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Abstract

The Semantic Web aims to extend the World Wide Web with a layer of semantic information, so that it
is understandable not only by humans, but also by computers. At its core, the Semantic Web consists
of ontologies that describe the meaning of concepts in a certain domain or across domains. The domain
ontologies are mostly created and maintained by domain experts using manual, time-intensive processes.
In this paper, we propose a rule-based method for learning ontology instances from text that helps domain
experts with the ontology population process. In this method we define a lexico-semantic pattern language
that, in addition to the lexical and syntactical information present in lexico-syntactic rules, also makes use of
semantic information. We show that the lexico-semantic patterns are superior to lexico-syntactic patterns
with respect to efficiency and effectivity. When applied to event relation recognition in text-based news
items in the domains of finance and politics using Hermes, an ontology-driven news personalization service,
our approach has a precision and recall of approximately 80% and 70%, respectively.
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1. Introduction

In today’s information-driven world, many indi-
viduals try to keep up-to-date with the latest devel-
opments by reading news items on the Web. The
contents of news items reflect past, current, and
future world conditions, and thus news contains in-
formation valuable for various purposes. For ex-
ample, being aware of current market situations is
of paramount importance for investors and traders,
who need to make informed decisions that could
have a significant impact on certain aspects such as
profits and market position. However, due to the
ever increasing amount of information, it is virtu-
ally impossible to keep track of all emerging rele-
vant news in an orderly fashion [1, 2]. Hence, auto-
matically filtering news items by means of comput-
ers would alleviate the cumbersome task of manu-
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ally selecting relevant news messages and extracting
information.

In contrast to human beings, machines (e.g.,
computers) are merely able to read news arti-
cles, not to understand them. With the Semantic
Web [3], i.e., a collection of technologies that ex-
press and reason with content metadata, the World
Wide Web Consortium (W3C) provides a frame-
work to add a layer of semantic information to
the Web, thereby offering means to help machines
understand human-created data (e.g., news mes-
sages) on the Web. On the Semantic Web, meta-
data is defined using semantic information that is
usually captured in ontologies, which are defined
as shared formal specifications of conceptualiza-
tions [4]. Some of the most popular formats to
describe ontologies on the Semantic Web are the
Resource Description Framework (RDF) and RDF
Schema [5, 6], and the Web Ontology Language
(OWL) [7]. Ontologies can be used to store domain-
specific knowledge in the form of concepts (i.e.,
classes or instances), together with associated inter-
concept relations. These relations are denoted by
triples that consist of a subject, a predicate, and an
object.
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Most of the current approaches to news filtering,
such as, for example, the SeAN [8], YourNews [9],
and NewsDude [10] frameworks, are able to retrieve
only the news items that contain terms of the user’s
interest, not taking into account indirect informa-
tion, which is also deemed relevant, such as com-
petitors of companies of interest, political parties
of politicians, etc. Exploiting the semantic con-
textual information related to concepts of interest
enables a more comprehensive overview of relevant
news with respect to certain topics. Therefore, in
previous work [11, 12], we introduced the Hermes
framework, which provides a method for personal-
izing news items that makes use of semantics. The
framework stores lexicalized domain concepts and
relations (i.e., properties that relate concepts to
each other or concepts to data types) in an ontol-
ogy. Hence, Hermes stores synonyms or string rep-
resentations of domain-specific entities (e.g., com-
panies, persons, etc.) and their relations (e.g., sub-
sidiary, competitor, etc.). The ontology is used for
retrieving relevant news items in a semantically-
enhanced way. In addition to this, we have pro-
posed an ontology-based recommendation method
that also benefits from a domain ontology [13]. As
adding new information to an arbitrary but suffi-
ciently large knowledge base requires a domain ex-
pert to invest a lot of time, in this paper we propose
a method that discovers new information automat-
ically.
Automatic information discovery requires the use

of information extraction techniques. In the last
decades, a vast amount of research has already been
conducted in this area. In general, information ex-
traction can be done by means of statistics [14, 15,
16] or pattern-based rules [17, 18, 19], each method
having its own benefits and drawbacks. Statistical
methods are mainly data-intensive, while pattern-
based approaches usually are driven by knowledge
more than data. From a user’s point of view,
large amounts of data are not always readily avail-
able, while (general) domain knowledge is usually
at hand. As pattern-based approaches often re-
quire less training data than statistical methods,
and also help users to gain more insight into why
a certain relation was found, in this paper we fo-
cus on pattern-based information extraction tech-
niques. Pattern discovery, such as the semantic
patterns [20, 21] from OntoEdit [22] or the pat-
terns from the Pattern-based Annotation through
Knowledge on the Web (PANKOW) framework [23]
are outside of the scope of this paper.

The main contribution of this paper is a rule-
based language that uses lexico-semantic patterns
for information extraction. In contrast to lexico-
syntactic patterns [17, 18, 24], which combine lex-
ical representations (i.e., strings) and syntactical
information (e.g., parts-of-speech), lexico-semantic
patterns also allow for the usage of semantic infor-
mation such as concepts that are defined in ontolo-
gies. The notion of lexico-semantic patterns has al-
ready been introduced in previous work. In [12, 25]
we extend the Hermes news processing framework
by adding triple-based lexico-semantic event rules
that make use of ontological concepts, in order to be
able to recognize economic events. After validation,
these events are subsequently coupled to the execu-
tion of action rules which update the underlying
ontology. The use of lexico-semantic patterns for
financial events discovery has also been discussed
in [26]. There, we present a rule engine that allows
for pattern creation based on the triple paradigm
(i.e., it makes use of a subject, a predicate, and an
optional object), and that relies on triple conversion
to the Java Annotations Pattern Engine (JAPE)
language [27] and SPARQL [28]. Finally, in [29]
we present a semantics-based information extrac-
tion pipeline for economic event detection, which
makes use of lexico-semantic patterns that are de-
fined in the JAPE language.

In the previous work discussed above, we con-
sider mostly simple lexico-semantic patterns that
are merely based on the triple paradigm, which
hence makes it impossible to express more complex
constructions. In this paper, we present a more
expressive language for specifying lexico-semantic
patterns that makes use of regular expressions over
ontology concepts. Furthermore, in our current en-
deavors, we aim for a simple, easy to use language
for pattern creators. Existing languages like JAPE
could easily result in verbose rules, while we aim
for more compact ones. In addition, we give the
formal specifications of our language and explain
its constructs by means of examples, and we give a
more extensive evaluation of the proposed pattern
language in which we analyze the recognition of dif-
ferent types of events in textual representations.

By using lexico-semantic patterns that employ
concepts and relations from a domain ontology, we
aim to solve problems caused by ambiguity and
specificity that exist in current approaches that em-
ploy lexico-syntactic patterns. The design of the
lexico-semantic pattern language aims to fulfill the
following requirements. First, the language should
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be developed for a Semantic Web context, where in-
stances and their relations need to be learned from
text. Then, the language should be accessible and
easy to understand, yet expressive enough to be
able to cover the required information extraction
needs. By employing Semantic Web technologies,
our language should remove some of the ambigui-
ties inherent to lexical approaches, increasing the
specifications precision level. In addition, a seman-
tic approach allows to easily specify patterns that
have many instances, increasing the recall of the
information extraction process.
In this work, we aim to investigate the per-

formance of lexico-semantic patterns compared to
lexico-syntactic ones and for that, we evaluate the
performance of both pattern languages by creating
rules for each one of them that are subsequently
applied on two distinct corpora consisting of news
messages on financial topics and political topics,
respectively. Additionally, we compare the perfor-
mance of the languages with lexico-semantic pat-
terns written in JAPE. Performance is measured
in terms of construction times (i.e., efficiency) and
precision, recall, and F1 scores (i.e., effectivity).
The rest of this paper is organized as follows.

Section 2 discusses the related work, followed by
Sect. 3, which elaborates on the Hermes Informa-
tion Extraction Language (HIEL), i.e., the syntax
for defining lexico-semantic patterns. Section 4 de-
scribes the Hermes Information Extraction Engine
(HIEE), after which we evaluate our method in
Sect. 5. Section 6 gives our conclusions and identi-
fies future work.

2. Related Work

In the current body of literature, various pat-
tern grammars are described that could be of use
in for instance news processing frameworks [30, 31]
or general purpose information extraction tools [32,
33, 34, 35, 36]. These patterns are based on lin-
guistic or lexical knowledge, as well as a priori hu-
man knowledge regarding the contents or topic of
the text that is to be processed. We can make
a rough distinction between two types of patterns
that can be applied to natural language corpora,
i.e., lexico-syntactic patterns and lexico-semantic
patterns. The former patterns are a combination
of lexical representations and syntactical informa-
tion, whereas the latter patterns combine lexical
representations with syntactic and semantic infor-
mation.

2.1. Lexico-Syntactic Patterns
Hearst [17, 18] proposes the use of lexico-

syntactic patterns for information extraction. This
approach aims to find hyponym and hypernym re-
lations by discovering regular expression patterns
in free text. An example is the application of the
following pattern to the sentence “... works by such
authors as Herrick, Goldsmith, and Shakespeare”:

such NP as {NP,}* {(or|and)} NP (Rule 1)

In this pattern, “NP” indicates a proper noun. Other
text (i.e., “such”, “as”, “or”, and “and”) is used for
lexical matching, while “(” and “)” contain con-
junction and disjunction statements to be evalu-
ated, in this case a disjunction (denoted as “|”).
Also, “*” is a repetition parameter that indicates
the sequence between braces (“{” and “}”) is al-
lowed to repeat zero to an infinite number of times.
The rule presented above results in the following
discovered relationships:

hyponym("author", "Herrick")
hyponym("author", "Goldsmith")
hyponym("author", "Shakespeare")

These patterns are often easy to comprehend by
regular users, yet defining the right patterns to mine
corpora to obtain unknown information is not a
trivial task. Hearst stresses that, in order to re-
turn desired results successfully, patterns should be
defined in such a way that they occur frequently
and in many text genres. Also, they should often
indicate the relation of interest and should be rec-
ognizable with little or no pre-encoded knowledge.
Furthermore, all existing syntactic variations have
to be included into a complex pattern to ensure its
proper working.

2.2. Lexico-Semantic Patterns
Lexico-semantic patterns on the other hand are

less cumbersome to define, as they make use of
concepts instead of merely lexical representations,
hereby alleviating the time-consuming process of
pattern definition. One of the first works intro-
ducing lexico-semantic patterns is [19], where the
authors propose a system that processes text prior
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to normal left-to-right syntactic parsing. The pat-
terns may include terms and operators like lexical
features, logical combinations, wildcards, and rep-
etition, which are mostly adopted from the regular
expression language. An example of a rule that will
classify the verb phrase “left dead” as to express
death or injury, is as follows:

?PIVOT=(or found left shot)
?OBJ =* ?EFFECT=dead

=> (mark-activator
murder d-vp) ;

(Rule 2)

This sentence would also match “found dead” and
“shot dead”. Next to standard elements such as
repetition and wildcards, the rule presented here
contains features like variable assignment on the
left-hand side (LHS) (where words preceded by “?”
denote variables) and on the right-hand side (RHS)
macros such as “mark-activator”, which uses the
results of the pattern match, including variable as-
signments, along with some other constants, such
as “murder” and “d-vp”, to tag and segment the
text. The main advantage of such lexico-semantic
patterns is that they take into account the domain
semantics which help the parser cope with the com-
plexity and flexibility of real text [19].
The Conceptual Annotations for Facts, Events,

Terms, Individual Entities, and RElations
(CAFETIERE) framework as introduced by
Black et al. [33] is a rule-based system for
ontology-driven text mining, which makes use of
lexico-semantic patterns. CAFETIERE applies
several preprocessing techniques to the text, i.e.,
tokenization, Part-Of-Speech (POS) tagging, and
gazetteer lookup. To extract information from
text, a rule notation is defined. A rule has the
following form:

A => B \ C / D (Rule 3)

where “A” represents the phrase that is recognized,
“B” (optional) represents the text prior to “C”, “C”
defines the text elements that are part of the phrase,
and “D” (optional) is the neighboring text immedi-
ately following “C”. A basic example of a rule that
would match an expression like “40 mg” is:

[syn=NP, sem=QTY] =>
\[syn=CD], [sem=measure]/;

(Rule 4)

In this pattern, one is able to denote the character-
istics of a matching token group, i.e., its syntactic
category (i.e., a noun) and its semantic meaning
(i.e., a quantity). In order to match an expression,
the text should contain a token which is a cardinal
digit, followed by a token that represents a measure.
CAFETIERE also takes into account the ordering
of the rules. When one rule matches the text and
annotates the text, the original annotation might
no longer be visible to the next rule.

Another information extraction rule language
that includes domain semantics is WHISK [37].
This language is based on regular expressions and
can be used for extracting information from semi-
structured text as well as free text. An example of a
rule that extracts the number of bedrooms and the
associated price for a rental ad is written as such:

Pattern:: * ( Digit ) ‘BR’ * ‘$’
( Number )

Output:: Rental
{Bedrooms $1}
{Price $2}

(Rule 5)

Whenever the pattern of the extraction rule
matches a sentence, the syntactical elements that
are enclosed by round brackets are being used as
variables in the output statement. The first ele-
ment “Digit” is assigned to “$1” and the second
element “Number” is assigned to “$2”. In WHISK
rules, the “*” symbol represents a wildcard, i.e., it
is used to indicate an arbitrary sequence of charac-
ters without limitations to size and contents until
the occurrence of the subsequent term in the pat-
tern.

In [38, 39, 40] a MUlti-Source Entity recogni-
tion system (MUSE) is proposed. This system em-
ploys the General Architecture for Text Engineering
(GATE) [41] software, which is a Java-based envi-
ronment supporting the research and development
of language processing software, in order to extract
information from text. The main focus is on the ex-
traction of information from multiple sources and
retain a certain robustness. The system consists
of a number of components, including a tokenizer,
gazetteer, sentence splitter, POS tagger, semantic
tagger, and an orthographical matcher. The seman-
tic tagging comprises a set of grammar rules based
on the Java Annotations Pattern Engine (JAPE)
language [27]. An example of such a rule is:

4



Rule: GazLocation
(

{Lookup.majorType == location}
)
:loc --> :loc.Location =

{kind = "unknown",
rule = "GazLocation"}

(Rule 6)

In general, the LHS contains the pattern to be
matched, whereas the RHS defines the action that
is to be executed once a match has been found. This
rule is fired (executed) when the gazetteer lookup
results in a location. If this is the case, the pattern
will be annotated with the type “Location” and two
attributes, “kind” and “rule”.

2.3. Our Contribution
The pattern language proposed in this paper dif-

fers with respect to several aspects from the lan-
guages presented above. The lexico-syntactic pat-
terns proposed by Hearst [17, 18] are often easy
to comprehend by regular users, which is also one
of our goals when designing our pattern language.
However, Hearst’s patterns do not capture the se-
mantic context of the text, while our approach aims
for a semantic description of the context.
The lexico-semantic pattern language proposed

by the authors of [19] is similar to ours, since it
also employs patterns for detecting semantics in
text. Their framework is implemented in the GE
NLToolset [42], which is a set of text interpretation
tools. In our framework we benefit from the natural
language processing steps performed by GATE [41]
and the underlying OWL ontologies. The software
allows for easy extension and customization, in con-
trast to the GE NLToolset. In addition, we propose
patterns that are easier to specify and comprehend
by the end user than the patterns proposed in [19].
In order to maintain readability, we aim for a no-

tation similar to the one presented in [17, 18]. Even
though our patterns add semantic functionalities,
they strictly adhere to the standard POS tags [43]
(in contrast to the patterns used in [19]). Further-
more, our patterns require less keywords compared
to the ones proposed in [19], as they omit mark and
pattern activators. Our intent is to explore the pos-
sibilities of adding semantics to the patterns by us-
ing Semantic Web technologies, and thus to make
use of existing ontologies and support tools (e.g.,
reasoners, editors, readers, writers, etc.).
In our work, we benefit from the research that

has been done in the CAFETIERE project, e.g.,

by reusing parts of the rule notation. A limita-
tion within the CAFETIERE framework is that
rules are defined on a specific lexico-semantic level,
i.e., semantic concepts are derived from an ontology
(knowledge base) described in Narrative Knowledge
Representation Language (NKRL) [44]. NKRL
is a knowledge representation language which has
been defined before the Semantic Web era, and has
no formal semantics. Hence, the approach fails
to properly describe domain semantics. Both the
gazetteer and the lexico-semantic rules could ben-
efit from an ontology-based approach, abstracting
from the low-level and sometimes ambiguous lexical
representations.

Even though WHISK [37] does properly include
domain semantics, the applicability of the language
is limited. The support for wildcards creates flexi-
bility in the patterns to be matched, but it is fairly
restrained compared to for instance regular expres-
sions. It is not possible to state a specific range
of characters or words. Differently than WHISK,
our language contains additional repetition opera-
tors, so that more expressive extraction rules can
be created.

Similar to our approach, MUSE [38, 39, 40] em-
ploys GATE. Our work distinguishes itself from this
approach by proposing a language with a higher
level of abstraction, which is easier to read for reg-
ular users. In addition to that, we focus on seman-
tic patterns and aim to determine relations between
concepts, rather than solely focusing on recognizing
entities.

3. Hermes Information Extraction Language

The Hermes Information Extraction Language
(HIEL) employs semantic concepts from an ontol-
ogy. The language is evaluated in the context of
extracting events and relations from news, as an
extension to the existing Hermes news personaliza-
tion framework [11, 12]. This section continues by
briefly explaining the characteristics of the Hermes
framework as well as the usage of ontologies within
the framework in Subsect. 3.1. Subsequently, Sub-
sect. 3.2 introduces HIEL for semi-automatic infor-
mation extraction from news items, of which the
Extended Backus Naur Form (EBNF) grammar is
given in Appendix A. Last, Subsect. 3.3 elabo-
rates on the usage of ontology elements within our
language.
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3.1. Hermes

Hermes [11, 12] is a framework that can be
used for building a personalized news service. The
framework enables users to select concepts from a
knowledge base. Whenever these concepts, which
could be instances like Microsoft or Google, or re-
lated concepts, such as competitors, appear in an
arbitrary news item, the news item is presented to
the user. Hence, the user will only be presented
news items that match the user’s interest.
Concept selection is done by means of user-

defined patterns. Similarly to CAFETIERE, Her-
mes is based on GATE and employs lexico-semantic
patterns. However, these patterns use information
from an OWL ontology that contains a schema of
concepts and relations of various nature, thus mak-
ing use of a standard language supported by many
reasoners. Knowledge is stored in a separate onto-
logical database that contains instances. Each time
a news message is processed, the ontology might be
updated with new facts, so that the knowledge base
remains up-to-date [12].
The current knowledge base of Hermes is main-

tained by a manual approach. The domain ontolo-
gies are developed by domain experts. The pro-
cess of developing the ontology is an incremental
middle-out approach [11]. Since news events can
change the state of the world, each time such a
change happens, the knowledge base should be up-
dated. Because updating the ontology manually is
a cumbersome process, it is preferred to do this at
least semi-automatically. Therefore, we propose an
information extraction language that can extract
new instances of concepts and relations from news
items.

3.2. Language Syntax

The patterns previously proposed by Hearst [17,
18] serve as an inspiration for HIEL, as these lexico-
syntactic patterns are easily comprehensible. Fur-
thermore, these patterns provide the user with valu-
able insights into the reasons behind the extraction
of certain information. Therefore, we aim to pro-
pose a language that approaches this simplicity, i.e.,
a language with which one is able to make patterns
that are intuitive and easy to understand, but which
also addresses the required expressivity. In this re-
gard, it should have at least the expressivity of reg-
ular expressions. Our language can be character-
ized by supporting syntactic features, orthographic

features, concepts, relations between concepts, log-
ical operators, repetition, and wildcards. In this
subsection, we explore the syntax of the language.

3.2.1. Language Definition
Typically, in HIEL, each pattern is described by

a left-hand side (LHS) and a right-hand side (RHS).
Once the RHS has been matched in the text to be
processed, it is annotated as described by the LHS
of the pattern. The LHS describes a relation be-
tween a subject (sub) and an object (obj) by using
a predicate (pred). For example, IsCompetitorOf
is a relation between the concepts Microsoft and
Google. We denote the LHS of a pattern as follows:

(sub, pred, obj) :- RHS (Rule 7)

The RHS on the other hand describes a pattern
that has to be identified in text. We define a pattern
as an ordered collection of tokens that are divided
by spaces, which indicates the sequence in which
the target tokens have to appear in text. The RHS
of a HIEL pattern is not limited to one sentence,
but is matched against the full news article text.
In order to limit a rule to a sentence, one has to
specifically define this constraint in the pattern.

3.2.2. Literals
As shown in Sect. 2, pattern grammars typi-

cally support literals, i.e., text strings. Literals
can be written as a (compound) word surrounded
by quotes, e.g., “John F. Kennedy”. In HIEL, to-
kens on the RHS of patterns can be of various
types, amongst which literals. Whenever literals
are used within patterns, the (compound) word be-
tween quotes has to match exactly with the text.

3.2.3. Lexical Category
Like many other lexico-syntactic and lexico-

semantic pattern languages, our language supports
a set of syntactic categories to describe the lexical
category of the token, i.e., its part of speech. The
possible values of the lexical category are shown in
Table 1. In general, we distinguish between various
verbs and nouns, prepositions, adjectives, coordi-
nating conjunctions (e.g., “as well as”), cardinal
numbers, and interjections (e.g., “well” as in “well,
that depends”).
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Category Description
CC Coordinating conjunction
CD Cardinal number
IN Preposition
JJ Adjective
NN Noun
NNP Proper Noun
PP Pronoun
RB Adverb
UH Interjection
VB Verb, base form
VBZ Verb, 3rd person singular present

Table 1: Common lexical categories

3.2.4. Orthographic Category
In addition to the word lexical category, the lan-

guage distinguishes four orthographic categories.
Note that the field of orthography spans hyphen-
ation, capitalization, word breaks, emphasis, and
punctuation. We define orthography as describ-
ing (defining) the set of symbols used in tokens.
More specifically, we focus on capitalization. The
upperInitial category is used for tokens that start
with an uppercase character. When referring to
capitalized words, allCaps should be used. In addi-
tion, lowerCase indicates a token without uppercase
characters. Finally, mixedCaps is used in words with
varying capitalization. Orthographic categories can
especially be useful when identifying names or ab-
breviations.

3.2.5. Labels
The subject, relation, and object described in the

LHS need to be identified in the RHS in order to
provide a link between text and a new extracted
fact. This can be done using labels, which are rep-
resented as words preceded by a “$” and followed by
a colon and an equality sign, as well as a description
of the attached token. Whenever the RHS matches
with a sentence, the tokens with associated labels
are filled in the LHS of the rule. An example rule
with labels is:

($sub, kb:hasProduct, $obj) :-
$sub:=‘Google’ ‘launches’
$obj:=upperInitial

(Rule 8)

Note that “kb:” represents a namespace, which in
our case refers to a knowledge base (ontology) in
which the predicate “hasProduct” has been speci-
fied.

3.2.6. Logical Operators
The language supports three of the most common

types of logical operators as defined in [45], i.e., and
(“&”), or (“|”), and not (“!”). The disjunction and
conjunction are used in combination with grouping
parentheses in the RHS. An example of such a rule
is:

($sub, rdf:typeOf, $obj) :-
$sub:=(NN & upperInitial)
$obj:=(NN | CD)

(Rule 9)

Here, “rdf:” points to the namespace of RDF,
which – amongst others – contains the “typeOf”
property. Negation can be used almost everywhere
in the RHS of a rule, except in front of a label, e.g.:

($sub, rdf:typeOf, $obj) :-
$sub:=(!NN)
$obj:=(!(NN | CD))

(Rule 10)

3.2.7. Repetition
Another feature that is often used in many lan-

guages is repetition, which is employed as an indi-
cation that a certain pattern can be found a num-
ber of times. In HIEL, we distinguish between four
types of repetition operators: zero or more (“*”),
once or more (“+”), zero or once (“?”), and a range
(“{min[,[max]]}”). The latter indicates that the
foregoing pattern must occur at least min times and
no more than max times. The comma and the maxi-
mum are optional. When a maximum has not been
defined, the pattern must occur at least min times.
Leaving out the comma as well indicates that the
specified pattern must occur exactly min times. An
example of a rule utilizing a range operator is:

($sub, rdf:typeOf, $obj) :-
$sub:=NNP (VBZ | NN){1,3}
$obj:=NNP

(Rule 11)

3.2.8. Wildcards
The patterns defined in the RHS of rules can be

very specific. The order of the tokens is fixed and
no other words between the tokens are allowed. In
order to enable some flexibility in patterns, we al-
low the user to employ wildcards. These wildcards
can be used to state that any word may be found
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in the text and are inspired by the wildcards of
the database query language SQL. Within our lan-
guage, the user is allowed to specify that zero or
more words may be skipped (“%”) or exactly one
word may be skipped (“_”). An example rule that
makes use of wildcards is:

($sub, rdf:typeOf, $obj) :-
$sub:=(NN & upperInitial) %
$obj:=NN

(Rule 12)

3.3. Employing Ontology Elements in the Rules
By employing ontology elements, we are adding

semantics to the rules. For instance, if there is
a news article about kb:Google introducing a new
product, e.g., kb:Chrome, and kb:Google already has
an entry in the knowledge base, it is possible to
annotate the lexical representation of kb:Chrome
as a product and add a product-relation between
kb:Chrome and kb:Google. When ontologies are em-
ployed in the rules, potentially one rule can be used
to describe multiple lexical representations. In this
example three features of an ontology occur. First,
company is a class. Second, kb:Google and the prod-
uct (kb:Chrome) are instances of classes, and third,
the relationship between kb:Google and the product
represents an object property. We now continue by
discussing how these three features of the ontology
can be employed in information extraction rules.

3.3.1. Concepts
Classes are groups of individuals that share

the same properties [7]. For example, kb:Google
and kb:Microsoft both belong to the same class,
i.e., kb:Company. Other examples of classes are
kb:Product, kb:Person, and kb:Country. In infor-
mation extraction it is useful to look for specific
instances in the text. Instances are more specific
than classes and are generally used on the RHS of
the rule.
In the language we make a distinction between

classes and instances. If the rule is to recognize a
specific instance of a certain concept it is denoted
by the instance itself. The following rule shows an
example:

($sub, kb:hasProduct, $obj) :-
$sub:=kb:Google kb:Buys
$obj:=mixedCaps

(Rule 13)

This rule contains two instances, namely kb:Google
and kb:Buys, and are matched to a sentence like
“Google Inc. acquires YouTube,” because “Google
Inc.” is a lexical representation of the instance
kb:Google and in a similar manner is “acquires” a
lexical representation of kb:Buys. By employing
classes instead of specific instances, the rules be-
come more generic. An example of a rule using
classes is:

($sub, rdf:typeOf, kb:Company) :-
[kb:Company] (‘,’ | ‘and’)
$sub:=(NNP{1,})

(Rule 14)

In the above rule, a list of companies is recognized.
The square parentheses denote all the instances of
the enclosed type. Each instance has associated lex-
ical representations as we have previously seen. In
this example, the proper nouns (NNP) will be anno-
tated as an instance of a company. Assuming that
Google is already known as a concept, in order to
recognize other companies, we can match the rule
on the sentence “A Big-Picture Look at Google, Mi-
crosoft Corporation, Apple and Yahoo!”. The first
time this is done, “Microsoft Corporation” will be
annotated as a company, while in order to recognize
“Apple” and “Yahoo!” as well, the rule needs to be
run a second and a third time.

3.3.2. Relations between Concepts
As stated earlier, the LHS of the HIEL patterns

is used for recognizing concepts, and it is a triple
that describes the relationship between a subject
and an object. By using labels, we can refer in the
LHS to a concept found on the RHS. For instance,
a rule such as

($sub, kb:hasSubsidiary, $obj) :-
$sub:=[kb:Company] kb:Buys
$obj:=[kb:Company]

(Rule 15)

can be employed in order to extract the
kb:hasSubsidiary relation between two companies.
The concept kb:Buys has various synonyms such as:
“buy”, “acquire”, and “take over”. If we apply this
rule to the sentence “Google buys YouTube for $1.65
billion”, it would extract the kb:Buys relation be-
tween kb:Google and kb:YouTube. This information
can then be used in order to update the ontology,
and for instance remove the existing competitor re-
lationship between the companies.
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Figure 1: Overview of the Hermes processing pipeline

4. Hermes Information Extraction Engine

Based on the language defined in this paper, we
have implemented the Hermes Information Extrac-
tion Engine (HIEE). In this section, we first discuss
the Hermes News Portal (HNP) in Subsect. 4.1,
followed by Subsect. 4.2 that briefly touches upon
the general framework that lies underneath the
HNP and the HIEE plug-in. Subsequently, Sub-
sect. 4.3 presents the preprocessing of the news
items. Subsection 4.4 discusses the rule engine and
Subsect. 4.5 illustrates the plug-in for the Hermes
News Portal.

4.1. Hermes News Portal
The implementation of the Hermes framework is

the Hermes News Portal (HNP), which allows users
to formulate queries and execute them on the do-
main ontology in order to retrieve relevant news
items. The HNP application is a stand-alone, Java-
based tool which makes use of various Semantic
Web technologies.

The internal knowledge base is in fact a do-
main ontology constructed by domain experts, rep-
resented in OWL [7]. While populated ontolo-
gies are typically queried by the Semantic Web’s
standard query language SPARQL [28], querying
within HNP is done by means of extended SPARQL
queries. Because within the Hermes News Portal
time-specific features are exploited, time function-
alities were added to SPARQL, which resulted in
tSPARQL [11, 12]. Within HNP, the classification
of the news articles is done using GATE [41] and
the WordNet [46] semantic lexicon. The classifica-
tion occurs prior to the rules execution that extract
information from news.

4.2. General Framework
We developed a general framework that supports

our Hermes Information Extraction Engine (HIEE)
plug-in. Figure 1 presents the architecture of the
processing pipeline that lies underneath our imple-
mentation. The framework consists of two main
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parts, i.e., the preprocessing stage and the rule en-
gine. These parts and their individual components
are executed in a specific order, and are discussed
in more detail in the following subsections.
In short, preprocessing – which is described in

more detail in Subsect. 4.3 – is done using the ex-
isting HNP natural language processing pipeline,
which classifies news items using the GATE archi-
tecture [41]. Most of the components stem from the
A Nearly-New Information Extraction (ANNIE)
system, which is a selection of standard GATE com-
ponents. In addition, an ontology-enabled gazetteer
is employed.
In contrast to most preprocessing components,

the rule engine, which is described in more detail
in Subsect. 4.4, makes use of ontologies. The en-
gine consists of two core components, i.e., lexico-
semantic pattern (rule) compilation and matching.
The compiler and matcher make use of semantic
components, i.e., concepts and individuals stored
in the main ontology, and syntactic elements, such
as Part-Of-Speech (POS) tags that are generated
in the preprocessing stage.

4.3. Preprocessing
Before the rules can be employed to match pat-

terns in text, a few processing tasks need to be per-
formed, like tokenization, sentence splitting, and
Part-Of-Speech (POS) tagging, which are dealt
with by the GATE architecture [41]. GATE pro-
vides a pipeline consisting of different components,
each of which handles a different aspect of the lan-
guage processing. The components that are part
of the pipeline, and come with GATE by default,
are in order of usage: Document Reset, ANNIE
English Tokenizer, ANNIE Gazetteer, ANNIE Sen-
tence Splitter, ANNIE Part-Of-Speech Tagger, and
OntoGazetteer.

The Document Reset component is used for re-
setting the document, in this case a news item, to
its original state. The document is cleared from all
its current annotations, enabling the pipeline to re-
annotate the text. This is especially useful when
running the document through a pipeline several
times, as it is undesirable to use a document with
previous annotations in an information extraction
process. Subsequently, the ANNIE English Tok-
enizer splits the corpus into tokens, such as num-
bers, punctuation, and words of different types. A
distinction is made between words in uppercase and
lowercase, and between certain types of punctua-
tion.

After these basic operations, the ANNIE
Gazetteer looks up words from gazetteer lists (i.e.,
lists with names of, for example, cities, countries,
companies, days of the week, world leaders, etc.) in
order to be able to classify them. In our implemen-
tation, the latter task is limited to some basic and
static lists, such as days of the week, months of the
year, etc. After gazetteering, the ANNIE Sentence
Splitter is employed, which identifies sentences, re-
quired for the ANNIE Part-Of-Speech Tagger. This
tagger is a modified version of the Brill tagger [47],
which produces a POS tag as an annotation to each
word or symbol. The POS tags, e.g., the ones de-
scribed in Table 1, can be used in the rules to de-
scribe certain patterns.

Finally, the OntoGazetteer component is ex-
ecuted, which has similarities with the ANNIE
Gazetteer. The biggest difference lies in the fact
that theOntoGazetteer is an ontology-enabled com-
ponent, i.e., it utilizes terms stored in an ontol-
ogy instead of plain gazetteer lists for classifica-
tion. The component still utilizes lists in order
to perform its tasks, but in addition provides a
mapping definition between the lists and the ontol-
ogy classes. The OntoGazetteer searches the cor-
pus for occurrences of OWL annotation properties
– these are the concept lexical representations – of
the classes and instances of the ontology. The found
matches are annotated with the name of the OWL
instance (or class) against which the piece of text
is matched. In order to assure a good performance,
one should make sure that the ontology has an ex-
tensive list of lexical representations associated to
each depicted concept or relation. After annota-
tion using OntoGazetteer, tokens have been linked
to the ontology, and hence can be used in lexico-
semantic patterns. A sentence like “The conference
will be attended by CEOs like Steve Ballmer and
Steve Jobs”, gives us the opportunity to recognize
“Steve Ballmer” and “Steve Jobs” as CEOs.

4.4. Rule Engine
After preprocessing a news corpus, the Hermes

Information Extraction Rule Engine compiles the
rules in the Rule Compiler and matches these rules
to the text using the Rule Matcher. Because we use
news items, employing the extracted information it
is possible to adapt the underlying ontology based
on certain events. For instance, “Eric Schmidt
leaves Google”, informs us that “Eric Schmidt” is
no longer the CEO of “Google” and hence results
in an ontology update. Note that in order for the
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rule engine to be able to run as a stand-alone appli-
cation, we do not create dependencies with respect
to GATE’s default JAPE language. Hence, because
no conversion is made to JAPE rules, we enable one
to employ the rule engine within other information
extraction frameworks as a stand-alone component.
Also, we have to take into consideration that JAPE
might not be suitable to support possible future ex-
tensions to HIEL.
The Rule Compiler is created using the Java

Compiler Compiler [48], developed by Sun Mi-
crosystems. The Java Compiler Compiler gener-
ates a compiler for the grammar defined in Sect. 3
and Appendix A. During the compilation, Java
objects are being created that represent the various
parts of a rule. The right-hand side (RHS) of a rule
can be represented as a tree, as shown in Fig. 2.
Components in this tree are of two main types: in-
ternal nodes and leaf nodes. Internal nodes consist
of one or more internal nodes or leaf nodes and in-
clude sequences, logical operators, and repetitions.
Leaf nodes are nodes that do not have any child
nodes and include literals, concepts, orthographi-
cal categories, Part-of-Speech categories, and wild-
cards. After the rules are compiled, the matcher
tries to match the rules onto the text.
In order to match the compiled rules to the text,

each tree node performs its own task. In our recur-
sive algorithm which starts at the tree’s root node,
child node procedure calls are performed. These
children try to match as many tokens as possible.
Non-leaf nodes, i.e., nodes that contain child nodes,
keep performing calls to their children until a leaf
node has been reached. Subsequently, leaf nodes
check whether the token at the current position is
a match. Each child node reports to its parent the
number of tokens it was able to match until the root
of the tree is reached. If the root returns a value
which is equal or greater than the value of the po-
sition it started with, the rule has been matched
to the text. This process is repeated until the last
token of the text has been reached. After matching
a rule, tokens on the right-hand side are bound to
labels to be used in the left-hand side of the rule.
This allows for determining which tokens belong to
the subject, predicate, and object of the computed
triple.
In Fig. 3 an example tree of Rule 14 is shown.

If we consider the following sentence: “ASUS
and Microsoft Corporation become official partners
for Windows Phone 7”, where ASUS is a known
instance of Company in the ontology and Mi-

Root

Node

getNextMatch()

count

Leaf Node

getNextMatch()

count

Leaf Node

getNextMatch()

count

Leaf Node

getNextMatch()

count

Figure 2: Rule tree template

crosoft Corporation is not, the process is as follows.
Sequence sends a getNextMatch() call to kb:Company,
which returns 1, indicating that one token has
been matched. Subsequently, after receiving the re-
sponse, the Sequence sends a getNextMatch() call to
the OR which passes it on to the literal “and” which
returns 1. Finally, the Repetition tries to match
the NNP as many times as possible, which results in
2, as “Microsoft Corporation” has two words. Note
that the tokens matched by the Repetition, “Mi-
crosoft Corporation”, are assigned to the left-hand
side (LHS) entity sub.

Regarding speed, the Hermes Information Ex-
traction Rule Engine is able to run on a real-time
basis, as both rule compilation and executing rules
for one news message have subsecond performance.
We did not encounter any speed issues that can be
attributed to OWL operations on the underlying
ontology, as we only deal simple inferences based
on the typeOf relations.

4.5. Hermes Plug-in
In order to be able to evaluate the usability and

expressivity of the proposed information extraction
language, the HIEE plug-in for the Hermes frame-
work was created. This plug-in allows one to create,
edit, use, and evaluate extraction rules, and is com-
posed of three different parts, i.e., the rule editor,
the annotation validator, and the manual annota-
tor.

The rule editor, as displayed in Fig. 4, allows
users to create their own personal information ex-
traction rules. These rules can be divided into
so-called rule groups, enabling clustering of differ-
ent rules of the same type (i.e., they discover the
same type of event). After creating a rule, the
user is given the option to validate and save the
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Figure 3: Rule tree example of Rule 14

rule. Whenever syntactical mistakes – such as ty-
pographical errors, but in worse cases violations of
the grammar as defined in this paper – are made
by the user, the built-in compiler will detect them
and display informative messages to the user. A
rule cannot be saved if it is not valid, ensuring the
validity of the rules by construction.
The annotation validator, as depicted in Fig. 5,

displays the resulting annotations after applying
the user-defined extraction rules to the existing
news items. Each result is described by the ex-
tracted triple defined in the left-hand side of a rule,
a number indicating the number of occurrences of
the triple in the evaluated news items, and a check-
box to allow for user validation, resulting in knowl-
edge base updating. After marking the correctly
extracted facts as valid, a new annotation run can
be executed. The previously extracted facts will be
stored in the knowledge base and subsequently, new
information can be extracted using these new facts.
The manual annotator is used for evaluating the

current rule set. For each news item, the user is able
to manually annotate tokens from the news item.
When selecting a token, its current classified anno-
tations, such as the Part-Of-Speech (POS) tag, the
orthographical category, and the ontology concepts
are displayed. If new ontology annotations are pre-
ferred, a concept can be selected from a list with
existing concepts from the ontology. Events can be
described by selecting the subject, predicate, and
object in the text and annotate them with the cor-
responding ontology concepts.

5. Evaluation

In order to evaluate the effectiveness of our ap-
proach, we have implemented a test method and
built a test environment. First we discuss the eval-
uation setup in Subsect. 5.1, followed by the results,
in Subsect. 5.2.

5.1. Evaluation Setup
For testing the performance of the extraction lan-

guage, we assembled news messages from finan-
cial news feeds, totalling 500 items with an aver-
age length of 4,200 words and multiple paragraphs.
News messages are written in English using an ex-
tensive vocabulary. These news items are divided
into two sets, i.e., a training set consisting of 300
news items, and a test set consisting of 200 news
items. The gathered news items originate from
Reuters Business and Technology News and from
The New York Times Business News. Next, an
ontology is provided to domain experts (i.e., col-
leagues with an expertise in finance) that are asked
to annotate the news messages and to develop event
extraction rules. A similar approach is followed for
a second data set containing 100 political news mes-
sages, with an average length of 700 words, mainly
gathered from Reuters Politics News and Yahoo!
Politics News.

The ontologies employed in our experiments con-
tain major domain concepts and their most com-
mon representations, and are not overly detailed.
It is not within the scope of this paper to develop
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Figure 4: Rule editor

Figure 5: Annotation validation
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Name Subject Relation Object
CEO Company hasCEO Person
Product Company hasProduct Product
Shares Company hasShareValue Literal
Competitor Company hasCompetitor Company
Profit Company hasProfit Literal
Loss Company hasLoss Literal
Partner Company hasPartner Company
Subsidiary Company hasSubsidiary Company
President Company hasPresident Person
Revenue Company hasRevenue Literal

Table 2: Relations and events for the financial domain, used for evaluation purposes

Name Subject Relation Object
Election Person isElectedAs Function
Visit Person visits Country
Sanction Country sanctions Country
Join Country joins Union
Resignation Person resignsFrom Function
Investment Country investsIn Country
Riots Country hasRiots N/A
Collaboration Country collaboratesWith Country
Provocation Country provokes Country
Help Country helps Country

Table 3: Relations and events for the political domain, used for evaluation purposes

large, complete, and exhaustive ontologies for the
specific domains as we merely explore the function-
alities of our language by means of concepts within
a particular financial or political context. The de-
veloped ontologies allow domain experts to anno-
tate texts with common concepts from finance and
politics, and to recognize frequently occurring fi-
nancial and political events.
Our financial ontology contains a small subset of

commonly used, well-known, financial entities. Ex-
amples of ontology concepts are: companies, prod-
ucts, persons, currencies, CEOs, etc. These con-
cepts have associated lexical representations, e.g.,
the CEO concept has associated “CEO”, “Chief Ex-
ecutive Officer”, “Chief Executive”, etc. The ontol-
ogy consists of 65 classes, 18 object properties, 11
data properties, and 1,167 individuals, which can
be used for annotation and event detection.
The ontology that is used for event discovery in

political news items is also a high-level ontology,
yet considerably smaller than the financial ontol-
ogy. Our political ontology contains 14 classes, 12
object properties, 5 data properties, and 391 indi-
viduals. Most individuals are associated with coun-

tries. Also, we included many lexical representa-
tions of politics-related nouns and verbs, e.g., those
linked to elections, provocations, meetings, etc.

For each data set, three domain experts manu-
ally annotate the events and relations that we take
into account in our evaluation, based on an inter-
annotator agreement of at least 66% (i.e., at least
two out of three annotators should agree). Dur-
ing the evaluation we focus on the extraction of ten
events and relations from the financial domain and
ten events and relations from the political domain.
Each of these events are described in Tables 2 and 3,
by a name, subject, relation, and an optional ob-
ject. Based on the events and relations that exist
in the news items in the training sets, we let three
domain experts construct a set of information ex-
traction rules, where we take the conjunction of the
three constructed rule sets. The constructed rules
are subsequently matched to the news items in the
test sets, in order to measure the performance.

In our experiments, for each rule group we com-
pare the performance of lexico-syntactic patterns
(our baseline) to the performance of lexico-semantic
patterns written in HIEL and in JAPE in terms of
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construction time (i.e., efficiency) and in terms of
precision and recall (i.e., expressivity). The latter
two measures are often employed in the informa-
tion extraction field, i.e., precision P and recall R.
These measurements are defined as follows:

P = |{Relevant} ∩ {Found}|
|Found|

, (1)

R = |{Relevant} ∩ {Found}|
|Relevant|

, (2)

where Relevant is the set of relevant annotations
(events) and Found is the set of found annotations.
There is a trade-off between precision and recall,
and hence we compute the F1 measure. The F1
measure is applied to compute an even combina-
tion, i.e., the harmonic mean of precision and re-
call:

F1 = 2× Precision×Recall
Precision+Recall

. (3)

We measure the rule creation times by averaging
the individual rule set creation times of our domain
experts. We evaluate the average time it takes for
the F1 measures to become equal to or higher than
0.5. Such a value would be large enough to rule
out randomness, as the F1 measure for a random
classifier (based on prior occurrence probability) is
a lot less than 0.5 due to the fact that events are
seldomly occurring in a news item (when comparing
the likelihood of a specific event occurrence with
the absence of a specific event with respect to a
possible event word sequence in a news item). In
theory, creating patterns with an F1 performance
of 0.5 should be manageable within a reasonable
amount of time. Additionally, with F1 scores of
0.5, one avoids the risk of overfitting patterns to a
specific data set.
We hypothesize that the creation of well-

performing lexico-syntactic rule groups requires
more time than the creation of the equivalent
lexico-semantic ones. In a second experiment, rule
quality, indicated by the precision, recall, and F1
measures is evaluated for lexico-syntactic, HIEL,
and JAPE rule groups given a fixed time in which
our domain experts are allowed to create and im-
prove the individual rules. We allow the domain
experts to improve their (HIEL and JAPE) lexico-
semantic rule groups up until the time it took
for creating the equally performing lexico-syntactic
rule groups.

5.2. Evaluation Results

The construction times presented in Tables 4
and 5 confirm our hypothesis that the creation
of lexico-syntactic rules requires more time than
the creation of equally performing lexico-semantic
rules, both in HIEL and in JAPE. The tables dis-
play rule group creation times in seconds for the
lexico-syntactic and lexico-semantic variants, which
are obtained on our test sets while aiming for an
F1 score of at least 0.5. For our financial data set,
on average, equally well-performing lexico-semantic
rule groups are created up to 5 to 70 times faster
than their lexico-syntactic counterparts. For JAPE
patterns, creation times are considerably lower than
for lexico-syntactic rules, yet they are higher than
those for HIEL lexico-semantic patterns. Addition-

HIEL JAPE
Name Lex-Syn Lex-Sem Lex-Sem
CEO 8,424 281 738
Product 9,428 132 312
Shares 2,403 648 703
Competitor 9,116 133 850
Profit 1,923 416 1,027
Loss 5,991 313 589
Partner 4,924 185 474
Subsidiary 6,620 776 1,851
President 4,239 179 722
Revenue 5,317 498 798
Overall 5,839 356 806

Table 4: Creation times (in seconds) of lexico-syntactic and
lexico-semantic rule groups in HIEL, and lexico-semantic
rule groups in JAPE, using the financial test set (F1 ≥ 0.5)

HIEL JAPE
Name Lex-Syn Lex-Sem Lex-Sem
Election 1,517 232 689
Visit 4,238 543 913
Sanction 4,013 419 1,247
Join 3,986 297 405
Resignation 1,259 366 540
Investment 5,162 781 2,304
Riots 1,734 306 451
Collaboration 1,103 137 719
Provocation 1,428 530 828
Help 1,987 211 362
Overall 2,643 382 846

Table 5: Creation times (in seconds) of lexico-syntactic and
lexico-semantic rule groups in HIEL, and lexico-semantic
rule groups in JAPE, using the political test set (F1 ≥ 0.5)
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ally, for our political data set we observe similar
results, although the measured differences are reg-
ularly smaller.
The major cause of the construction time reduc-

tion that is measured when switching from lexico-
syntactic to lexico-semantic patterns lies within the
fact that concepts used in HIEL and JAPE lexico-
semantic rules, e.g., persons and companies, are
conveniently described in an ontology (containing
classes, instances, and their associated lexical rep-
resentations), thus enabling easy reuse. For lexico-
syntactic rules however, it is difficult and cumber-
some to create rules that distinguish names of per-
sons from companies, products, months, days, etc.
Additionally, the verbosity of lexico-syntactic rules
and the use of literals to exclude common words
(e.g., months) contribute to a considerable amount
of extra creation time.
Let us consider a rule that extracts provocation

events, where one country provokes another. When
solely utilizing lexico-syntactic elements within the
pattern, one would need to intelligently combine
lexicographic and orthographic categories. For
instance, a country could be defined as a series
of nouns and adjectives that contain capitals, i.e.,
((JJ | NNS | NNP | NNPS | NN) & (upperInitial |
allCaps | mixedCaps))+, matching phrases like
“Spain”, “United States”, etc. Additionally, this
could be extended so that it would also match
strings like “U.S.” by adding an extra condition,
resulting in (((JJ | NNS | NNP | NNPS | NN) &
(upperInitial | allCaps | mixedCaps)) (‘.’ NNP
‘.’?)?)+. However, finding the right combination
of nouns and conditions in order to match countries
and not persons, companies, etc., is a tedious task.
An example of a lexico-syntactic provocation
discovery rule is:

($sub, kb:provokes, $obj) :-
$sub:=(

(
(JJ | NNS | NNP | NNPS | NN) &
(upperInitial | allCaps | mixedCaps)

)
(‘.’ NNP ‘.’?)?

)+
(!‘.’ & !‘(’ & !‘)’ & !‘-’){0,3}
(‘angers’ | ‘angered’ | ‘accuses’ |
‘accused’ | ‘insult’ | ‘insulted’ |
‘provokes’ | ‘provoked’ | ‘threatens’ |
‘threatened’)

(!‘.’ & !‘(’ & !‘)’ & !‘-’){0,3}

(Rule 16)

$obj:=(
(
(JJ | NNS | NNP | NNPS | NN) &
(upperInitial | allCaps | mixedCaps)

)
(‘.’ NNP ‘.’?)?

)+

Here, the subject and object are defined as series of
capitalized nouns, possibly representing countries.
Additionally, verbs related to provocation are re-
quired. These are enumerated as literals. Finally,
the pattern allows up to three non-punctuation to-
kens in between the countries and the verb.

When replacing lexical categories and literals
with concepts stemming from our political ontol-
ogy, we obtain the following lexico-semantic rule in
HIEL:

($sub, kb:provokes, $obj) :-
$sub:=([kb:Country] | [kb:Continent] |

[kb:Union])
(!‘.’ & !‘(’ & !‘)’ & !‘-’){0,3}
(kb:toAnger | kb:toAccuse | kb:toInsult |
kb:toProvoke | kb:toThreaten)

(!‘.’ & !‘(’ & !‘)’ & !‘-’){0,3}
$obj:=([kb:Country] | [kb:Continent] |

[kb:Union])

(Rule 17)

The rule is much cleaner and takes considerably less
effort to write. As concepts like countries, conti-
nents, and unions are conveniently described in the
ontology, the user merely needs to refer to them and
avoids the hassle of trying to find optimal combina-
tions of lexicographic and orthographic categories,
keywords, etc. Moreover, lexico-semantic rules ex-
ploit the typeOf hierarchy, i.e., because of the in-
ference that can be applied to ontological concepts,
the user can suffice with using concepts like Country,
instead of their subclasses US, UK, etc., that have as-
sociated lexical representations.

Even though JAPE is more expressive than HIEL
as it supports templates (macros) as well as the us-
age of any Java code – which is useful for removing
temporary annotations, percolating and manipulat-
ing features from previous annotations, etc. – HIEL
rules offer more accessibility to the user. Let us con-
sider the following rule, which is an exact JAPE
copy of our previously introduced HIEL rule:
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Rule: Geo_provokes_Geo
(

(
{Lookup.classURI == "Country"} |
{Lookup.classURI == "Continent"} |
{Lookup.classURI == "Union"}

):sub
({!Token.string ==~ "[.()-]"})[0,3]
(

{Lookup.URI == "toAnger"} |
{Lookup.URI == "toAccuse"} |
{Lookup.URI == "toInsult"} |
{Lookup.URI == "toProvoke"} |
{Lookup.URI == "toThreaten"}

)
({!Token.string ==~ "[.()-]"})[0,3]
(

{Lookup.classURI == "Country"} |
{Lookup.classURI == "Continent"} |
{Lookup.classURI == "Union"}

):obj
)
:match --> :match.provokes =

{sub = :sub.Lookup.propertyValue,
obj = :obj.Lookup.propertyValue}

(Rule 18)

Even without employing the extra features that
JAPE rules offer, we already obtain a rule that is
more verbose. Therefore, this rule takes consid-
erably longer to write than lexico-semantic HIEL
rules. On the other hand, due to the availabil-
ity of ontology concepts also the creation of lexico-
semantic JAPE rules requires less effort than con-
structing plain lexico-syntactic rules.
In Table 6, the experimental results of lexico-

semantic rules on the test set are displayed for
the financial data set. After allowing the domain
experts to improve the lexico-semantic rules writ-
ten in HIEL up until the time it took for creating
the equally performing lexico-syntactic rules (e.g.,
[2, 403− 648 =] 1, 755 extra seconds for shares dis-
covery), the overall precision and recall are 84%
and 74%, respectively, resulting in an F1 score of
approximately 79%. With measured precision, re-
call, and F1 scores of 85%, 58%, and 69%, respec-
tively, the lexico-semantic rules that are written
in JAPE perform notably better than the lexico-
syntactic rules, which have a precision, recall, and
F1 measure of 55%, 49%, and 52%, respectively,
yet their performance is consistently worse than the
performance of lexico-semantic HIEL rules.
For both lexico-semantic pattern languages, the

highest recalls are obtained for CEO, Shares, and
Partner relations. This is mainly due to the homo-

geneous sentence structures related to these rela-
tions. Judging from the low recalls, the subsidiary
and president relations were harder to discover in
the text. This could be caused by overfitted rules,
which means that it was difficult to create generic
rules on the training set that would match many dif-
ferent instances of these relations. The same can be
said for the precision and recall (and hence the F1
value) of the discovery of a company’s loss. Another
notable observation is the high number of product
relations that are discovered in our data set, which
can be explained by the fact that many news items
discuss companies and their products.

For our political data set, we observe similar over-
all performances, as depicted in Table 7. Generally,
lexico-semantic patterns written in HIEL perform
better than those written in JAPE. While we ob-
serve a precision and recall of 76% and 72%, respec-
tively, for lexico-semantic HIEL rule sets, JAPE
rules measure respective scores of 70% and 63%.
With F1 scores of 74% and 66%, this is still con-
siderably better than the 51% accomplished by the
lexico-syntactic rules. High precisions and recalls
are observed in rules covering elections, resigna-
tions, and riots, as these events can usually be
found in non-complex sentences where key terms
are closely located near one another. Political vis-
its and provocations suffer from low recall values,
caused by the wide structural variety and complex-
ity of sentences denoting these events.

On a side note, within our framework it is rela-
tively straightforward to obtain high recall scores.
For instance, it would be likely for a rule such as

($sub, kb:hasProduct, $obj) :-
$sub:=[kb:Company] %
$obj:=[kb:Product]

(Rule 19)

to discover each and every existing product rela-
tion. However, there is a tradeoff between high re-
call and high precision. In order to obtain high
scores for both measures (expressed in a high F1
score), rules need to be far more sophisticated. In
texts that contain product relations, often several
different companies are mentioned, which makes it
difficult to match only the right product with the
right company.

Based on the evaluation results, we validated the
requirements set for our approach in Sect. 1. Our
proposed language, HIEL, is more easy to use for
expressing lexico-semantic patterns than the cur-
rent state-of-the-art JAPE language. Also, we have
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shown the superiority of lexico-semantic approaches
over lexico-syntactic ones with respect to both pre-
cision and recall.

6. Conclusion

As structuring data on the Web is a tedious and
time consuming process, in this paper, we proposed
a method to extract relations and events in news
articles. The contribution to the existing body of
knowledge is twofold.
Firstly, our proposed method relies on the Her-

mes Information Extraction Language (HIEL), i.e.,
a lexico-semantic pattern language that not only
makes use of lexical and syntactical elements,
but also employs ontology concepts and relations.
These patterns are based on regular expressions,
which enhance the expressivity of the rules. In this
paper, we have provided a formal syntax for the
lexico-semantic rules.
Secondly, in order to show how the proposed rule-

based extraction method can be applied in practice,
we have implemented the approach in the Hermes
News Portal (HNP) as the Hermes Information Ex-
traction Engine (HIEE) plug-in. Combined with
standard text preprocessing tasks performed by the
GATE framework, as well as a central knowledge
base expressed in an OWL ontology, events and re-
lations that occur in news items are extracted.
In order to assess the performance of our pro-

posed method, we have evaluated the implemen-
tation by building rules and measuring the perfor-
mance of the extraction of events and relations by
using these rules. On two separate data sets and
corresponding ontologies from the financial and po-
litical domains, this resulted in a precision of ap-
proximately 80% and a recall of 70%, as the lexico-
semantic patterns are superior to lexico-syntactic
patterns with respect to expressivity. Additional
experiments show that, when compared to lexico-
semantic rules in JAPE, lexico-semantic HIEL rules
obtain higher precision and recall scores than their
JAPE equivalents.
Furthermore, our experiments showed that cre-

ating lexico-semantic rules requires significantly
less time than creating equally performing lexico-
syntactic rules, as lexico-semantic rule group cre-
ation times were in general one degree of magni-
tude smaller than lexico-syntactic rule group cre-
ation times. We argue that lexico-syntactic rules re-
quire more development time because of the larger

amount of effort needed for entering the individ-
ual literals, resulting in low precision. Also, lexico-
semantic rules exploit the inference capabilities of
ontologies. This underlines the advantage of using
lexico-semantic rules. Moreover, we have demon-
strated that lexico-semantic HIEL rules are less ver-
bose than their JAPE equivalents, resulting in less
construction time and contributing to higher preci-
sion and recall values.

While we have focused on finding new informa-
tion and identifying events and relations in news
articles, as future research we suggest to focus on
automatically processing the information that was
found and updating the ontology. Additionally, in
our approach, we can only extract one triple per
rule (the left-hand side of the rule), while events
often consist of more than a subject, predicate, and
an object. For instance, time can play a role in
the event. Also we want to increase the expressiv-
ity of our lexico-semantic patterns by making use
of the relationships stored in the ontology, or go-
ing one step further by employing the expressivity
of one-dimensional SPARQL queries. Finally, we
would like to investigate how to automatically dis-
cover and construct new rules [49] by searching for
certain patterns in the text, trained by using rela-
tions and events we have previously identified.

Acknowledgements

The authors are partially sponsored by the Dutch
Organization for Scientific Research (NWO) Physi-
cal Sciences Free Competition project 612.001.009:
Financial Events Recognition in News for Algorith-
mic Trading (FERNAT) and the FES COMMIT
Infiniti project Information Retrieval for Informa-
tion Services.

References

[1] B. M. Gross, The Managing of Organizations: The Ad-
ministrative Struggle, Vol. 1, Free Press of Glencoe,
1964.

[2] K. R. Rampal, Global Journalism: Survey of Interna-
tional Communication, Longman, 1995, Ch. The Col-
lection and Flow of World News, pp. 35–52.

[3] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic
Web, Scientific American 284 (5) (2001) 34–43.

[4] T. R. Gruber, A Translation Approach to Portable On-
tologies, Knowledge Acquisition 5 (2) (1993) 199–220.

[5] G. Klyne, J. J. Carroll, Resource Description Frame-
work (RDF): Concepts and Abstract Syntax - W3C
Recommendation 10 February 2004, From: http://
www.w3.org/TR/rdf-concepts/ (2004).

19



[6] D. Brickley, R. Guha, RDF Vocabulary Description
Language 1.0: RDF Schema: W3C Recommenda-
tion 10 February 2004, From: http://www.w3.org/TR/
rdf-schema/ (2004).

[7] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks,
D. L. McGuinness, P. F. Patel-Schneider, L. A. Stein,
OWL Web Ontology Language Reference - W3C Rec-
ommendation 10 February 2004, From: http://www.
w3.org/TR/owl-ref/ (2004).

[8] L. Ardissono, L. Console, I. Torre, An Adaptive System
for the Personalized Access to News, AI Communica-
tions 14 (3) (2001) 129–147.

[9] J. Ahn, P. Brusilovsky, J. Grady, D. He, S. Y. Syn,
Open User Profiles for Adaptive News Systems: Help
or Harm?, in: 16th International Conference on World
Wide Web (WWW 2007), ACM, 2007, pp. 11–20.

[10] D. Billsus, M. J. Pazzani, A Personal News Agent that
Talks, Learns and Explains, in: 3rd International Con-
ference on Autonomous Agents (Agents 1999), ACM,
1999, pp. 268–275.

[11] F. Frasincar, J. Borsje, L. Levering, A Semantic Web-
Based Approach for Building Personalized News Ser-
vices, International Journal of E-Business Research
5 (3) (2009) 35–53.

[12] K. Schouten, P. Ruĳgrok, J. Borsje, F. Frasincar,
L. Levering, F. Hogenboom, A Semantic Web-Based
Approach for Personalizing News, in: Twenty-Fifth
Symposium On Applied Computing (SAC 2010), Web
Technologies Track, ACM, 2010, pp. 854–861.

[13] W. Ĳntema, F. Goossen, F. Frasincar, F. Hogenboom,
Ontology-Based News Recommendation, in: Interna-
tional Workshop on Business intelligencE and the WEB
(BEWEB 2010) at 13th International Conference on
Extending Database Technology and 13th International
Conference on Database Theory (EDBT/ICDT 2010),
Vol. 426 of ACM International Conference Proceeding
Series, ACM, 2010.

[14] C. D. Manning, H. Schütze, Foundations of Statistical
Natural Language Processing, 1st Edition, MIT Press,
1999.

[15] A. L. Berger, S. A. D. Pietra, V. J. D. Pietra, A Maxi-
mum Entropy Approach to Natural Language Process-
ing, Computational Linguistics 22 (1) (1996) 39–71.

[16] R. K. Taira, S. G. Soderland, A Statistical Natural Lan-
guage Processor for Medical Reports, in: Annual Fall
Symposium of the American Medical Informatics As-
sociation (AMIA 1999), American Medical Informatics
Association, 1999, pp. 970–974.

[17] M. A. Hearst, Automatic Acquisition of Hyponyms from
Large Text Corpora, in: 14th Conference on Computa-
tional Linguistics (COLING 1992), Vol. 2, 1992, pp.
539–545.

[18] M. A. Hearst, WordNet: An Electronic Lexical
Database and Some of its Applications, MIT Press,
1998, Ch. Automated Discovery of WordNet Relations,
pp. 131–151.

[19] P. S. Jacobs, G. R. Krupka, L. F. Rau, Lexico-Semantic
Pattern Matching as a Companion to Parsing in Text
Understanding, in: Workshop on Speech and Natu-
ral Language colocated with the 6th Human Language
Technology Conference (HLT 1991), Morgan Kauf-
mann, 1991, pp. 337–341.

[20] S. Staab, M. Erdmann, A. Maedche, Semantic Patterns,
Tech. rep., AIFB, University of Karlsruhe (2001).

[21] S. Staab, M. Erdmann, A. Maedche, Engineering On-

tologies Using Semantic Patterns, in: Workshop: E-
Business & the Intelligent Web (WEB-1) collocated
with the 17th International Joint Conference on Artifi-
cial Intelligence (ĲCAI 2001), 2001.

[22] Y. Sure, J. Angele, S. Staab, OntoEdit: Multifaceted
Inferencing for Ontology Engineering, in: Journal on
Data Semantics, Vol. 2800 of Lecture Notes in Com-
puter Science, Springer, 2003, pp. 128–152.

[23] P. Cimiano, S. Staab, Learning by Googling, SIGKDD
Explorations Newsletter 6 (2) (2004) 24–33.

[24] S.-H. Hung, C.-H. Lin, J.-S. Hong, Web Mining for
Event-Based Commonsense Knowledge Using Lexico-
Syntactic Pattern Matching and Semantic Role Label-
ing, Expert Systems with Applications 37 (1) (2010)
341–347.

[25] F. Frasincar, J. Borsje, F. Hogenboom, E-Business Ap-
plications for Product Development and Competitive
Growth: Emerging Technologies, IGI Global, 2011, Ch.
Personalizing News Services Using Semantic Web Tech-
nologies, pp. 261–289.

[26] J. Borsje, F. Hogenboom, F. Frasincar, Semi-Automatic
Financial Events Discovery Based on Lexico-Semantic
Patterns, International Journal of Web Engineering and
Technology 6 (2) (2010) 115–140.

[27] H. Cunningham, D. Maynard, V. Tablan, JAPE: a Java
Annotation Patterns Engine, Technical Report CS–00–
10, University of Sheffield, Department of Computer
Science (2000).

[28] E. Prud’hommeaux, A. Seaborne, SPARQL
Query Language for RDF - W3C Recom-
mendation 15 January 2008, From: http:
//www.w3.org/TR/rdf-sparql-query/ (2008).

[29] F. Hogenboom, A. Hogenboom, F. Frasincar, U. Kay-
mak, O. van der Meer, K. Schouten, D. Vandic, SPEED:
A Semantics-Based Pipeline for Economic Event De-
tection, in: Twenty-Ninth International Conference on
Conceptual Modeling (ER 2010), Vol. 6412 of Lecture
Notes in Computer Science, Springer, 2010, pp. 452–
457.

[30] J. Domingue, E. Motta, PlanetOnto: From News Pub-
lishing to Integrated Knowledge Management Support,
IEEE Intelligent Systems 15 (3) (2000) 26–32.

[31] A. Java, T. Finin, S. Nirenburg, Text Understanding
Agents and the Semantic Web, in: 39th Hawaii Inter-
national Conference on Systems Science (HICSS 2006),
Vol. 3, IEEE Computer Society, 2006, p. 62b.

[32] H. Cunningham, GATE, a General Architecture for
Text Engineering, Computers and the Humanities
36 (2) (2002) 223–254.

[33] W. J. Black, J. McNaught, A. Vasilakopoulos, K. Zer-
vanou, B. Theodoulidis, F. Rinaldi, CAFETIERE:
Conceptual Annotations for Facts, Events, Terms, In-
dividual Entities, and RElations, Technical Report
TR–U4.3.1, Department of Computation, UMIST,
Manchester, from: http://www.nactem.ac.uk/files/
phatfile/cafetiere-report.pdf (2005).

[34] D. Manov, A. Kiryakov, B. Popov, K. Bontcheva,
D. Maynard, H. Cunningham, Experiments with Ge-
ographic Knowledge for Information Extraction, in:
Workshop on Analysis of Geographic References collo-
cated with the 1st Human Language Technology Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics (HLT-NAACL
2003), Association for Computational Linguistics, 2003,
pp. 1–9.

20



[35] B. Popov, A. Kiryakov, A. Kirilov, D. Manov,
D. Ognyanoff, M. Goranov, KIM - Semantic Annotation
Platform, in: 2nd International Semantic Web Confer-
ence (ISWC 2003), Vol. 2870 of Lecture Notes in Com-
puter Science, Springer, 2003, pp. 834–849.

[36] B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov,
A. Kirilov, KIM - A Semantic Platform for Information
Extraction and Retrieval, Journal of Natural Language
Engineering 10 (3–4) (2004) 375–392.

[37] S. Soderland, Learning Information Extraction Rules
for Semi-Structured and Free Text, Machine Learning
34 (1–3) (1999) 233–272.

[38] D. Maynard, V. Tablan, H. Cunningham, C. Ursu,
H. Saggion, K. Bontcheva, Y. Wilks, Architectural Ele-
ments of Language Engineering Robustness, Journal of
Natural Language Engineering – Special Issue on Ro-
bust Methods in Analysis of Natural Language Data
8 (1) (2002) 257–274.

[39] D. Maynard, H. Saggion, M. Yankova, K. Bontcheva,
W. Peters, Natural Language Technology for Informa-
tion Integration in Business Intelligence, in: 10th Inter-
national Conference on Business Information Systems
(BIZ 2007), Vol. 4439 of Lecture Notes in Computer
Science, Springer, 2007, pp. 366–380.

[40] H. Saggion, A. Funk, D. Maynard, K. Bontcheva,
Ontology-Based Information Extraction for Business
Intelligence, in: The Semantic Web, 6th International
Semantic Web Conference (ISWC 2007), 2nd Asian Se-
mantic Web Conference (ASWC 2007), Vol. 4825 of
Lecture Notes in Computer Science, Springer, 2007, pp.
843–856.

[41] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan,
GATE: A Framework and Graphical Development En-
vironment for Robust NLP Tools and Applications,
in: 40th Anniversary Meeting of the Association for
Computational Linguistics (ACL 2002), Association for
Computational Linguistics, 2002, pp. 168–175.

[42] G. Krupka, P. Jacobs, L. Rau, L. Childs, I. Sider, GE
NLToolset: Description of the System as Used for MUC-
4, in: 4th conference on Message Understanding (MUC
1992), Association for Computational Linguistics, 1992,
pp. 177–185.

[43] R. H. Robins, General Linguistics, 4th Edition, Long-
man, 1989.

[44] G. P. Zarri, NKRL, a Knowledge Representation Tool
for Encoding the ‘Meaning’ of Complex Narrative
Texts, Natural Language Engineering 3 (2) (1997) 231–
253.

[45] L. T. F. Gamut, Introduction to Logic, Vol. 1 of Logic,
Language, and Meaning, The University of Chicago
Press, 1991.

[46] C. Fellbaum, WordNet: An Electronic Lexical
Database, MIT Press, 1998.

[47] E. Brill, A Simple Rule-Based Part of Speech Tagger,
in: 3rd Conference on Applied Natural Language Pro-
cessing (ANLP 1992), Association for Computational
Linguistics, 1992, pp. 152–155.

[48] Sun Microsystems, Java Compiler Compiler, From:
https://javacc.dev.java.net/ (2010).

[49] R. Snow, D. Jurafsky, A. Y. Ng, Learning Syntactic
Patterns for Automatic Hypernym Discovery, in: 18th
Annual Conference on Neural Information Processing
Systems (NIPS 2004), Vol. 17 of Advances in Neural
Information Processing Systems, MIT Press, 2004, pp.
1297–1304.

Appendix A. Hermes Information Extrac-
tion Language Grammar

This section contains a formal grammar descrip-
tion in Extended Backus Naur Form (EBNF) of the
Hermes Information Extraction Language (HIEL)
that is presented in this paper. Appendix A.1
presents an overview of the non-terminals used in
our language, whereas Appendix A.2 summarizes
all terminals used in HIEL.

Appendix A.1. Non-Terminals
Start ::= Lhs SETS Rhs
Lhs ::= PL SPACE* LhsP SPACE* COMMA

SPACE* LhsP SPACE* (COMMA
SPACE* LhsP)? SPACE* PR

Rhs ::= Label? (RhsP | RhsCP) (SPACE+
Label? (RhsP | RhsCP))*

RhsCP ::= NOT? PL SPACE* (RhsP | RhsCP)
SPACE* ((OR | AND)
SPACE*)? (RhsP | RhsCP)
SPACE* PR RepOp?

RhsP ::= (NOT? (Element RepOp?)) |
WILDCARD

LhsP ::= (DOLLAR? Name) | Element
Label ::= DOLLAR Name COL_EQ
Element ::= String_Lit | SYN | ORTH |

Class | Inst
Class ::= BL Name BR
Inst ::= Name
Name ::= Ns? CHAR (CHAR | NUMBER)*
Ns ::= CHAR (CHAR | NUMBER)* COLON
RepOp ::= REP | (AL NUMBER (COMMA

NUMBER?)? AR)
String_Lit ::= String_Lsq | String_Ldq
String_Lsq ::= ‘'’ Seq ‘'’
String_Ldq ::= ‘"’ Seq ‘"’
Seq ::= (NUMBER | CHAR | HEX | ESC)*

Appendix A.2. Terminals
NUMBER ::= [0-9]+
CHAR ::= [A-Z] | [a-z]
HEX ::= ‘\x’ ([0-9] | [A-F] | [a-f])

([0-9] | [A-F] | [a-f])
(([0-9] | [A-F] | [a-f])
([0-9] | [A-F] | [a-f]))?

ESC ::= ‘\'’ | ‘\"’ | ‘\\’
SYN ::= ‘CC’ | ‘CD’ | ‘IN’ | ‘JJ’ |

‘NN’ | ‘NNP’ | ‘PP’ | ‘RB’|
‘UH’ | ‘VB’ | ‘VBZ’

ORTH ::= ‘upperInitial’ | ‘allCaps’ |
‘lowerCase’ | ‘mixedCaps’
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PL ::= ‘(’
PR ::= ‘)’
AL ::= ‘{’
BL ::= ‘[’
BR ::= ‘]’
AR ::= ‘}’
COMMA ::= ‘,’
COLON ::= ‘:’
COL_EQ ::= ‘:=’
SETS ::= ‘:-’
OR ::= ‘|’
AND ::= ‘&’
NOT ::= ‘!’
DOLLAR ::= ‘$’
SPACE ::= ‘ ’
REP ::= ‘+’ | ‘*’ | ‘?’
WILDCARD ::= ‘%’ | ‘_’
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