
Journal of Web Engineering, Vol. 0, No. 0 (2017) 000–000
c© Rinton Press

A FRAMEWORK FOR PRODUCT DESCRIPTION CLASSIFICATION IN E-COMMERCE

DAMIR VANDIC, FLAVIUS FRASINCAR

Econometric Institute, Erasmus University Rotterdam
P.O. Box 1738, 3000 DR Rotterdam, the Netherlands

{vandic, frasincar}@ese.eur.nl

UZAY KAYMAK

Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

u.kaymak@ieee.org

Received (received date)
Revised (revised date)

We propose the Hierarchical Product Classification (HPC) framework for the purpose
of classifying products using a hierarchical product taxonomy. The framework uses a

classification system with multiple classification nodes, each residing on a different level

of the taxonomy. The innovative part of the framework stems from the definition of
classification recipes that can be used to construct high-quality classifier nodes, using

the product descriptions in the most optimal way. These classifier recipes are specifically
tailored for the e-commerce domain. The use of these classifier recipes enables flexible
classifiers that adjust to the taxonomy depth-specific characteristics of product taxonomies.

Furthermore, in order to gain insight into which components are required to perform
high quality product classification, we evaluate several feature selection methods and
classification techniques in the context of our framework. Based on 3000 product

descriptions obtained from Amazon.com, HPC achieves an overall accuracy of 76.80% for
product classification. Using 110 categories from CircuitCity.com and Amazon.com, we
obtain a precision of 93.61% for mapping the categories to the taxonomy of shopping.com.

Keywords: Product descriptions, hierarchical clustering, feature selection, e-commerce

Communicated by: to be filled by the Editorial

1 Introduction

The World Wide Web (WWW) has drastically changed the availability and exchange of

information. Nowadays, consumers and businesses more often make use of e-commerce [25].

Most studies from literature focus on approaches that personalize the experience [14, 16, 40]

and enhance the purchase decisions [42, 53] of users visiting Web shops. Product taxonomies

are related to these research fields and have been widely used for the organization of many

kinds of information on the Web. Product taxonomies help customers find relevant products

and allow businesses to organize the offered product assortments. Figure 1 shows an example

of the product taxonomy of Amazon.com, where the consumer has a good overview of the

products that are offered.

Usually, there is no uniform description of the same products among different vendors

on the Web, which forces business-to-business e-commerce to address the issues that arise

1

2 A Framework for Product Description Classification in E-commerce

Fig. 1. Product categories from Amazon.com.

with heterogeneous information [27, 26], such as synonyms and homonyms. Similarly, the

automatic classification of products is becoming more important as this enables companies to

lower costs by spending less time on this task. Without automatic classification, one has to

manually classify products and the cost of this process will keep increasing as the heterogeneous

information on the Web keeps growing.

In this work, we investigate text classification techniques for the purpose of providing

effective hierarchical product classification. We loosely define product classification as the

task of ‘assigning a product to an existing or new category, given a product description’.

Hierarchical classification can be considered as a classification that takes the hierarchical

structure of the taxonomy into account. In this work, the classification is determined to be

static, i.e., we assume that the classification of products will not change over time.

Product descriptions on the Web usually contain information like the title, brand, features

description, and (optionally) reviews of the product. If the product description is extracted

from an existing system, it can also contain the category it was assigned in that system. On the

Web, product descriptions are often not structured and not classified, i.e., the product category

is missing or does not belong to a standard taxonomy [9]. There are various taxonomies that

can be used for the purpose of product classification, including the United Nations Standard

Products and Services Code (UNSPSC) standard [39].

The main focus of this paper is on the classification of products into an existing product

taxonomy. The product taxonomy refers to a predefined hierarchy of product categories. The

goal of this research is to evaluate text classification techniques for the purpose of effective

product classification, and to provide a framework that deals with various issues encountered

in practice that impede this process. For this system, we can identify three main requirements,

(1) the classification of products to both internal and leaf nodes in the category hierarchy,

thereby supporting classification to multiple nodes (multiple classification), (2) dealing with

D. Vandic, F. Frasincar, and U. Kaymak 3

Product classify to one of
the existing
categories

contains category?

no

decide if category
needs to be added

yes

no

yes

1 2 3
classify to one of the
existing categories,
create mapping of

categories

add new category to
the hierarchy tree

Fig. 2. Three possible scenarios when a new product needs to be classified.

product descriptions that may contain a category, and (3) providing a decision algorithm to

identify the cases where no matching category exists.

The proposed Hierarchical Product Classification (HPC) framework requires a given

category hierarchy, without existing product description associations. Given the above re-

quirements, we can identify three scenarios that can occur when a new product has to be

classified, as shown in Figure 2. A product description can contain a category that does not

necessarily have to be present in the existing category taxonomy. If the product description

contains a category, the system must be able to determine whether or not the product should

be classified to an existing category in the hierarchy (scenario 2), or that it should be classified

using the given category by adding it to the hierarchy (scenario 3), i.e., when there is no

match. The classification algorithm should use, if available, the new given category in this

decision, as it can provide valuable information concerning the classification of the product. If

the product description does not contain a category, the task is to classify the product to one

of the existing categories (scenario 1). The main focus of this paper is on scenarios 1 and 2.

However, the proposed category mapping algorithm for scenario 2 can be used with a decision

function to determine whether the product description ‘fits’ one of the categories present in

the system or whether the computed mapping is false, i.e., whether it is necessary to perform

the steps for scenario 3.

The contributions of this paper are threefold. First, we evaluate several classification

techniques on large, real-world product description data sets, which has not been done before.

Second, we propose a high precision algorithm that makes use of syntactic and semantic

similarities in order to map a given product category to an existing taxonomy of product

categories. Third, and last, this work gives a clear overview of which feature selection methods

in product descriptions provide the most accurate classifications.

We start with a survey of the current literature on related classification techniques, feature

selection methods, and evaluation techniques. We discuss these topics in Section 2. In Section 3

we present the details of the proposed framework. We provide an overview of the evaluation

results in Section 4, where we assess the framework with real-world data from Amazon.com.

Finally, in Section 5, we summarize our findings and give directions for future research.

4 A Framework for Product Description Classification in E-commerce

2 Related Work

According to [51], automated text classification (TC) is a learning task, defined as assigning

predefined category labels to new documents based on the likelihood suggested by a training

set of labeled documents. Classification techniques can be categorized by two aspects. First,

the difference between flat and hierarchical classifiers is that flat classifiers assign documents to

categories at one level, i.e., there is no category hierarchy, as opposed to hierarchical classifiers,

where the hierarchy of categories must be taken into account by the classifier. Second, a

classifier can be an independent binary classifier or m-ary (m > 2) classifier. Given a document,

an independent binary classifier makes a yes/no decision for each category, while an m-ary

classifier typically consists of multiple classifiers (e.g., one for each category) and computes a

ranked list of candidate categories for each document.

In the literature, we can find two main approaches for hierarchical text classification, i.e.,

the big-bang approach and the top-down level-based approach [36]. These two approaches are

not tied to a specific classification technique because they only prescribe how one or more

text classifiers should be used. In the big-bang approach, only a single classifier is used in the

classification process. Given a document, the classifier assigns it to one or more categories

in the category taxonomy. In the top-down level-based approach, one or more classifiers are

constructed at each level of the category taxonomy and each classifier works as a flat classifier

at its level. A document will first be classified by the classifier at the root level. It will

then be further classified into one or more lower categories by their corresponding classifiers.

This process continues until it reaches a final category that could be a leaf category or an

internal category. Different types of classification techniques have been developed that can

be used with both approaches. These include rule-based techniques [33, 32, 43], probabilistic

approaches [15, 3, 22, 38], fuzzy [44, 20], support vector machine approaches [7, 36, 54, 11, 28],

neural networks [21, 45, 30], and cluster-based techniques [19, 35].

A major issue for all text classification techniques is the high dimensionality of the feature

space. Several feature selection methods exist that can be used in combination with a threshold

to achieve a desired degree of term elimination. Term frequency thresholding (TF) is the

simplest technique for vocabulary reduction. The frequency of each term is computed and

a minimum threshold for this frequency is used to remove terms. Information gain (IG) is

another feature selection method that is used frequently in the field of machine learning [24].

IG measures the number of bits of information obtained for category prediction by knowing

the presence or absence of a term in a document. Mutual information (MI) is a criterion

commonly used in statistical language modeling of words associations [4]. This criterion has

by convention value zero when there is no document that contains the considered word pair.

To use this criterion for feature selection, one can compute the average or maximum mutual

information value for a term. Another popular statistical criterion is the χ2 statistic (CHI).

The χ2 statistic measures the lack of independence between two words and can be compared

to the χ2 distribution with one degree of freedom. Like the MI, the CHI statistic has a value

of zero when the two words are independent. This statistic can be used for feature selection in

the same manner as MI (computing an average or maximum). The difference between CHI

and MI is that CHI is a normalized value, and hence CHI values are comparable.

The authors of [52] have performed an empirical study, comparing different feature selection

methods, including the TF, IG, and CHI methods. The authors used two m-ary classifiers, a

D. Vandic, F. Frasincar, and U. Kaymak 5

k-Nearest Neighbor classifier (kNN) [47], and a regression based method named Linear Least

Squares Fit mapping (LLSF) [50]. They consider recall and precision as performance measures.

The authors conclude that IG and CHI provide the most effective aggressive term removal (up

to 90% of the original feature space) without losing classification accuracy.

As previously discussed, there are roughly two approaches to classification, i.e., the top-

down and big-bang approaches. Because top-down approaches use multiple classifiers, they

address the issue of separating the noisy terms from the useful ones. This task is usually

highly dependent on the location in the category hierarchy. For example, ‘mobile phone’ may

be a good feature for a top level classification (e.g., Electronics), but becomes useless when

drilled down to Electronics/Mobile Phones.

In [3], a typical top-down approach is proposed, where a Bernoulli model is assumed for

the document generation. A method based on Fisher’s discriminant indices is used for feature

selection, which takes place at each category node. The authors compared their approach with

a weighted one-level cosine classifier. Their approach showed better results with respect to the

micro-averaged recall [49], i.e., 0.66 versus the 0.48 result of the cosine classifier.

[6] propose a system that classifies products using existing classification standards, such

as UNSPSC [39]. The authors consider three methods and the main focus of the system is

the business-to-business environment. For non-hierarchical classification the best result comes

from the Näıve Bayes Classifier, i.e., 78%, outperforming the Vector Space Model (VSM) [31]

and the kNN algorithm. We hypothesize that this performance can be increased by employing

a top-down classification system where feature selection is performed on each node level,

separately. For hierarchical classification the highest accuracy obtained is 38%.

[5] propose an approach where documents are classified only to leaf nodes of the category

hierarchy. Classification is done by taking the weighted sum of feature occurrences that should

be larger than the category threshold. The innovative contribution of this approach is the

possibility of restructuring an initial hierarchy or building a new one from scratch, topics that

are outside the scope of our approach.

[43] identify several issues with the top-down level-based approaches. Among other aspects,

the closeness of classification is not addressed by these approaches, e.g., classifying a mobile

phone, which belongs to the category ‘Mobile Communications’ as ‘Electronics’ is a smaller

error compared to classifying it as ‘Clothes’. For this reason, there are a number of approaches

proposed in the literature that are designed using the Big-Bang approach. [45] propose a

two-level classification, where their approach is characterized by a probabilistic framework.

[30] present the design and evaluation of an approach based on the Hierarchical Mixture of

Experts model. As our solution, this approach also uses a divide-and-conquer strategy to

define smaller categorization problems based on a predefined hierarchical structure. With

respect to accuracy, the approach of [30] shows better results compared to [48] and [18], where

a nearest neighbor classifier and a linear classifier are used, respectively.

[37] proposes Chimera, an approach for classifying product descriptions that combines

learning, rules (created by employees), and crowdsourcing. The authors argue that using rules

(in conjunction with learning) is valuable and that research should focus more on helping

analysts create and manage these more effectively. Although this approach provides interesting

results, it is difficult to compare it with our approach. First, the system relies on significant

human effort. For example, the system uses a manually curated list of 20,000 brands in the

6 A Framework for Product Description Classification in E-commerce

classification step. Another example is the use of rules and crowdsourcing in the system. This

makes it very difficult to compare this approach with ours, which is fully automatic. Second,

the focus of the classification task seems to differ from ours. Whereas we propose a system for

hierarchical product classification, i.e., using a deep multi-level taxonomy, the Chimera system

focuses more on a large scale, flat, taxonomy, consisting of only two levels. The different scope

makes a direct comparison with our solution unsuitable.

We can draw several conclusions from the literature overview. First, besides [6], none of the

related work that aims to solve the same task as our approach focuses on specifically classifying

product descriptions. The work in [6] has some significant limitations, as it compares only

three methods (VSM, k-Nearest Neighbor, and Näıve Bayes), and more importantly, the results

for hierarchical classification are not promising as the highest accuracy that is obtained is

38%. Second, there is no literature on feature selection for product descriptions. It is not clear

which parts of a product description can be used for hierarchical classification of products.

The paper aims to fill these gaps by thoroughly evaluating the effects of using the different

parts of a product description in combination with well-known feature selection methods.

3 The HPC Framework

In this section we present the Hierarchical Product Classification (HPC) framework for

classifying product descriptions using a hierarchical product category taxonomy. In the

next sections the different components of the HPC framework are discussed in detail. The

preparation of the data set is discussed in Section 3.1. In Section 3.2, we discuss the HPC

classification system.

3.1 Data set processing

The preparation of the data set is part of the HPC framework, as product descriptions are

usually very heterogeneous, especially with respect to the level of detail. For this reason,

the HPC framework assumes that a product description has at least the following required

parts: (1) product title (text), (2) brand of the product (nominal), (3) price of the product

(number), and (4) description of the features of the product (text). To avoid the ambiguity of

the term product description, we will introduce the term features description for description of

the features of a product and product description will refer to the collection of all four parts

(title, brand, price, and features description).

More formally, we define the vocabulary of unique words of all alphabetic parts (i.e., title

and features description) of a product description as the vector w = (w1, w2, . . . , wn). A

product description di is then represented as(
xi
title,x

i
desc, p

i, bi
)
∈ Rn × Rn × R× B (1)

where xi
title and xi

desc represent the title and features description of product description

i, respectively. These vectors contain the counts for each word from the vocabulary. The

term pi represents the price and bi ∈ B represents the brand, where R is the set of real

numbers and B is the set of all known product brands. This definition is necessary as the

HPC framework addresses each part of a product description differently. Furthermore, the set

C = {c1, c2, . . . , cn} represents all known product categories, with a total of n categories. The

D. Vandic, F. Frasincar, and U. Kaymak 7

hierarchy is then represented as

H = {(ca, cb) |ca, cb ∈ C ∧ ca ≤ cb} (2)

where ≤ denotes the subsumption relationship. A set of product descriptions is denoted by D =

{d1, d2, . . . , dm}, where di ∈ D represents a product description i, i.e., di =
(
xi
title,x

i
desc, p

i, bi
)
.

Also, we let the vector y denote the category mappings of the product descriptions. Conse-

quently, y contains m values. We assume here that a product belongs only to one category

(the most specific one).

In the data preparation process, there are the two main steps that are performed on the

content of the product descriptions. First, all stop words are removed from the title and

features description. The HPC framework does not define a stop word list, this has to be

specified by the user. This enables the user of the system to perform fine adjustments to

decide which words are considered stop words and which are not. The removal of stop words

eliminates the noise stop words introduce. The accuracy of a classification algorithm often

increases after the removal of stop words. Even though in our evaluations we have used a

standardized stop word list, a more automated approach could be employed, such as the one

proposed in [46].

After the stop words are removed, the remaining words of the product title and features

description are stemmed. Many word stemming algorithms exist and the HPC framework does

not restrict the usage of any particular stemming algorithm. The default stemming algorithm

is the Porter stemming algorithm [29]. After the stemming process has completed, we have a

set of product descriptions that are prepared for the classification system processes.

3.2 Classification system

The classification system, the core of the HPC framework, is used to classify product descriptions

and it consists of a hierarchy of classifiers nodes (a hierarchy similar to the product taxonomy

nodes, but without the product taxonomy leaves). A classifier node is a collection of classifiers

that are trained on different parts of the product description. The classification system is

based on the top-down approach. The reason for choosing the top-down approach is that it can

select different features depending on the classifier location in the taxonomy. As mentioned

earlier, features ‘mobile’ and ‘phone’ may be appropriate for a decision between Electronics,

Home & Garden, and Sports, but become less useful when the classifier has to decide between

the children of the category Electronics/Mobile Phones.

We propose the so-called K-level top-down approach, where K > 1. The parameter K is

the highest level of the product taxonomy where classifier nodes will be placed. If K = 2,

then the classification takes place on the first and second level of the taxonomy (i.e., levels 0

and 1). Figure 3 shows an example of a classification system with K = 2. We can see that

the first classifier node decides between the categories ‘Electronics’ and ‘Sports’ (level 0). If

‘Electronics’ is chosen by the first classifier node, then the second classifier node has to classify

to either ‘Home’, ‘Communication’, ‘Knives’, ‘Mobile Phones’, or ‘Monitors’. In this case, this

is the last classifier and therefore it classifies to the leaves of the sub-taxonomy. If ‘Sports’ was

chosen, then another classifier (also on level 1) had to decide between ‘Jackets’ and ‘Shoes’.

In this case the leaves are also the children of the node ‘Sports’.

In the HPC framework, classifier nodes are constructed by using classifier recipes. A

classifier recipe contains the necessary information to construct a classifier node. It defines

8 A Framework for Product Description Classification in E-commerce

which classification techniques and feature selection methods are used for what parts of the

product description. It is important to note that each level in the category hierarchy can

have its own classifier recipe. Consequently, classifier nodes can differ from level to level in

the category hierarchy. Figure 4 shows the structure of a classifier recipe. A classifier recipe

consists of four components. The first two components each define a feature selector and a

text classifier, which are used for the title and the features description. The third component

is a classification algorithm that operates on the brand and price. The fourth component

is a specialized algorithm that is used in the case that a category is present in the product

description. In this paper, we propose and evaluate such an algorithm. For the brand and

price, one can choose any classifier that takes as input one numerical and one categorical

variable.

3.2.1 Constructing classifier nodes

For each node, a classifier recipe is used. The classifier node encompasses four classifiers that

use different parts of the product description (i.e., (1) title, (2) description, (3) brand and

price, and (4), [optional] category). In order to construct a classifier node, one needs to have a

classifier recipe, a training set

D ⊂ Rn × Rn × R× B, (3)

and a target vector y where the values are taken from the set of categories C. A product

description di, as discussed in Section 3.1, is represented as(
xi
title,x

i
desc, p

i, bi
)
∈ D, (4)

For both the title and the features description, a classifier recipe defines the feature selector

and text classifier (first classifier and second classifier, respectively). A feature selector selects

Electronics
Sports

CommunicationHome Jackets Shoes

Knives

Level = 0

Level = 1

Mobile

Phones
Monitors

Classified by first

classifer

Leafs classified by

second classifier if first

indicated ‘Electronics’

Classifier system for K = 2

Leafs classified by

third classifier if first

indicated ‘Sports’

Fig. 3. K level top-down approach for K = 2.

D. Vandic, F. Frasincar, and U. Kaymak 9

Classifier Recipe

Feature

Selector

Text

Classifier

Price/Brand

classifier

- Brand

- Price

desc
desc

title
title

HPC

Algorithm

Optional:

- Category

Legend

Fig. 4. The structure of a classifier recipe.

relevant features, given a feature matrix X (where each column represents one feature) and a

target vector y. The text classifier must be a function that takes as input a product description

vector x ∈ Rn and outputs one of the categories, predefined by the set C (see Section 3.1). In

order to construct the classifiers for the title and description in the classifier recipe, the feature

selector is first applied to the training sets xtitle and xdesc. Next, the classifier is trained on

the training set through cross validation, to obtain reliable results and to prevent the classifier

to overfit the data. The ‘best’ classifier is chosen, i.e., the one with the highest precision.

The third part of the classifier recipe defines the usage of the brand and the price of the

product description for the purpose of classification. This classifier is trained using cross

validation on the price and brand training data, and the ‘best’ classifier is chosen, i.e., the one

with the highest precision. A classifier recipe defines a threshold β. If the precision of the best

classifier, when considering only instances of the brand provided in a product description, is

below β, then this classifier is not used because it is unreliable. This condition is determined

at runtime. The recipe also defines a threshold parameter δ, this threshold represents the

minimum number of instances in the training data set in order to use this classifier. The δ

threshold ensures that this classifier is used only when there is enough data to make a reliable

decision for the brand/price combination.

Product categories can have different names across systems but also different hierarchies

can be used. For instance, ‘Nintendo DS Games’ can be a child of ‘Games’, where on another

system it is a child of a more specific category ‘Console Games’. The fourth and last part

of a classifier recipe defines the classifier of the given category in a product description. It

requires an algorithm that takes a string input (the given category) and outputs a list of

possible matches, along with the corresponding scores (similar to an m-ary classifier). The

score should be between 0 and 1 and the category with the highest score is the one which

matches the best. The HPC framework defines a custom algorithm for this purpose. When

there is no category given in the product description, this classifier is not used.

In order to meet the above requirements, we propose the Category Mapping algorithm,

which is also employed in [41]. The goal of the Category Mapping algorithm is to identify to

10 A Framework for Product Description Classification in E-commerce

which existing product category the given product category should be mapped. There are two

difficulties with this process. First, one has to deal with syntactic variations and with semantic

variations. The syntactic variations are for example singular/plural forms, abbreviations, and

typographical mistakes. The semantic variations are synonyms and homonyms. In order

to deal with these issues we developed an algorithm which is able to determine the correct

category for a product with high precision. Before we give the details of the algorithm, we

need to explain existing text similarity measures and other similarity functions that are used

in the algorithm.

The Levenshtein distance [17] is a metric for measuring the amount of difference between

two strings (i.e., the so-called edit distance). The Levenshtein distance between two strings is

given by the minimum number of operations needed to transform one string into the other,

where an operation is an insertion, deletion, or substitution of a single character. We denote

it by alvij , which is the absolute Levenshtein distance between strings i and j. The HPC

framework uses the normalized Levenshtein distance, which is a function of the absolute

Levenshtein distance. We use the notation lvij , which is the normalized Levenshtein distance

between strings i and j. The normalized Levenshtein distance is defined as

lv (i, j) = alv(i,j)
max(length(i),length(j)) (5)

The normalized Levenshtein distance addresses the issue of short string lengths. If you have

two strings, of both length 24, then an absolute Levenshtein distance of 3 is not large. However,

with two strings of length 6 this distance is quite large as it is 50% of the tag length. According

to the absolute Levenshtein distance these two distances are the same. But the normalized

Levenshtein distances are in this case 0.125 and 0.5. This indicates that, according to the

normalized Levenshtein distance, the two pairs of strings do not have the same distance, i.e.,

the first pair is more similar.

The function calcCosineSim (A,B) is used to compute the cosine similarity between two

sets of words A and B, and it is defined as follows:

calcCosineSim (A,B) =
|A ∩B|√
|A|
√
|B|

(6)

With avgLvSim (A,B), the average Levenshtein similarity between two sets of words can be

computed. Using the normalized Levenshtein distance function lv (i, j) for words i and j, we

can give the definition of the function avgLvSim (A,B), where A and B are sets of words, as

following:

avgLvSim (A,B) =
∑
a∈A

∑
b∈B

(1− lv (a, b))
length (a) + length (b)∑

a∈A

∑
b∈B

length (a) + length (b)
(7)

Algorithm 1 shows the steps taken to find a matching product category, given a new

category name. It requires to have an existing set of categories C. The algorithm also requires

to have the set Y of synonyms/syntactic variations of the provided category name. For

this purpose, we use WordNet [8] to gather the category synonyms. The process starts by

combining the category name, which needs to be mapped to an existing category, with all

syntactic variations and synonyms of that category name, obtained from WordNet, in one set

D. Vandic, F. Frasincar, and U. Kaymak 11

Z (line 1). After that, the empty set S is created (line 2). In lines 3 through 8, the set S is

filled. For each combination between a category from the set Z and a category from the set

C, the category names are cleaned. The cleaning of category names is necessary in order to

remove any ‘noise’. For example, some users write in words ‘Camera and Photography’ and

others might write the abbreviated form ‘Camera & Photography’. We solve this issue by

replacing occurrences of both ‘and’ and ‘&’ by a space character. After the category names

are cleaned, the similarity between them is computed and added to the set S. The similarity

is stored as a pair together with the category from the set C (the set of existing categories).

The function that is used to calculate the similarity between two cleaned category names is

given by:

getCatSim (A,B) = λ · calcCosineSim (A,B) + (1− λ) · avgLvSim (A,B) (8)

where A and B are sets of words. The function calcCosineSim (A,B) is defined by Equation 6

and avgLvSim (A,B) is defined by Equation 7. The sets A and B are obtained by splitting a

category name on the space character. This is achieved by using the function cleanAndSplit (·),
which also ‘cleans’ the category names, i.e., it replaces the word ‘and’, the word ‘or’, the

character ‘&’, as well as parentheses, comma’s, and other special characters, with a space

character. When all combinations are processed and the set S is filled, a category needs to be

chosen. The category with the highest score in the set S is selected as the matching product

category. If multiple categories exist with the highest score, then the average cosine similarity

between the feature vectors of each category and the product description is computed, and

the category with the highest cosine similarity is chosen. If the highest score is below γ, then

this classifier is not used in the process of classification.

Algorithm 1: The category matching algorithm.

Input : The new category c to be matched to an existing category (text).
Output : The best matching category with the corresponding computed similarity.
Data : The set C (set of categories).

The set Y (synonyms of the new category c).

1 Z = Y ∪ {c};
2 S = {};
3 // for each category pair from Z and C, compute their similarity

4 foreach z in Z do
5 foreach c’ in C do
6 A = cleanAndSplit (z);
7 B = cleanAndSplit (c′);
8 S = S ∪ {(c′, getCatSim (A,B))};
9 end

10 end
11 return {(r,m) ∈ S|∀ (y, n) ∈ S : n ≤ m}

12 A Framework for Product Description Classification in E-commerce

Algorithm 2: The HPC system construction process.

1 CF = {cf−1} // set of classifier nodes with top-level classifier

2 Q = empty queue ;
3 foreach c in Ctop do
4 enqueue (Q, (c, 0));
5 end
6 i = 0;
7 while notEmpty (Q) do
8 (c, L) = dequeue (Q);
9 if L = K − 2 then

10 cfi = classifier at node c trained on leaf categories under c, using recipe for
level L;

11 else
12 cfi = classifier at node c trained on children categories of c, using recipe for

level L;
13 foreach ch in children(c) do
14 enqueue (Q, (ch, L+ 1));
15 end

16 end
17 CF = CF ∪ {cfi};
18 i = i+ 1;

19 end

3.2.2 Constructing the classification system

In the previous section, we discussed the different parts of a classifier recipe and how we

construct one classifier node, given a set of labeled product descriptions. In order to construct

a complete HPC classification system, at least one recipe is needed. As we will see in Section 4,

it is advisable to use different classifier recipes on each level. In this section we discuss the

design and implementation of the complete HPC classification system.

Algorithm 2 shows the basic steps to construct an HPC classification system. The algorithm

starts by creating a classifier for level −1, this level is one level above the level where the

top-level categories reside (level 0). The first root level classifier always exists, independent

of the value of K. The root level classifier is added to the set of classifier nodes. This task

is performed in lines 1 through 3. From line 4, the algorithm starts a breadth-first traversal

through the category hierarchy, creating classifier nodes where necessary and stopping when it

hits a leaf category node or the current level has exceeded K − 2. The breadth-first traversal

function performs a check for each category, starting with the top-level categories. If the level

of the category node is equal to K − 2, then a classifier is created which is trained on the leaf

category nodes of that category. If this is not the case, then an intermediary classifier node is

created and trained on the children of the current category node, its children are also added

to the queue to be visited. One should note that whenever a classifier node is created, the

corresponding classifier recipe for that level (which the category node resides on) is used.

D. Vandic, F. Frasincar, and U. Kaymak 13

3.2.3 Classification Algorithm

The classification process starts at the root level classifier node, which classifies the product

description to one of the top-level categories. Next, the algorithm continues the classification

until the classification results in a category leaf node or the maximum classification depth has

been reach (represented by the K parameter). The algorithm chooses the next classifier node

based on the previous classification.

In each classifier node, the classification is performed by following a simple voting system.

The algorithm classifies a single product description into one of the existing categories from

the set C, as defined in Section 3.1. The algorithm starts by asking each component to cast

a vote on the target category, i.e., each component performs classification, outputting one

product category. The next step is to check if there is a category in the set S which has the

highest amount of votes. If there exist such a category, then that is the category which is

returned as the best match. In the case that no such category exists, the classifier node flags

the product description as unclassifiable. In this case, Scenario 3 would be useful to consider,

i.e., there is a need for modifying the existing category hierarchy by adding one or more new

categories to the hierarchy. However, this scenario is out of the scope of this paper.

The example shown in Figure 3 highlights these steps for K = 2. Because K = 2, there can

be only 2 classification steps. The first classifier node decides between the categories ‘Electronics’

and ‘Sports’ (level 0) and the second classifier node, regardless of the outcome of the first

classifier, will classify the product description to one of the leaves. These leaves are ‘Knives’,

‘Mobile Phones’, or ‘Monitors’ in case the first classifier chose ‘Home’ or ‘Communication’,

and Jackets or Shoes in case the first classifier chose for ‘Sports’.

4 Evaluation

In this section, we evaluate the proposed framework and its components. The goal is to find

what the best approach is for classifying product descriptions. First, in Section 4.1, we give

an overview of the data collection process for the evaluation of the HPC framework. We also

briefly discuss how we implemented the HPC framework for the purpose of this evaluation.

Then, in Section 4.2, we give an extensive evaluation of the HPC framework, which includes a

discussion of the results for the considered feature selection methods and the classifications

algorithms.

4.1 Data Collection

For the evaluation of the feature selection methods and classification algorithms, we collected a

large data set of product descriptions. The product descriptions are obtained from Amazon.com,

using the Amazon Web Services (AWS) API [1]. This process was implemented in Java.

The product category taxonomy that is used in the evaluation is constructed from existing

Amazon.com categories. Because Amazon.com contains many product categories (around

120,000), we have chosen to use only a subset from all these categories. For the evaluation of

the category mapping algorithm, we used data sets from CircuitCity.com and Amazon.com.

There are in total 319 product categories in the constructed product taxonomy, which is

a simplified but representative view of the original taxonomy. The categories are located in

a hierarchical taxonomy that consists of 4 levels. On the first level, there are 4 categories:

‘Electronics’, ‘Office Products’, ‘Musical Instruments’, and ‘Clothing’. In order to have

14 A Framework for Product Description Classification in E-commerce

enough data for the training and testing of the classification models, the data set of product

descriptions is collected in such a way that the minimum number of products per category is

200. The total number of collected product descriptions is 419,832, with 18,206 unique brands.

Unfortunately, only 235,105 products are annotated with a brand. The same holds for the

price; only 201,519 product descriptions contain a price. In order to speed-up the retrieval of

the product descriptions, a multi-threaded crawler was developed in order to fetch and process

the product descriptions.

4.2 Results

In this section, we discuss the evaluation of the different aspects of the HPC framework. We

first evaluate the HPC framework for scenario 1, i.e., when no category is present in the

product description and the product description needs to be classified to one of the existing

categories. Then, we focus on the performance of the feature selection and classification

algorithm components, as well as the overall performance of the HPC framework. Next, we

evaluate the proposed algorithm for scenario 2, i.e., when a category is present in the product

description. This consists of an evaluation of the proposed category mapping algorithm.

Although we do not show graphs for every pair of a feature selection algorithm and a

classification algorithm (due to the high number of combinations), we stress that we evaluated

all possible combinations for both the title property and the features description property. In

the text we sometimes refer to these results by numbers instead of graphs.

4.2.1 Feature Selection Approaches

The four feature selection methods that are evaluated are Term Frequency (tf), Mutual

Information (mi), Information Gain (ig) and Chi Square (chi). The reason for choosing these

feature selection methods is that Information Gain and Chi Square have shown good results in

the literature [52]. Furthermore, in a general text categorization context, the Term Frequency

method performs surprisingly well as well, while the Mutual Information was found to perform

badly [52]. We want to investigate if these findings also hold when the employed data set

consists of product descriptions.

Figures 5 and 6 show us a comparison of all pairs of the four feature selection methods for

the title property and features description property, respectively. Given a feature selection

size, each comparison is based on the number of same features that have been selected by

the corresponding two feature selection approaches. On the x-axis of the figures, the feature

selection sizes are shown. On the y-axis the ratio between the number of same features and

the total selected features is shown. For performance reasons, the comparison is performed on

a subset of the data set with 3000 product descriptions. The reason why the x-axis range in

Figure 5 is lower than the x-axis range in Figure 6 is because the title property contains less

features to choose from than the features description property.

There are several interesting findings that follow from these two figures. First, we observe

that the Information Gain and the Chi Square method have a high overlap in selected features

for both the title and features description property. This is in line with findings of other

studies, where Information Gain and Chi Square have been found to be highly correlated

in terms of accuracy [34, 52]. For the title property, at a feature selection size of 50, more

than 45 features are the same (ratio > 0.90). Second, the results suggest that the Term

Frequency method selects features similar to those from Information Gain and Chi Square

D. Vandic, F. Frasincar, and U. Kaymak 15

only for larger total number of selected features. This indicates that the findings of [52] (i.e.,

a strong correlation between Term Frequency, Information Gain, and Chi Square) partially

applies also to product descriptions. Third, we observe that the Mutual Information shows

low ratios for all methods. Only when the feature selection size is 100 or larger, the Mutual

Information and Term Frequency method start showing a resemblance in their feature selection

process. Last, the results of the comparisons for the features description property, shown in

Figure 6, indicate that the ratio pair ordering is the same as the ratio pair ordering of the

product title. We do notice that most of the ratios are lower than the ones for the product

title, which suggests that the product descriptions are more heterogeneous than product titles

and that this causes more variation between the methods.

Besides analyzing the relatedness of the different feature selection methods, we also analyzed

the performance of each feature selection method. For this we use the accuracy metric from

information retrieval, which is in our context equal to the precision because we always classify

a product description and we consider this to be a positive. Figures 7 and 8 give us an overview

of the accuracy of the feature selection methods for several feature selection sizes. The goal is

here to compare feature selection methods, which means that we need to fix the classifier for

now. Later on, we will discuss the different combinations of feature selection methods and

classification algorithms and their performance. We chose to use the Näıve Bayes classifier in

this case because it is fast, and more importantly, it requires no parameters to be set. This is

useful because the performance of the Näıve Bayes is then affected only by the used feature

selection method. The results for these experiments are obtained by performing a five-fold

cross-validation procedure on a data set of 5,000 products and the four main root categories.

From the results we obtain three interesting findings. First, the Information Gain and Chi

Square methods are relatively similar and have the highest accuracy. For the title property,

as shown in Figure 7, we observe slightly higher accuracy values for the Chi Square method,

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Total number of selected features

sa
m

e
fe

at
ur

es
 s

ele
ct

ed
 (

%
)

tf/mi
tf/ig

tf/chi
mi/ig

mi/chi
ig/chi

tf/mi/ig/chi

Fig. 5. Comparing feature selection methods similarity for the title property.

16 A Framework for Product Description Classification in E-commerce

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

tf/mi
tf/ig

tf/chi
mi/ig

mi/chi
ig/chi

tf/mi/ig/chi

sa
m

e
fe

at
ur

es
 s

ele
ct

ed
 (

%
)

Total number of selected features

Fig. 6. Comparing feature selection methods similarity for the features description property.

but we have found these differences not to be significant at a 95% confidence level, using a

paired t-test. On the other hand, for the features description property, shown in Figure 8, the

difference between the Information Gain and Chi Square is significant at a 95% confidence

level. We can conclude that the Information Gain shows significantly better results for the

features description property. The reason for this is most likely that the heterogeneity in the

features description values makes it difficult for the Chi Square feature selection method to

measure the degree of independence between the selected features and the categories. At the

same time, with its higher performance, the Information Gain method seems to be able to

more easily measure the reduction in entropy when knowing the feature.

0 200 400 600 800 1000
Number of features selected

Ac
cu

ra
cy

 (
%

)

20

30

40

50

60

70

80

90

100

tf mi ig chi

Fig. 7. Comparing feature selection methods on accuracy for the title property.

D. Vandic, F. Frasincar, and U. Kaymak 17

Number of features selected
0 200 400 600 800 1000

Ac
cu

ra
cy

 (
%

)

20

30

40

50

60

70

80

90

100

tf mi ig chi

Fig. 8. Comparing feature selection methods on accuracy for the features description property.

Second, we observe that the Term Frequency method performs better than the Mutual

Information method. The weakness of the mutual information criterion, i.e., that the values

are strongly influenced by the marginal probabilities of terms, is validated by these results. [52]

reported similar findings on a Reuters news data set. The authors found that the Information

Gain and Chi Square methods give the best accuracy, but that the Term Frequency method,

although performing worse, is highly correlated with the two. The authors suggest to use

the Term Frequency method because the trade-off between effectiveness and computational

cost, compared to the Information Gain and Chi Square method, is in favor of the Term

Frequency method. Our results support this claim, both for the title property as for the

features description property.

Third, when considering the general influence of the number of features selected (x-axis),

we observe that for the title property, the performance increases more gradually than for

the features description property. For example, for the title property, the accuracy does not

change anymore at approximately 600 features, while for the features description property,

the accuracy barely changes after 400 selected features. This indicates that the title property

is more sensitive to the number of selected features than the features description property.

4.2.2 Classification Algorithms

In the previous section, we focused on the feature selection algorithms. In this section we

focus on the evaluation of the different classifier components. We only present the results

for the k-Nearest Neighbor classifier and the Support Vector Machines classifier. We already

presented the results for the Näıve Bayes algorithm in the previous section.

K-Nearest Neighbor classifier. The initial impression of the k-Nearest Neighbor (kNN)

classifier is that it does not perform very well. We find that the kNN classification technique

is not able to deal appropriately with the product description data. This is different from

what other authors have found, where kNN was able to deliver acceptable performance for the

purpose of general text categorization [10].

In order to obtain valid accuracy values, we again performed a five-fold cross validation

18 A Framework for Product Description Classification in E-commerce

procedure on the top level categories, with 3000 training product descriptions. Figures 9

and 10 show the accuracy results for two different configurations with the kNN classifier. The

figures show the accuracy for different values of k, i.e., the number of selected neighbors, and

for two features selection methods. Overall, the variance of the results is low, i.e., there is not

much difference between the feature selection methods, except for the Mutual Information

method, which performs far worse than the others. This is illustrated by Figure 9, where we

can see that the Mutual Information reaches a level of 0.55 accuracy when 200 features are

selected. In contrast, we found that other feature selection methods only need 50 features to

obtain such an accuracy (or higher). The same holds for the features description property, i.e.,

only the performance is even worse, with an accuracy of 0.45 at 400 selected features.

The results also show us that sometimes less is more, e.g., Figure 10 shows us that the

accuracy is higher when 200 features are selected than when 400 features are selected. The

only exception is the Mutual Information, which shows an approximately linear relationship

3 5 7 10
0.3

0.4

0.5

0.6

0.7

K parameter

Ac
cu

ra
cy

50 # 100 # 200 # 400 # 600# 50 # 100 # 200 # 400 # 600

Fig. 9. Summary of the accuracy on the title property for the kNN classifier, using the Mutual
Information features selection method.

3 5 7 10
0.3

0.4

0.5

0.6

0.7

K parameter

Ac
cu

ra
cy

50 # 100 # 200 # 400 # 600

Fig. 10. Summary of the accuracy on the features description property for the kNN classifier, using
the Chi Square features selection method.

D. Vandic, F. Frasincar, and U. Kaymak 19

(which eventually diminishes) between the number of selected features and the accuracy.

Furthermore, we observe that when k increases, the kNN classifier gets more sensitive for

modeling noise. Figure 10 shows us that at k = 7, the accuracy for selected feature counts

400 and 600 is higher than at k = 10. It seems as if the kNN picks up noise from the extra

selected features because of the higher k value.

Support Vector Machines. For the evaluation of the Support Vector machines we

performed the same cross validation procedure (five-fold, with 3000 training samples). We

have chosen for the SVM one-against-one approach. With the one-against-one approach, one

needs to train more SVMs than with the one-against-all approach. Our experiments showed

that the one-against-one approach performs better with respect to accuracy. That is why

we provide a thorough evaluation of the one-against-one approach (with many parameter

combinations). Further, we fixed the choice of the kernel. We choose the Radial Basis function

(RBF) kernel [2] because the RBF kernel was found to give the best performance on text

categorization [13]. Following from our experimental setup, we have to optimize only two

parameters: the box constraint in the dual form notation of the SVM definition, and the γ

parameter, which determines the width of the RBF kernel.

The general results of the SVM classifier are better than the kNN method, as we found

the highest accuracy to be 78.07%. We observe that the SVM classifier is very sensitive to the

two parameters. Typical behavior is shown in Figure 11. We notice that a value γ = 1 is not

suitable as the accuracy does not exceed 60% and the accuracy drops as the number of selected

features increases. [13] reports an optimal γ of 0.6. Our results show that the optimal value of

γ for our data set is much larger, somewhere around 50. The higher value of γ indicates that

the classification model required for our task is relatively complex, i.e., the influence of single

features can be quite large. The reason for this is that the employed data set is to a relatively

high degree semi-structured when compared to traditional text classification data sets (such

as news articles or blog posts).

The most optimal configuration of the SVM classifier, for the features description property,

40

50

60

Ac
cu

ra
cy

 (
%

)

30

Number of features selected
0 100 200 300 400 500

tf mi ig chi

600

Fig. 11. Accuracy on the title property for the SVM classifier (with γ = 1, box constraint = 100).

20 A Framework for Product Description Classification in E-commerce

20

30

40

50

60

70

80

90

Number of features selected
0 100 200 300 400 500

tf mi ig chi

600

Ac
cu

ra
cy

 (
%

)

Fig. 12. Accuracy on the features description property for the SVM classifier (with γ = 50,
box constraint = 100).

is for γ = 50 and box constraint = 100. The accuracy results for this configuration are shown

in Figure 12. We observe that the overall accuracy is higher for the features description

property, most likely because of the extra terms it contains compared to the title property,

which helps the classifier to obtain an accurate classification.

A surprising result is that the best accuracy of the Näıve Bayes classifier is higher than

the best accuracy of the SVM classifier. As shown in Figures 7 and 8, for both the title and

features description property, the Näıve Bayes classifiers obtain an accuracy well above 80%,

while the accuracy of the best SVM does not exceed 80%. Studies from the past have shown

that the Näıve Bayes classifier can achieve comparable performance as the SVM classifier [12]

and our findings provide further evidence for this claim.

4.2.3 Evaluating the HPC Framework

In this section, we evaluate the HPC framework as a whole. Table 1 shows us the accuracy of

a K = 3 HPC classification system. The results are obtained through cross validation and

3000 training product descriptions. In this case, both for the title and features description,

a Näıve Bayes classifier is used with an Information Gain feature selector set to select 400

features. The Price/Brand classifier is implemented using Quadratic Discriminant Analysis

(QDA) [23]. This method aims to classify the category given the brand and the price. The

price is first transformed by applying the natural logarithm. This classifier is trained only on

categories that contain the brand.

Table 1 show the accuracy for each considered level of the category hierarchy. The first

level is the level where the root product categories reside. For example, we can see that the

Näıve Bayes classifier on the title has achieved an accuracy of 74.55% on the first level. The

‘Total’ column indicates the total accuracy for a level. This is the accuracy of the system, the

other column are referred as the accuracy of the individual classifiers.

One might expect that the prices across product categories for a certain brand follow

a particular distribution, and are thereby useful as an input for a classifier, however, this

D. Vandic, F. Frasincar, and U. Kaymak 21

Table 1. Accuracy for K = 3 classification system, with Näıve Bayes for title and features
description, and Information Gain with select count equal to 400.

Level Total Title Features desc. Price/Brand

0 82.87% 74.55% 85.48% 13.21%
1 64.76% 69.37% 60.31% 13.24%
2 79.94% 82.65% 83.86% 34.58%

Table 2. Accuracy for K = 3 classification system, with Näıve Bayes for title, SVM (γ = 50, box

constraint=100) for features description, and Information Gain with select count equal to 400.

Level Total Title Features desc. Price/Brand

0 75.04% 74.55% 72.92% 13.21%
1 64.35% 62.14% 66.00% 15.36%
2 81.42% 83.45% 77.63% 37.23%

Table 3. Accuracy for K = 3 classification system, with Näıve Bayes for title and features

description, and Information Gain with select count equal to 1000.

Level Total Title Features desc. Price/Brand

0 83.52% 74.55% 86.13% 13.21%
1 64.45% 69.37% 60.80% 13.21%
2 82.42% 82.97% 84.11% 34.58%

assumption fails for the Amazon.com data set. As we can see in Table 1, the precision on level

0 is 13.21%. The Price/Brand property has also been evaluated with other classifiers, such as

logistic regression and neural networks, although the results remained the same. From these

results, we can conclude that the price and brand are not usable in this context.

We can further observe that at level 0, the feature description is the best property to

choose, as the accuracy of the classifier on this property is 85.48%. For the second level, the

title is the best property to be chosen as it has the highest accuracy on that level. One possible

explanation for this is that at the second level, the model words from the title boost the

classifier more than they do on the first level, where the classification is more coarse-grained.

Finally, on the last level, the classifier on the feature description performs the best.

Table 2 shows us an example where the accuracy, on level 0, of the system is higher than

the individual classifiers. In this case, the best classifiers is trained on the title property, giving

a 74.55% accuracy. Levels 1 and 2 show different behavior than in Table 1, as on level 1 the

features description property scores better and on the third level the title property.

Last, Table 3 shows us a system where only Näıve Bayes classifiers are used on the title

and features description and 1000 features are selected by the Information Gain method. This

combination gives the best results, with a 83.52% accuracy on level 0. For levels 1 and 2,

similar results are obtained as for the classifier in Table 1, i.e., the title scores better on level 1

and the features description scores better again on level 2, with an average accuracy of 76.80%.

22 A Framework for Product Description Classification in E-commerce

Table 4. An excerpt of the golden standard category mappings.

Original category #1 choice #2 choice #3 choice #4 choice

Blu-Ray & Blu-ray Players DVD Players DVD Drives Car DVD Players
DVD Players

Networking & Networking Networking Hub Other Network
Internet and Switches Devices

Power Supplies System Power
Supplies

Webcams Web Cameras Digital Cameras

Memory/Ram Random Access Computer Memory Memory Cards
Memory (RAM)

Table 5. Results of the category mapping algorithm using γ = 0.80.

Manual mapping Percentage assigned to

1st choice 77.27%
2nd choice 6.36%
3rd choice 8.18%
4th choice 0.91%
5th choice 0.91%

1th, 2nd, 3rd, 4th, or 5th choice 93.63%
Misclassification 6.37%

4.2.4 The Category Mapping Algorithm

For the evaluation of the Category Mapping algorithm, we collected 110 unique categories from

CircuitCity.com and Amazon.com. After collecting these categories we manually mapped the

collected categories to the Shopping.com categories. We do not provide only one mapping per

category, but a list of possible correct mappings for all 110 categories. The first category on

the list is the best choice, the second was the second best, etc. Table 4 shows some examples

of these manual annotations. This manual mapping is used to benchmark our algorithm.

The goal of the algorithm is to map categories as much as possible to categories specified

in the first chosen category, but there is always some subjectivity involved. For instance, for

the mapping of ‘Blu-Ray & DVD Players’ one could assign ‘DVD players’ as first choice while

one could also assign ‘Blu-Ray Players’ as a first choice.

The algorithm for category mapping has only the threshold parameter γ (not to be confused

with the SVM γ parameter). In order to obtain the optimal value, we experimented with

values between 0 and 1 with a step size of 0.05. Using this procedure, we determined that

γ = 0.80 gives the best results. Table 5 shows the results for the algorithm with γ = 0.80

on the 110 categories. We observe that only 6.37% of the 110 categories are not correctly

mapped to one of the corresponding manually chosen Shopping.com categories. This yields

that 93.63% of the categories are correctly mapped to one of the corresponding five manually

assigned categories. 77.27% of the 110 categories, which is 82.53% of total percentage correctly

classified categories (93.63%), are mapped to the first manually chosen category.

D. Vandic, F. Frasincar, and U. Kaymak 23

5 Conclusions and Future Work

This paper proposes the Hierarchical Product Classification framework for the purpose of

product classification using a product category taxonomy. The framework defines a classification

system with K levels that is used to classify a product description to one of the leaves. The

innovative part of the framework stems from several aspects. First, the framework uses

classification recipes to construct classifier nodes. The classification recipes allow for flexible

classifiers, i.e., different classifiers and different feature selection can be used on each of the

levels of the product category taxonomy. Furthermore, in order to provide a more complete

picture of the components needed to perform high quality product classification, we have

evaluated several feature selection methods and classification techniques.

From the obtained results we can draw several conclusions. First, we have found the

k-Nearest Neighbor algorithm to be unsuitable as an independent classifier. Besides the

computational cost, the accuracy is too low to be useful in practice. Furthermore, we have

shown that with our product data set, the Näıve Bayes classifier can perform better than

Support Vector Machines, obtaining an average accuracy of 76.80% for product classification.

When considering the properties of a product description, we have found that the features

description provides better predictors for the top levels but that the title provides better

predictors for the lower levels, except for the last level, where the features description gives

again better results.

In the case that a product description contains a category, we make use of our proposed

Category Mapping algorithm, which is a novel algorithm that makes use of semantic and

syntactic matching. The algorithm achieves a precision of 93.63% on a manually mapped

test set. It makes use of the average Levenshtein similarity in order to deal with syntactic

variations of product categories and the cosine similarity for semantic similarity. WordNet is

used to obtain a set of synonyms for each word in the product category, increasing the search

space, and thus, the recall.

In future work we want to further investigate the interaction effects between the classification

algorithms and the feature selection methods. One approach would be to research different

combination strategies at different levels of the product category taxonomy. Another approach

would be to use ensemble techniques to combine classifiers, i.e., a classifier on the title, a

classifier on the features description, and a classifier on both the title and description. A third

option is to use ensemble techniques to combine and evaluate the category mapping algorithm

with the previously presented text classifiers.

Acknowledgment

Damir Vandic is supported by an NWO Mosaic scholarship for project 017.007.142: Semantic

Web Enhanced Product Search (SWEPS).

References

1. Amazon.com. AWS - Amazon Web Services, 2017. http://aws.amazon.com/.

2. C. M. Bishop. Pattern Recognition And Machine Learning. Springer-Verlag, 2007.

3. S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Using Taxonomy, Discriminants,

and Signatures for Navigating in Text Databases. In Proceedings of the 23rd International

http://aws.amazon.com/

24 A Framework for Product Description Classification in E-commerce

Conference on Very Large Data Bases, pages 446–455. Morgan Kaufmann Publishers Inc.,

1997.

4. K. W. Church and P. Hanks. Word Association Norms, Mutual Information, and Lexicog-

raphy. Computational Linguistics, 16(1):22–29, 1990.

5. S. D’Alessio, K. Murray, R. Schiaffino, and A. Kershenbaum. The Effect of Using Hierar-

chical Classifiers in Text Categorization. In Proceedings of 6th International Conference

Recherche d’Information Assistee par Ordinateur, pages 302–313, 2000.

6. Y. Ding, M. Korotkiy, B. Omelayenko, V. Kartseva, V. Zykov, M. Klein, E. Schulten, and

D. Fensel. GoldenBullet: Automated Classification of Product Data in E-commerce. In

Proceedings of the 5th International Conference on Business Information Systems, 2002.

7. S. Dumais and H. Chen. Hierarchical classification of Web content. In Proceedings of

the 23rd Annual International Conference on Research and Development in Information

Retrieval, pages 256–263. ACM, 2000.

8. C. Fellbaum, editor. WordNet: An Electronic Lexical Database (Language, Speech, and

Communication). The MIT Press, May 1998.

9. D. Fensel, Y. Ding, B. Omelayenko, E. Schulten, G. Botquin, M. Brown, and A. Flett.

Product Data Integration in B2B E-Commerce. IEEE Intelligent Systems, 16(4):54–59,

2001.

10. E.-H. Han, G. Karypis, and V. Kumar. Text Categorization Using Weight Adjusted

k-Nearest Neighbor Classification. In Proceedings of the 5th Pacific-Asia Conference on

Knowledge Discovery and Data Mining, pages 53–65. Springer-Verlag, 2001.

11. P.-Y. Hao, J.-H. Chiang, and Y.-K. Tu. Hierarchically svm classification based on support

vector clustering method and its application to document categorization. Expert Systems

with applications, 33(3):627–635, 2007.

12. J. Huang, J. Lu, and C. X. Ling. Comparing Naive Bayes, Decision Trees, and SVM

with AUC and Accuracy. In Data Mining, 2003. ICDM 2003. Third IEEE International

Conference on, pages 553–556. IEEE, 2003.

13. T. Joachims. Text Categorization with Support Vector Machines: Learning with Many

Relevant Features. In Proceedings of the European Conference on Machine Learning, pages

137–142. Springer-Verlag, 1998.

14. Y. S. Kim, B.-J. Yum, J. Song, and S. M. Kim. Development of a recommender system

based on navigational and behavioral patterns of customers in e-commerce sites. Expert

Systems with Applications, 28(2):381–393, 2005.

15. D. Koller and M. Sahami. Hierarchically Classifying Documents Using Very Few Words.

In Proceedings of the 14th International Conference on Machine Learning, pages 170–178.

Morgan Kaufmann Publishers Inc., 1997.

16. Y.-H. Lee, P. J.-H. Hu, T.-H. Cheng, and Y.-F. Hsieh. A Cost-sensitive Technique

for Positive-Example Learning Supporting Content-Based Product Recommendations in

B-to-C E-commerce. Decision Support Systems, 53(1):245 – 256, 2012.

17. V. I. Levenshtein. Binary Codes Capable of Correction Deletions, Insertions, and Reversals.

Soviet Physics Doklady, 10(8):707–710, 1966.

18. D. D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka. Training Algorithms for Linear

Text Classifiers. In Proceedings of the 19th Annual International Conference on Research

and Development in Information Retrieval, pages 298–306. ACM, 1996.

D. Vandic, F. Frasincar, and U. Kaymak 25

19. T. Li, S. Zhu, and M. Ogihara. Hierarchical Document Classification Using Automatically

Generated Hierarchy. Journal of Intelligent Information Systems, 29(2):211–230, 2007.

20. C.-F. Lin and S.-D. Wang. Fuzzy Support Vector Machines. IEEE Transactions on Neural

Networks, 13(2):464–471, 2002.

21. C.-H. Lin and H. Chen. An Automatic Indexing and Neural Network Approach to

Concept Retrieval and Classification of Multilingual (Chinese-English) Documents. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26(1):75–88, Feb

1996.

22. A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng. Improving Text Classification

by Shrinkage in a Hierarchy of Classes. In Proceedings of the 15th International Conference

on Machine Learning, pages 359–367. Morgan Kaufmann, 1998.

23. G. J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. Wiley, 2004.

24. T. Mitchell. Machine Learning. McGraw Hill, 1996.

25. S. Mulpuru, V. Boutan, C. Johnson, S. Wu, and L. Naparstek. Forrester Research

eCommerce Forecast, 2014 to 2019. https://goo.gl/6b1fh3, 2017.

26. L. J. Nederstigt, D. Vandic, and F. Frasincar. A lexical approach for taxonomy mapping.

Journal of Web Engineering, 15(1&2):84–109, 2016.

27. W. K. Ng, G. Yan, and E.-P. Lim. Heterogeneous Product Description in Electronic

Commerce. SIGecom Exchanges, 1(1):7–13, 2000.

28. N. Oza, J. Castle, and J. Stutz. Classification of Aeronautics System Health and Safety

Documents. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications

and Reviews, 39(6):670–680, Nov 2009.

29. M. F. Porter. An Algorithm for Suffix Stripping. Readings in information retrieval, pages

313–316, 1997.

30. M. E. Ruiz and P. Srinivasan. Hierarchical Text Categorization Using Neural Networks.

Information Retrieval, 5(1):87–118, 2002.

31. G. Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Indexing.

Communications of the ACM, 18(7):613–620, 1975.

32. M. Sasaki and K. Kita. Rule-Based Text Categorization Using Hierarchical Categories. In

Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics,

volume 3, pages 2827–2830, 1998.

33. F. Shih and S.-S. Chen. Adaptive Document Block Segmentation and Classification. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26(5):797–802, Oct

1996.

34. S. R. Singh, H. A. Murthy, and T. A. Gonsalves. Feature Selection for Text Classification

Based on Gini Coefficient of Inequality. In Proceedings of the Fourth International

Workshop on Feature Selection in Data Mining (FSDM 2010), volume 10, pages 76–85,

2010.

35. M. Steinbach, G. Karypis, and V. Kumar. A Comparison of Document Clustering

Techniques. 00 034, University of Minnesota, 2000.

36. A. Sun and E. P. Lim. Hierarchical Text Classification and Evaluation. In Proceedings of

the 2001 IEEE International Conference on Data Mining, pages 521–528. IEEE Computer

Society, 2001.

https://goo.gl/6b1fh3

26 A Framework for Product Description Classification in E-commerce

37. C. Sun, N. Rampalli, F. Yang, and A. Doan. Chimera: Large-scale classification using

machine learning, rules, and crowdsourcing. Proceedings of the VLDB Endowment,

7(13):1529–1540, 2014.

38. K. Toutanova, F. Chen, K. Popat, and T. Hofmann. Text Classification in a Hierarchical

Mixture Model for Small Training Sets. In Proceedings of the 10th International Conference

on Information and Knowledge Management, pages 105–113. ACM, 2001.

39. UNSPSC.org. United Nations Standard Products and Services Code, 2017. http://www.

unspsc.org.

40. D. Vandic, S. S. Aanen, F. Frasincar, and U. Kaymak. Dynamic facet ordering for

faceted product search engines. IEEE Transactions on Knowledge and Data Engineering,

29(5):1004–1016, 2017.

41. D. Vandic, J.-W. van Dam, and F. Frasincar. Faceted Product Search Powered by the

Semantic Web. Decision Support Systems, 53(3):425–437, 2012.

42. H. Wang, Q. Wei, and G. Chen. From Clicking to Consideration: A Business Intelligence

Approach to Estimating Consumers’ Consideration Probabilities. Decision Support Systems,

56(0):397 – 405, 2013.

43. K. Wang, S. Zhou, and S. C. Liew. Building Hierarchical Classifiers Using Class Proximity.

In Proceedings of the 25th International Conference on Very Large Data Bases, pages

363–374. Morgan Kaufmann, 1999.

44. T.-Y. Wang and H.-M. Chiang. Fuzzy Support Vector Machine for Multi-class Text

Categorization. Information Processing & Management, 43(4):914–929, 2007.

45. A. S. Weigend, E. D. Wiener, and J. O. Pedersen. Exploiting Hierarchy in Text Catego-

rization. Information Retrieval, 1(3):193–216, 1999.

46. W. J. Wilbur and K. Sirotkin. The Automatic Identification of Stop Words. Journal of

information science, 18(1):45–55, 1992.

47. Y. Yang. Expert Network: Effective and Efficient Learning from Human Decisions in Text

Categorization and Retrieval. In Proceedings of the 17th Annual International Conference

on Research and Development in Information Retrieval, pages 13–22. Springer-Verlag New

York, Inc., 1994.

48. Y. Yang. An Evaluation of Statistical Approaches to MEDLINE Indexing. In Proceedings

of the American Medical Informatics Association Annual Fall Symposium, pages 358–362,

1996.

49. Y. Yang. An Evaluation of Statistical Approaches to Text Categorization. Information

retrieval, 1(1-2):69–90, 1999.

50. Y. Yang and C. G. Chute. An Example-Based Mapping Method for Text Categorization

and Retrieval. ACM Transactions on Information Systems, 12(3):252–277, 1994.

51. Y. Yang and X. Liu. A Re-examination of Text Categorization Methods. In Proceedings

of the 22nd Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 42–49. ACM, 1999.

52. Y. Yang and J. O. Pedersen. A Comparative Study on Feature Selection in Text Catego-

rization. In Proceedings of the Fourteenth International Conference on Machine Learning,

pages 412–420. Morgan Kaufmann Publishers Inc., 1997.

53. Y. C. Yang. Web User Behavioral Profiling for User Identification. Decision Support

Systems, 49(3):261 – 271, 2010.

http://www.unspsc.org
http://www.unspsc.org

D. Vandic, F. Frasincar, and U. Kaymak 27

54. H. Yu, J. Yang, and J. Han. Classifying Large Data Sets Using SVM’s with Hierarchical

Clusters. In Proceedings of the 9th International Conference on Knowledge Discovery and

Data Mining, pages 306–315. ACM, 2003.

	Introduction
	Related Work
	The HPC Framework
	Data set processing
	Classification system
	Constructing classifier nodes
	Constructing the classification system
	Classification Algorithm

	Evaluation
	Data Collection
	Results
	Feature Selection Approaches
	Classification Algorithms
	Evaluating the HPC Framework
	The Category Mapping Algorithm

	Conclusions and Future Work

