-
plication and the employed techniques (OWL, Jena,
SPARQL), we have created a foundation for the anal-
ysis of news items in a larger context. With this anal-
ysis it will become possible to provide automated ad-
vices on the impact of certain news items on share
prices. Other tools, such as Timeline, add to the



August 1, 2007 13:15 WSPC - Proceedings Trim Size: 11in x 8.5in kmo˙stockwatcher

6

power of the application by placing predictions in a
temporal context, thus enabling the tracking of the
exact impact of news items on stock values in an
intuitive, visual environment.

One point of improvement relates to the data ex-
traction regarding the relevant companies. Currently
this is done by retrieving all the data from on-line
Hoovers profiles. As extracting data from an HTML
page takes time this is not done at the moment the
user searches. Instead, the entire database is period-
ically updated with new Hoovers data. It is possi-
ble to further enhance the application by using an
up-to-date database instead of Hoovers to retrieve
company-related information. This database should
contain all the companies in the top 100 and offer
information about their competitors, important peo-
ple and market. By using a database like this, the
application will always use the most up-to-date in-
formation and would thus no longer need a regular
update.

A final point is related to extending the cur-
rent application to include more companies than just
the NASDAQ-100 index currently supported. Fur-
ther customization could include other indexes, such
as DAX30, CAC40, AEX, etc., and allow the user to
insert additional financial entities that are of inter-
est.

Acknowledgement

The authors are partially supported by the EU
funded IST STReP Project FP6 - 26896: Time-
determined ontology-based information system for
realtime stock market analysis. More information is
available on the official websitea of the project.

References

1. F. van Mulligen, Zo werkt een klikfonds (2002),
http://www.morningstar.nl/.

2. M. Smith, C. Welty and D. McGuinness, OWL Web
Ontology Language Guide, W3C Recommendation
(2004).

3. G. Klyne and J. Carroll, Resource Description
Framework (RDF): Concepts and Abstract Syntax,
W3C Recommendation (2004).

4. D. Brickley and R. Guha, RDF Vocabulary
Description Language 1.0: RDF Schema, W3C

Recommendation (2004), http://www.w3.org/TR/

rdf-schema/.
5. S. Kim, H. Alani, W. Hall, P. Lewis, D. Millard,

N. Shadbolt and M. Weal, Semantic Authoring, An-
notation and Knowledge Markup (SAAKM) 2002
Workshop at the 15th European Conference on Arti-
ficial Intelligence (ECAI 2002), Lyon, France (2002).

6. H. Cunningham, D. Maynard, K. Bontcheva and
V. Tablan, GATE: A framework and graphical de-
velopment environment for robust NLP tools and
applications, in Proceedings of the 40th Anniversary
Meeting of the Association for Computational Lin-
guistics, 2002.

7. G. G. Chowdhury, Annual Review of Information
Science and Technology 37, 51 (2003).

8. Franz AG company, Market news analyzer (2007),
http://www.marketnewsanalyzer.com/.

9. S. Korzh, Newspiper (2007), http://www.korzh.

com/.
10. R. M. Kucynski, Speed research stock market

browser (2007), http://www.speedresearch.com/

stockwatch/.
11. NASDAQ-100 (2007), http://quotes.nasdaq.com/

quote.dll?page=nasdaq100/.
12. Stanford Medical Informatics, Protégé-owl (2007),

http://protege.stanford.edu/.
13. Altova, Semanticworks (2007),

http://www.marketnewsanalyzer.com/.
14. University of Maryland College Park, Swoop (2007),

http://code.google.com/p/swoop/.
15. TopQuadrant, Topbraid composer (2007).
16. E. Prudhommeaux and A. Seaborne, World Wide

Web Consortium (2004).
17. Racer Systems GmbH & Co. KG, Racerpro (2007),

http://www.racer-systems.com/index.phtml/.
18. Hewlett-Packard Development Company, LP, Jena

(2007), http://jena.sourceforge.net/.
19. S. Kruk, S. Decker and L. Zieborak, DEXA Confer-

ence (2005).
20. H. Alani, S. Kim, D. E. Millard, M. J. Weal, W. Hall,

P. H. Lewis and N. R. Shadbolt, IEEE Intelligent
Systems 18, 14 (2003).

21. Informa Project, Informa (2007), http://informa.
sourceforge.net/.

22. D. Thorp and J. Munsch, Hotsheet (2007), http:

//sourceforge.net/projects/hotsheet/.
23. A. C. Kramer and N. Schmuck, Risotto (2007),

http://sourceforge.net/projects/jsurfer/.
24. SIMILE project, Timeline (2007), http://simile.

mit.edu/timeline/.
25. Massachusetts Institute of Technology, SIMILE

Project (2007), http://simile.mit.edu/.

ahttp://www.towl.org


