
Hypermedia Presentation Generation in Hera

Flavius Frasincar a,b,∗ Geert-Jan Houben a,c Peter Barna a

aEindhoven University of Technology

PO Box 513, 5600 MB Eindhoven, the Netherlands

bErasmus University Rotterdam

PO Box 1738, 3000 DR Rotterdam, the Netherlands

cDelft University of Technology

PO Box 5031, 2600 GA Delft, the Netherlands

Abstract

Hera is a model-driven methodology for designing Semantic Web Information Sys-
tems (SWIS). Based on the principle of separation-of-concerns, Hera defines models
to describe the different aspects of a SWIS. These models are represented using
RDF, the foundation language of the Semantic Web. Hera is composed of two
phases: the data collection phase, which integrates data from different sources,
and the presentation generation phase, which builds a hypermedia presentation
for the integrated data. The focus of this paper is on the hypermedia presentation
generation phase and the associated model specifications. The Hera presentation
generation phase has two variants: a static one that computes at once a full Web
presentation, and a dynamic one that computes one-page-at-a-time by letting the
user influence the next Web page to be presented. The dynamic variant proposes,
in addition to the models from the static variant, new models to capture the data
resulted from the user’s interaction with the system. The implementation is based
on a sequence of data transformations applied to the Hera models that eventually
produces a hypermedia presentation.

Key words: Semantic Web Information System, RDF, hypermedia presentation
generation

∗ Corresponding author. Tel: (+31)(10)4081340, Fax: (+31)(10)4089162
Email addresses: flaviusf@win.tue.nl, frasincar@few.eur.nl (Flavius

Frasincar), houben@win.tue.nl, g.j.p.m.houben@tudelft.nl (Geert-Jan
Houben), pbarna@win.tue.nl (Peter Barna).

Preprint submitted to Elsevier Science 7 December 2009

1 Introduction

The World Wide Web is the most popular medium used by information sys-
tems to disseminate information to a broad audience. In 1998 the term Web
Information Systems (WIS) was used for the first time to denote informa-
tion systems that exploit the Web hypermedia paradigm for providing the
application user with a user-friendly, easy-to-reach interface [1]. Some of the
popular WIS are: institutional portals, community Web sites, online shops,
digital libraries, e-learning courses, etc.

The opportunities that the Web offers do come at a price, there is a signifi-
cant number of challenges that WIS designers need to take into account in the
development of Web applications: automatic generation of the user interface,
application personalization, interface portability, integration of heterogeneous
data sources, etc. As traditional software engineering practices fail to cope
with the Web peculiarities a new discipline called Web engineering aims at
the establishment of systematic approaches for the development of Web ap-
plications [2].

A typical scenario in a WIS is the following: in response to a user query the
system automatically generates a hypermedia presentation. The content of the
hypermedia presentation is gathered from different, possibly heterogeneous,
sources that are distributed over the Web. A characteristic aspect of a WIS is
the personalization of the generated hypermedia presentation. The one-size-
fits-all approach that is so typical for traditional hypermedia is not suitable for
delivering information at run-time to different users with different platforms
(e.g., PC, PDA, WAP phone, WebTV) and different network connections (e.g.,
dial-up modem, network copper cable, network fiber optic cable). The fact
that the WIS needs to run on different platforms triggers the need to build
different presentations (data arrangements on the user display) for the same
set of data items. The WIS support for user interaction (e.g., by means of
forms) enables the user to influence the generated hypermedia presentation
based on his explicit needs.

Several methodologies have been proposed for the design of WIS [3]. In the
plethora of proposed methodologies we distinguish the model-driven method-
ologies (e.g., WebML [4], OOHDM [5], RMM [6], UWE [7], OO-H [8], OOWS [9],
OntoWebber [10]), i.e., methodologies that use models to specify the differ-
ent aspects involved in the WIS design. The advantages of such model-based
approaches are countless: better understanding of the system by the differ-
ent stakeholders, support for reuse of previously defined models, checking the
validity of the design artifacts, automatic model-driven generation of the pre-
sentation, better maintainability, etc.

2

The next generation Web, the Semantic Web [11], is an extension of the current
Web in which data will have associated semantics to it. Several Semantic
Web languages (e.g., RDF(S), OWL) have been proposed to represent data
semantics in a uniform way at different abstractions levels. We refer to WIS
that use Semantic Web technologies as Semantic Web Information Systems
(SWIS).

By making data not only machine-readable but also machine-understandable
the Semantic Web better supports the interoperability between different Web
applications. The benefits that the Semantic Web brings to SWIS are remark-
able: a large amount of annotated data accessible by any SWIS, exchange and
reuse of data models between different SWIS, flexible representation of the
Web semistructured data, unambiguous representation of models, inference of
the intensional information stored in models, etc.

On the future Web a lot of the information will have metadata (data about the
data) associated with it which will better foster the reuse and interoperability
of Web applications than on the current Web. Semantic Web representations
are able to cope with the semistructured aspects of data on the Web (e.g.,
by not enforcing the presence of a certain property on a resource). Moreover
these data structures are flexible as they can be easily extended as opposed
to the strict data structures of relational databases.

Differently than an XML-based model, a Semantic Web model adds more con-
straints to a domain specification (e.g., a unique way to represent concepts and
relationships), making thus the representation less ambiguous. In addition it
offers a compact representation of the data as the implicit information is com-
puted by inference engines. Semantic Web languages have semantics grounded
in Description Logics which ensures language decidability.

Model-driven SWIS design methodologies that exploit the advantages of the
Semantic Web, will help the construction of successful SWIS on the future
Web. The remainder of the paper is structured as follows. Section 2 presents
some of the existing methodologies for designing SWIS. Section 3 introduces
Hera, a SWIS design methodology that pays special attention to the model-
ing of the presentation personalization aspects in a SWIS. Section 4 describes
the static presentation generation phase of Hera. Section 5 describes the dy-
namic presentation generation phase of Hera. Section 6 compares the static
and dynamic presentation generation phases of Hera, and presents some the
applications built using the Hera methodology. Section 7 concludes the paper
and presents future work.

3

2 Related Work

There are few design methodologies that exploit the potential of the Se-
mantic Web. Some of the pioneering methodologies for designing SWIS are:
XWMF [12], OntoWebber [10], SEAL [13], and (A)SHDM [14,15]. Common
to all these systems is the use of ontologies (as specifications of conceptualiza-
tions) [16] for describing models. These ontologies are supported by inference
layers that use ontology rules (axioms) to deduce new facts based on existing
facts.

After briefly describing a SWIS design methodology we will analyse how well
it implements the following requirements:

• methodology: does the methodology provide design steps and guidelines for
each step in order to produce models?

• data integration: does the methodology consider the integration of data com-
ing from different heterogeneous sources?

• personalization: does the methodology support adaptation mechanisms in
order to realize the application personalization?

• user interaction: does the methodology support complex forms of user in-
teraction (e.g., by means of rich forms 1) with the system?

• presentation model: does the methodology explicitly model the presentation
aspects (the look-and-feel aspects, separate from navigation) of the appli-
cation?

The eXtensible Web Modeling Framework (XWMF) [17] is one of the first
SWIS modeling frameworks using RDF(S) [18,19]. It is based on the Web
Object Composition Model (WOCM), a formal object-based language used to
define the structure and content of a Web application. WOCM is a directed
acyclic graph with complexons as nodes and simplexons as leaves. Complexons
define the application’s structure while simplexons define the application’s
content. Components are a special kind of complexons representing a physical
entity (e.g., a Web page). The representation of an WOCM is done in RDF(S).
XWMF also shows how one can reuse specifications at schema level by utilizing
the RDFS subclass mechanism. XWMF doesn’t provide a sequence of design
steps as its focus lies solely on the models needed to specify a SWIS. XWMF
offers no support for data integration, personalization, user interaction and
presentation modeling.

OntoWebber [10] is an ontology-driven design methodology for building SWIS.
The architecture of the system is composed of three layers: integration layer,
composition layer, and generation layer. The integration layer resolves the syn-
tactic differences between the different input data sources. With respect to this

1 By rich forms we mean forms and their associated logic captured in scripts.

4

process it defines a domain ontology, as a reference ontology. The composition
layer uses several ontologies (e.g., the navigation ontology, the presentation
ontology, the personalization ontology, etc.) to define the site-view, a graphi-
cal representation of the instance Web site. The generation layer verifies that
the constraints imposed to the SWIS are met by the instance Web site and
generates the hypermedia presentation. OntoWebber uses RDF for the model
representation and TRIPLE [20], an RDF query language, for querying the
models. OntoWebber predefines a sequence of steps that the designer using
this methodology needs to follow, and supports data integration. OntoWeb-
ber also supports the personalization and presentation modeling, but it lacks
support for advanced user interaction with the system.

The Semantic PortAL (SEAL) [13,21] is a domain ontology-driven design
methodology for building SWIS. SEAL proposes a number of steps for build-
ing SWIS: ontology design, data integration, site design, and implementation.
In the ontology design one constructs the domain ontology which represents
a uniform view over the data to be integrated. For the data integration one
builds wrappers for the data sources that are mapped to the domain ontol-
ogy. In the site design the navigation model, input model, and personalization
model are built. The navigation model defines the navigation structure over
the domain model, the input model defines forms to gather ontology data from
the user, and the personalization model adapts the navigation model and in-
put model based on the user preferences. The implementation builds a SWIS
based on the previously defined models. SEAL doesn’t have a well-defined
methodology, but supports the data integration process. SEAL supports per-
sonalization and advanced user interaction with the system but lacks support
for presentation modeling.

The Semantic Hypermedia Design Method (SHDM) [14,22] extends the ex-
pressivity of OOHDM [5] by defining ontologies for OOHDM models. These
ontologies are specified in OWL [23], a more expressive language than RDFS.
Similar to OOHDM, SHDM identifies four different phases: conceptual design,
navigation design, abstract interface design, and implementation. For the con-
ceptual design SHDM uses UML class diagrams which are further mapped to
OWL using heuristic rules. In the navigation design one defines the naviga-
tional schema, the navigational contexts, and the access structures. The map-
pings between the conceptual schema and navigational schema are specified
using RQL [24], an RDF query language. In SHDM it is possible to map the
conceptual model corresponding to different sources to the same navigational
schema. The abstract interface design defines the widget ontology to be used
for defining the exhibited elements, the events sent to the system based on
user actions, and the variables used to store user input data. The widgets are
mapped to the navigational structures defined in the navigational schema. The
implementation phase builds a SWIS based on the previous models. SHDM
proposes a well-defined methodology and does to some extent support the data

5

integration process. SHDM facilitates presentation modeling, and to some ex-
tent personalization and user interaction (as inherited from OOHDM, without
using Semantic Web technologies).

The Adaptive Semantic Hypermedia Design Model (ASHDM) [15] adds per-
sonalization support to SHDM. The SHDM methodology is enlarged with new
models: the adaptation context model and the adaptation model. The adap-
tation context model is a generalization of the user model and user context
model. The user model stores domain-independent data (e.g., user’s name),
overlay data (e.g., knowledge of the user with respect to a certain concept),
and domain-dependent data (e.g., knowledge of the user with respect to a
certain domain). The user context model specifies the context characteristics
that do not pertain to the user per se (e.g., the network bandwidth). The
adaptation model is based on events that appear at the interaction between
the user and the system, and actions that adapt the SHDM models and the
user context model. An interesting feature of SHDM is meta-adaptation, i.e.,
choosing the right adaptation model based on the user context (e.g., the adap-
tation can be based on the user’s learning style). (A)SHDM has a well-defined
methodology and does to some degree support data integration. Personaliza-
tion of the application is well sustained, and user interaction and presentation
modeling are partially supported.

Table 1 shows an overview of the analysed SWIS design methodologies.

Table 1
SWIS methodologies comparison.

XWMF OntoWebber SEAL (A)SHDM

Methodology Partial Yes Partial Yes

Data integration No Yes Yes Partial

Personalization No Partial No Yes

User interaction No No Partial Partial

Presentation model No Partial No Partial

Less mature than WIS design methodologies, SWIS methodologies emphasize
less the steps which are needed in order to build SWIS. They usually focus on
the ontologies used for the models that specify the built applications, often
failing short in providing a rigorous methodology that one needs to follow
when constructing such systems. SWIS design methodologies (e.g., (A)SHDM)
that extend traditional WIS design methodologies (e.g., OOHDM) inherit the
original design steps providing a more structured methodology than the rest
of the considered SWIS methodologies.

As the Web is hosting a large amount of data that can be reused, data integra-
tion is a topic of special interest for SWIS design methodologies. By offering

6

the tools to describe the semantics of the data, the Semantic Web proves to
be extremely useful in the Web data integration process. A common technique
used by these methodologies is the wrapping of the data sources in a semantic
representation. XWMF does not consider data integration as its focus lies in
the presentation aspects of SWIS. Even if (A)SHDM does not have a direct
mechanism to include external sources at conceptual level, it does partially
support data integration by mapping the conceptual model corresponding to
different sources to the same navigation model.

Most of the analysed methodologies have very little support in modeling ad-
vanced forms of user interaction with the system besides link-following. One
example of advanced interaction is the use of forms for selecting data or adding
new information to the system. SEAL provides a limited form of user interac-
tion with the system by allowing the user to change the system’s input data,
without letting him to control the generated presentation . The only form of
interaction between in (A)SHDM is the user selection of items from existing
data.

A feature often neglected in the examined SWIS design methodologies is the
design support for the presentation aspects (e.g., the look-and-feel aspects) of
SWIS. OntoWebber considers only a few layout primitives which have limited
expressive power (e.g., it is not possible to express a flow layout). Despite the
increased expressivity of the (A)SHDM presentation model, to our knowledge,
it is not possible to describe time-relevant aspects (e.g., slide show) which are
important in hypermedia presentations on certain platforms.

3 Hera

Hera is a SWIS design methodology. The research done for developing Hera
can be positioned as design science [25] as it addresses requirements that were
only partially implemented by existing SWIS design methodologies. Moreover
some of the solutions already proposed for the implementation of WIS require-
ments are done in a more effective and efficient way in Hera using Semantic
Web technologies. As any design science research project the artifacts pro-
duced by Hera are constructs (vocabulary elements), models (specifications),
methods (sequence of design steps), and instantiations (implementation of
working systems).

Hera proposes design steps that, based on the separation-of-concerns princi-
ple, specify different aspects of a SWIS. These specification aspects are given
by models that have graphical representations. Each model has a well-defined
vocabulary of (graphical) primitives associated with it. The implementation of
a SWIS using the Hera methodology is based on data transformations driven

7

by Hera models. Hera has its origins in the RMM design methodology [6].
The Hera methodology is supported by the Hera Presentation Generator [26],
an integrated development environment for building SWIS. This environment
comprises two types of tools: tools which help the designer build models in
a graphical manner, and tools which automatically generate hypermedia pre-
sentations based on previously defined design models.

3.1 Requirements

Before describing Hera we would like to emphasize the type of Web appli-
cations for which this methodology has been developed. Based on existing
classifications of Web applications [2,27], the types of applications supported
by Hera can be best classified as Data-Intensive Interactive Web applications.
These applications are data-intensive in the sense that they use large amounts
of data possibly distributed over the Web. They are also interactive, as the user
is able to “control” the navigation by providing adequate input information.

The main stakeholders of the developed Web applications can be classified
in two groups: customers and users, i.e., the individuals that interact with
the system, and designers and developers, i.e., the team responsible for build-
ing the system. Based on these stakeholders one can identify the application
requirements, which address the stakeholders’ concerns. These requirements
are classified as applicative (functional) requirements and managerial (non-
functional) requirements.

The focus of Hera is on some of the most important, in our opinion, applicative
requirements of Data-Intensive Interactive Web Applications, as data integra-
tion, interactive navigation, multi-platform access, and look-and-feel issues.
The managerial aspects of these applications like security, availability, evolu-
tion, and accessibility are not the focal point of the proposed methodology.
Nevertheless, we acknowledge that some of these non-functional issues like in-
teroperability and reuse did play a role in selecting the appropriate supporting
technologies. Also, the scalability and accessibility issues influenced our choice
for a model-driven methodology and the related adaptation techniques.

To our knowledge none of the investigated SWIS design methodologies is able
to cope in a systematic manner with the considered requirements for Data-
Intensive Interactive Web applications. In the future we plan to investigate
how one can extend Hera so that it is able to cope with additional applicative
requirements (e.g., querying and recommendations) and managerial require-
ments (e.g., evolution and maintenance).

Due to the global availability of data sources for Data-Intensive Interactive
Web Applications one needs a well-defined data integration process. The in-

8

tegration of Web data sources aims at providing a uniform access to multiple
data sources. Such a process needs to consider the characteristics of these data
sources like: autonomous, heterogeneous and overlapping, frequently changing,
large size, and distributed [28].

Differently than in traditional information systems, information in the consid-
ered Web applications is explored in an explorative way rather than through
“canned” interfaces [27]. One of the basic forms of interaction between the
user and these applications is by means of link-following, i.e., data navigation,
which allows the user to jump between context related information chunks.
The navigation from one page to another page should support the user in
fulfilling his task(s). After each “click”, often, the user is one step closer to
completing his task(s) and thus experiences an increasing level of satisfaction
in his interaction with the system. With respect to this, it is important that
the provided navigational structure supports the tasks of the users as captured
in the system requirements [29].

The universal access of Data-Intensive Interactive Web applications by dif-
ferent users makes it difficult to have one unique interface for the interaction
between the user and the system. Users have usually different goals and skills
that need to be considered in the presentation generation process. Moreover,
users can employ different platforms (e.g., different devices, networks) to nav-
igate through the information which means that the presentation needs to be
adapted based on the user’s specific browsing context. Adapting the presen-
tation to the user’s needs is called presentation personalization [30].

One way in which the user can influence the next page to be be presented is by
following a link. In order to further improve the communication between the
user and the system, the Web applications supported by Hera are Interactive
Web applications, as they allow more advanced forms of user interaction, e.g.,
the user can enter data into the system by means of forms [4]. In this way the
user is able to better amend the system to his needs, improving his browsing
experience.

As a competitive advantage, it has become increasingly important for Web
applications to offer a pleasant look-and-feel aspect to the generated presen-
tation. Presentation modeling, i.e., the layout (graphical arrangement) and
style (e.g., fonts, colors) of the information in the generated presentations,
plays a crucial role in achieving this purpose [31]. This is of paramount im-
portance when WIS need to present the same information on different user’s
displays taking in consideration the device characteristics.

A rigorous methodology for designing WIS should have a well-defined sequence
of steps that need to be followed by the WIS designer. The design artifacts
produced at every methodological step should be based on formal descriptions

9

involving a well-defined set of vocabulary constructs. In order to increase the
utility of a WIS design methodology, there is a need for support tools that
automate the generation of hypermedia presentations by taking in account the
design models’ specifications.

The construction of WIS would benefit a lot from the reuse of previously de-
signed models. For example, existing domain models can be successfully recy-
cled (possibly with some adaptations) while designing WIS. Also, WIS would
profit from an open architecture architecture that fosters interoperability. The
Semantic Web can play a key role in achieving both reuse and interoperability
in WIS [32].

The previously identified requirements drive the design choices that we have
made while developing Hera. As some of these requirements were only partially
addressed by previous methodologies, Hera aims at providing full support for
all of them in one single methodology. In this way we benefit from previous
work on WIS methodologies while pushing even further the frontiers of WIS
design.

3.2 Architecture

Figure 1 shows the main phases in Hera’s architecture: data collection and pre-
sentation generation. The Hera methodology comes also with a straightforward
implementation in which the Hera’s main phases and the design steps corre-
sponding to these phases are naturally mapped to components in a pipeline
software architecture. We point out that the software based on this architec-
ture is just one of the possible implementations of SWIS given the specifica-
tions required by the Hera methodology.

Browsing Devices

. .
 .

Data Sources

. .
 .

Query

Hera

Query Data

Query

Presentation

Data
Collection

Generation
Presentation

Data

Session
Data

Fig. 1. Hera’s main phases.

The data collection phase helps to make the data available from different

10

sources, such that in response to a user query a data result set is obtained.
In this phase of the process the integration model is defined that maps data
from the different sources to a common data representation. This mapping
is needed whenever for a given query the instances that compose the query
result need to be retrieved. The data collection phase is outside the scope of
this paper. More information on this phase can be found in [33].

The presentation generation phase builds a hypermedia presentation for the
retrieved data. It is based on a sequence of data transformations driven by
several models. These models depict different application aspects that are
relevant in this process: what is the domain of the application, what is the
navigation structure for data from this domain, how to arrange and style the
data on the user’s display, and how can we tailor the generated presentation
based on user preferences and user browsing platform. As can be seen from
Figure 1 the generated hypermedia presentations can target different platforms
like PC, WAP phone, PDA, etc.

The presentation generation phase has two variants: a static one in which the
user is unable to change the content of the generated hypermedia presentation
and a dynamic one which considers the user interaction with the system in the
process of building the next hypermedia page. In the static variant all pages
are generated before the user browses the presentation and in the dynamic
variant one page is generated-at-a-time during the browsing.

In order to better support the description of Hera’s presentation generation
phase we use a running example based on real data coming from the painting
collection in a museum, the Rijksmuseum in Amsterdam. During the pre-
sentation we will show how the presentation modeling, user interaction, and
personalization are supported by the Hera methodology for constructing a
SWIS. The development environment that helps the designer in this process,
i.e., the Hera Presentation Generator [26], is outside the scope of this paper.

3.3 RDF(S)

For the Hera specifications RDF(S) [18,19] is used. RDF(S) is the foundation
language of the Semantic Web. There are several reasons for choosing RDF(S):
it is flexible (it supports schema refinement and description enrichment), it is
extensible (it allows the definition of new resources/properties), and it fosters
Web application interoperability (it provides a framework to describe in a uni-
form way the data semantics). As RDF(S) doesn’t impose a strict data typing
mechanism it proved to be very useful in dealing with semistructured (Web)
data. On top of RDF(S) high-level ontology languages (e.g., DAML+OIL [34],
OWL [23]) are defined, which allow for expressing axioms and rules about the

11

described classes giving the designer a tool with larger expressive power.

Hera models are described in RDFS. An RDFS vocabulary is developed for
each model in order to define the model’s concepts (which are the classes
and properties to be used in a model). Differently than XML representations,
RDFS models propose unambiguous and compact representation of domain
specifications. Due to the flexibility of RDFS, models can be easily extended
with new properties, a feature that is not easy to achieve if one chooses a
relational database-based representation of models.

Model instances have an RDF representation which is validated against their
corresponding schema (model). By making use of these standards we are able
to reuse models between different applications. The use of RDFS allows us
also to reuse existing RDFS vocabularies for expressing for example domain
models or user profiles. In some applications built with Hera we successfully
reused the domain model developed for museum descriptions in the TOPIA
(Topic-based Interaction with Archives) project [35] and the User Agent Pro-
file (UAProf) [36], a Composite Capability/Preference Profiles (CC/PP) [37]
vocabulary for modeling device capabilities and user preferences.

4 Static Presentation Generation

In some WIS the generation of the hypermedia presentation happens before
the user starts its browsing session. In such systems the interaction between
the user and the system is limited to simple link-following, and Web pages
are computed in advance. Examples of such WIS are: online exhibitions, Web
information points (e.g., bus schedules), online tutorials, etc. The simplicity
of these applications asks for a simple methodology to be used for building
such systems.

The typical structure of the static variant of the presentation generation phase
is given in Figure 2 in terms of three layers: the conceptual layer defines the
content that is managed in the SWIS, the application layer provides the navi-
gation structure on the data, and the presentation layer gives the presentation
details that are needed for the generation of the hypermedia presentations on
a concrete platform. As can be noted from Figure 2, in the static variant for
the presentation generation phase the whole Web presentation is produced at
once in response to a user query.

The presentation generation phase distinguishes the following steps: the con-
ceptual design, the application design, the presentation design, and the im-
plementation. Each design step produces appropriate models that capture the
design aspects specific to this step. A model uses concepts from a model-

12

Application LayerConceptual Layer Presentation Layer

Presentation Design

Presentation Model (PM)Application Model (AM)Conceptual Model (CM)

CM Adaptation Model AM Adaptation Model PM Adaptation Model

Conceptual Design Application Design

(External)

User/Platform Profile

Web page

Application Engine Presentation Engine
(incl. PM Adaptation)(incl. AM Adaptation)

CM Adaptation

Implementation

Engine
Data Collection

Fig. 2. Presentation generation phase (static).

specific vocabulary. In order to ease the specification of the models the model
concepts have associated graphical representations. From our experience it
easier for the user to grasp specifications in a graphical way than in the ver-
bose RDF/XML serialization. In this way a model can be showed as a diagram
to facilitate the development and understanding of a certain model.

Adaptation [38] is not seen as a separate design phase because this process is
distributed through all the previously identified design steps. In the adaptation
design the user/platform profile (UP) is defined, i.e., it is determined which
are the user preferences and platform characteristics that can influence the
Web presentation before the user starts the browsing session. The adaptation
model specifies adaptation conditions (Boolean expressions) used to tailor the
Hera models based on the UP attributes. An excerpt of the UP vocabulary is
given in Figure 3. A user profile has three components (hardware, software,
and preferences). Each component has properties that refer to specific values.
For example, the hardware component has a property specifying the ability
to display images that refers to a Boolean value.

In the user preferences component there are properties which are specific only
to the domain of our application. For example the expertise level of the user
strictly refers to a certain domain (the user can be a beginner in one do-
main and an expert in another domain). If one plans to reuse the user profile
across domains, these properties need to be modeled as ternary relationships
<domain, property, value> which are outside the scope of this paper.

13

Hardware Platform
PC

WAP phone

User Preferences

Software PlatformProfile

type

imageCapable

client

. .
 .

levelOfExpertise

Boolean
No

Yes

PDA

Expertise

Client

Expert

Beginner

Normal

Vision
Normal

Poor
levelOfVision

component

property

Fig. 3. User/platform vocabulary.

We present the adaptation model when we show the different design steps. If
the designer is not interested in adapting the system he can ignore the adapta-
tion aspects in the proposed methodological steps. The adaptation presented
here is a fine-grained adaptation. A coarse-grained adaptation is achieved by
using group profiles, instead of UPs. In this approach users with similar char-
acteristics are assigned a group profile. One of the advantages of coarse-level
adaptation is the decrease in the system’s workload, as the performed adap-
tation is relevant for several users.

4.1 Conceptual Design

The conceptual design specifies the input data in a uniform manner, indepen-
dent from the input sources. The result of this activity is the conceptual model
(CM). From a database point of view, the CM defines the schema for the
data that needs to be presented. The CM serves also as the interface between
the data collection phase and the presentation generation phase of the Hera
methodology.

Figure 4 shows the CM vocabulary. It defines the following notions: concept,
concept attribute, and concept relationship. A concept represents a certain
entity in a particular application domain. Concept attributes and concept
relationships refer to media types and other concepts, respectively, in order
to describe the properties that characterize a concept. As CM vocabulary we
did use the standard RDFS concepts with three extensions: one for modeling
the cardinality of the concept relationships, one for representing the inverse

14

of the concept relationships, and one for depicting the media types, the so-
called media vocabulary. Similar to database modeling, many-to-many concept
relationships are decomposed into two one-to-many concept relationships. In
this way we have only two types of cardinalities: one-to-one and one-to-many.

One can note the use of concept relationship in Figure 4 as a concept property
(top part of figure) and as a as a standalone concept (bottom part of figure).
In this representation we have adopted the property-centric view of RDF, in
which one can attach properties (e.g., cardinalities) to properties (e.g., concept
relationships).

ConceptMedia

Concept Relationship

MultipleSingle

type

property

concept attribute concept relationship

Cardinality
cardinality inverse

Fig. 4. Conceptual model vocabulary.

Figure 5 shows the type hierarchy in the media vocabulary. In the same way as
AMACONT [39], we base our media vocabulary on a subset of the MPEG-7
standard [40]. The basic media types are: Text, Image, Audio, and Video. The
figure also shows the attributes of the media types, for example the nrChars
of a text or the width and height of an image. For the refinement of the Text
media types the XML Schema Datatypes (e.g., String or Integer) are used
(not shown in the figure). In order to achieve a high degree of application
interoperability, Hera uses as much as possible the existing Web standards.

TimeMedia

Image

FrameMedia

Literal Literal Literal Literal

Literal

Literal

Literal

Media Literal

duration

bitsPerPixel

Video Audio

frameHeight

frameWidth

Text

nrChars frameRate samplingRate

mediaURL

property

subClassOf

Fig. 5. Media vocabulary.

15

Media adaptation selects the most appropriate media items for the technical
system parameters provided by different network environments and client de-
vices. Figure 6 shows a few media adaptation examples. For devices that are
not able to display images (like certain WAP phones), the images are removed
from the presentation. Based on display size, large strings and images are se-
lected for PC, and small versions of the same strings and images are selected
for PDA.

Image

LargeImage SmallImageLargeString

subClassOf

condition

String

SmallString

up:imageCapable = Yes

up:client = PC up:client = PDA

Fig. 6. Media adaptation.

Figure 7 shows an excerpt of the CM for the running example. Concepts are
represented as ovals and media types as rectangles. There are three concepts:
Technique, Artifact, and Creator. A Creator has two concept attributes at-
tached to it, cname, for the creator’s name, and biography for the creator’s
biography, both depicted by String items. A Creator is associated using the
concept relationship creates to an Artifact. The cardinality of this concept re-
lationship is one-to-many, i.e., one creator creates many artifacts. The inverse
of the creates concept relationship is the created by concept relationship. Note
that both concept relationships and concept attributes are denoted as concept
properties.

String
Integer

String
String

Image

String String

exemplified_by
year

exemplifies *1 *

description

tname
1 cname

biographyaname

picture

Creator

property

Technique Artifact
creates

created_by

Fig. 7. Conceptual model.

The conceptual model presented in Figure 7 depicting any creator, artifact,
or technique can be refined to a specific artistic domain. Figure 8 shows the
specialization (in a type hierarchy) of the previous conceptual model to the
painting domain. Concepts are specialized by the subClassOf property and
concept relationships are specialized by the subPropertyOf property. For ex-
ample, the Creator is specialized as a Painter and the creates relationship is

16

specialized as paints.

String
Integer

String

String

String

Image

String

String

*1 * 1
Technique CreatorArtifact

1*
PainterPainting

subPropertyOf

subClassOf

property

description

tname

exemplified_by

exemplifies

aname

picture

year
created_by

creates

biography

painted_by

area

paints

cname

Fig. 8. Specialization in the conceptual model.

CM adaptation selects concepts or concept attributes from the CM to be used
in the presentation. Figure 9 shows an adaptation example in the conceptual
model. In this example the description of the painting technique is removed
from the whole presentation if the user is not an Expert. This is the so-called
context-independent adaptation, i.e., adaptation that affects the entire pre-
sentation. An example of context-dependent adaptation, i.e., adaptation that
affects only a certain situation in a presentation, is provided in the next sec-
tion.

String

String

property

description

tname

Technique

condition

up:levelOfExpetise = Expert

Fig. 9. Adaptation in the conceptual model.

4.2 Application Design

The application design defines the navigational aspects of the presentation to
be generated. The user of a WIS needs to be able to navigate through the
provided information. As CM does not suffice to model these navigational as-
pects of the presentation [41]: one needs to define the navigational view over
the CM. The result of this activity is the application model (AM). From a
database point of view, the AM is a view over the CM extended with naviga-
tion primitives.

17

Figure 10 shows the AM vocabulary. It defines the following notions: slice, slice
attribute, and slice relationship. A slice [1] is a meaningful presentation unit
that fulfills a certain communication purpose. Slice attributes are used to refer
to media types. There are two types of slice relationships, slice aggregation and
slice navigation. The first type of slice relationship facilitates the inclusion of
a slice into another slice and the second type of slice relationship is used to
define navigation between slices.

An empty slice 2 is a slice that has its content defined at design-time (the
content can be predefined or computed by a function of other known values).
Such a slice has only one attribute that refers to a media type added at design-
time. A non-empty slice has its content defined at run-time. In order to know
from where the content is to be extracted at run-time slices have associated
to them an owner concept from CM. The owner attribute for an empty slice
can be any concept, as the slice content is defined at design-time.

Media

Empty SliceMedia Set

Slice

Slice AggregationSlice Navigation

Slice Relationship

Concept Attribute

Complex SliceSimple Slice
slice aggregation

slice attribute

slice attribute

Non−Empty Slice
slice

slice navigation

owner

navigation
External Page

Concept

slice aggregation

concept attribute

Concept Relationship
concept relationship

subPropertyOf

subClassOf

property

Fig. 10. Application model vocabulary.

The definition of a non-empty slice is recursive: a slice can be a simple slice
or can contain other slices. 3 A simple slice has only one slice attribute that

2 Dealing with data-intensive applications, by ‘empty’ is meant that there is no
content that will populate this type of slice at run-time.
3 Due to their nested nature, slices are also called M-slices where ’M’ stands for

18

refers to the same media as the concept attribute of the owner concept from
CM. A slice that aggregates other slices is called a complex slice. The recursion
is defined by utilizing the slice aggregation relationship. The aggregation rela-
tionship between two slices that have two different owners needs to specify the
concept relationship (or a relationship derived from the CM by relationship
chaining) between the two owner concepts from the CM that made such an
embedding possible. In case that the cardinality of this concept relationship is
one-to-many the Set construct needs to be used. A top-level slice corresponds
to a Web page while other slices are components of higher-level slices. Using a
slice navigation relationship, a slice (the anchor) can be linked to a top-level
slice. Additionally a slice can be linked to an external Web page.

In [42] is presented a more advanced way of navigating between slices in which
the destination of a navigational link can be a component slice. In this case
the source slice of the link can be replaced by the destination slice in the same
top-level slice. This feature can be easily implemented using AJAX technol-
ogy when only certain parts of a top-level slice are updated as a response to
following a navigation link.

Figure 11 shows an excerpt of the AM for the running example. Slices are
depicted (as their name suggests) by pizza-slice shapes. There are two slices,
the main slice owned by Technique and the main slice owned by Artifact.
We use the convention to denote the slice (long) name by Slice.<concept
name>.<slice short name>, in order to distinguish them from concept names
or slices with the same short name but owned by different concepts. The
name of the slice owned by Technique is thus Slice.Technique.main. The slice
Slice.Technique.main aggregates (by means of slice aggregation relationships)
two simple slices and one complex slice. The simple slices Slice.Technique.tname
and Slice.Technique.description are owned by Technique. The complex slice
that aggregates Slice.Artifact.picture is owned by a different concept, i.e.,
Artifact. The aggregation relationship used for this embedding refers to the
exemplified by concept relationship between Technique and Artifact. As the
cardinality of exemplified by is one-to-many the Set construct is also inserted.
In a similar manner the slice Slice.Artifact.main is defined. As created by has
cardinality many-to-one (inverse of creates), the Set construct is not used in
this case. The slice navigation relationship connects the picture of an artifact
Slice.Artifact.picture with the slice giving detailed information about that ar-
tifact Slice.Artifact.main.

The AM presented in Figure 11 depicting the main slices for techniques
and artifacts can be refined to a specific artistic domain. Figure 12 shows
the specialization (in a type hierarchy) of the previous AM to the paint-
ing domain. Slices are specialized by the subClassOf property. For example,

Matryoshka, the Russian doll [6].

19

picture

aname

year

created_by

Creator

cname

description

exemplified_by

picture

Artifact

Set

Artifact

mainmain

tname

Technique

aggregation (with CM property name)

navigation

Fig. 11. Application model.

the slice Slice.Creator.main is specialized by the slice Slice.Painting.main.
Slice.Painting.main inherits all the slice relationships of Slice.Technique.main
and adds three new slice relationships to it: two slice aggregations and one slice
navigation. The aggregation relationships refer to the slice Slice.Technique.area
and Slice.Technique.tname. The navigation relationship links backwards the
Slice.Technique.tname with the Slice.Technique.main.

exemplifies

Technique

tname

created_by

Creator

cname

picture

aname

year

tname

description

exemplified_by

picture

Artifact

Set

Technique Artifact

mainmain

Painting

emain

area

subClassOf

navigation

aggregation (with CM property name)

Fig. 12. Specialization in the application model.

The AM adaptation [43] is based on two typical adaptation mechanisms: con-
ditional inclusion of fragments (fragments are slices in our context) and link

20

hiding [44] (links are slice navigation relationships in our context). A link is
hidden when its destination slice has a condition that evaluates to false.

description

exemplified_by

picture

Artifact

Set

Technique

main

tname

aggregation (with CM property name)

condition

up:levelOfExpertise = Expert

Fig. 13. Adaptation in the application model.

Figure 13 shows an adaptation example in the AM. In this example the de-
scription of the painting technique is removed from the main slice of this tech-
nique if the user is not an Expert. Later on in the presentation, the description
of the painting technique can appear also for users that are not Experts (at
that point in the presentation, the system can consider that the user is now
ready to digest more advanced information). This is the so-called context-
dependent adaptation, i.e., adaptation that affects only the current slice (by
current slice is meant the top-level slice that contains the slice with the con-
dition). Slices that have attached conditions outside the scope of a container
slice have a context-independent adaptation, i.e., these slices will be removed
from the whole presentation, no matter where they appear. This is similar to
the context-independent adaptation for conceptual model adaptation showed
in Figure 9. Note that the removal of a concept or concept attribute from
a presentation has as a consequence the removal of all associated slices (i.e.,
slices for which the concept is an owner) or of the slice that refers to that
concept attribute, respectively.

4.3 Presentation Design

The presentation design specifies the look-and-feel aspects of the presenta-
tion to be generated, independent from the presentation implementation. The
result of this activity is the presentation model (PM). It describes the layout
and style information of the presentation. Both aspects are not to be neglected
because they might have an immediate impact on the user choice for a certain
application among applications offering similar functionality. The supported
platforms are HTML browsers for PC, cHTML browsers for PDA, and WML
browsers for WAP phones.

21

Figure 14 shows the PM vocabulary. It defines the following notions: region,
region attribute, and region relationship. A region is an abstraction for a rect-
angular part of the display area where the content of a slice will be displayed.
Each region is associated to a slice, the so-called region owner, from which
the region content will be derived. The definition of region is very similar to
that of a slice with a few simplifications and some additions. Region attributes
are used to refer to media types. There are two types of region relationships,
region aggregation and region navigation. The first type of region relationship
facilitates the inclusion of a region into another region and the second type of
region relationship is used to define navigation between regions. The classifica-
tion empty/non-empty does not apply for regions as regions get their content
from the slice owner always at run-time.

Differently than other modeling approaches we decided to use aggregation
and navigational relationships not only in the application model but also in
the presentation model. In this way the presentation model captures all the
information needed to generate a hypermedia presentation. Because of this it is
easier to specify the transformation of the presentation model in a hypermedia
presentation. Nevertheless, this design choice comes at a price, as one needs to
maintain the consistency between the application model and the presentation
model.

The definition of regions is recursive: a region can be a simple region or can
contain other regions. A simple region has only one region attribute that refers
to the same media as the slice attribute of the corresponding simple slice from
AM. Differently than for slices, one doesn’t need to specify a corresponding
concept attribute. A region that aggregates other regions is called a complex
region. The recursion is defined by utilizing the region aggregation relationship.
Another difference from slices is that for aggregation relationships there is no
need to specify concept relationships. The Set construct, aggregation, and
navigation relationships are copied for a region from the corresponding (by
the owner relationship) slice. A top-level region corresponds to a Web page
and is owned by a top-level slice.

A region has a particular layout manager and style associated with it. There
are four abstract layout managers: BoxLayout, TableLayout, FlowLayout, and
TimeLayout. The layout managers describe the spatial/temporal arrange-
ments of regions embedded into another region. The list of layout managers
can be easily extended with other layouts like BorderLayout, OverlayLayout,
GuidedTourLayout, etc.

In [42] is presented an alternative way of defining layouts by using qualitative
and quantitative constraints for regions. These constraints are associated to
region relationships which are further classified as temporal, navigational, and
spatial. Temporal relationships express the notion of time, navigational rela-

22

Region Navigation

Region Relationship

Media

TimeLayout

FlowLayout

BoxLayout

TableLayout

Set
Style

External Page

Complex Region

Slice

owner

Simple Region
region aggregation

region attribute

RegionLayout
region navigationlayout

region

style

region

navigation

region aggregation

Region Aggregation

subPropertyOf

subClassOf

property

Fig. 14. Presentation model vocabulary.

tionships represent (hyper)links, and spatial relationships define the spatial
arrangements in presentations.

The layout managers were inspired from the abstract user interface (XML)
representations from AMACONT [31], UIML, and XIML [45]. Our decision
is based on the fact that these layouts offer a detailed abstract representa-
tion of the possible spatial arrangements of the information for different user
displays. In this way we are able to deploy the same WIS on a multitude of
channels ensuring thus the ubiquity of our application on the Web. Note that
because regions can be aggregated, layouts can also be aggregated (by means
of regions), and thus one is able to build complex layouts.

The style information describes the colors, fonts, backgrounds to be used in
a region, etc. Regions that do not have explicitly associated style information
inherit the style of their container. In this way the designer is not forced to
specify style information if that is not necessary.

The BoxLayout arranges the inner regions on one row or one column. Table 2
summarizes the possible attributes of the BoxLayout. The height, width, bor-
der, and space attributes have integer values that represent number of pixels.

TableLayout arranges the inner regions in a table. Though it can be realized
by nested BoxLayouts, we implemented it separately because SWISs often
present dynamically retrieved sets of data in a tabular way. Table 3 summarizes
the possible attributes of the TableLayout. Due to the dynamic nature of
SWIS applications, the number of items in a complex region that uses the Set

23

Table 2
BoxLayout attributes.

Attribute Meaning Usage Values

axis orientation of the layout required “x”|“y”

rows number of rows optional integer

columns number of columns optional integer

height height of the layout optional integer|percentage

width width of the layout optional integer|percentage

border size of the layout border optional integer

space space between content and border optional integer

construct is not known at design-time. In such cases one should use only one
of the dimensions: rows or columns. The missing dimension is automatically
computed at run-time.

Table 3
TableLayout attributes.

Attribute Meaning Usage Values

rows number of rows optional integer

columns number of columns optional integer

height height of the layout optional integer|percentage

width width of the layout optional integer|percentage

border size of the layout border optional integer

space space between content and border optional integer

FlowLayout arranges the inner regions in the same way as words on a page:
the first line is filled from left to right, then does the same for the lines below.
Table 4 summarizes the possible attributes of the FlowLayout.

Table 4
FlowLayout attributes.

Attribute Meaning Usage Values

border size of the layout border optional integer

space space between content and border optional integer

TimeLayout shows the inner regions in a time sequence that produces a
slide show. Table 5 summarizes the possible attributes of the TimeLayout.
The duration attribute has a float value that represents number of seconds.
TimeLayout is used for browsing platforms that support time sequences for
presenting media items, e.g., Timed Interactive Multimedia Extensions for
HTML (HTML+TIME) [46] and Synchronized Multimedia Integration Lan-
guage (SMIL) [47].

Table 5
TimeLayout attributes.

Attribute Meaning Usage Values

duration play time for a sequence element optional integer

repeat number of times to repeat one sequence optional “indefinite”|integer

24

Table 6 summarizes the possible layout-related attributes for a region used
inside a BoxLayout, TableLayout, or FlowLayout. These attributes describe
how each referenced region has to be arranged in its surrounding layout. For
example, the regions embedded in a layout form a sequence for which the order
needs to be specified. For this purpose the order attribute is used. Note that for
the TableLayout, the cell elements are counted from left to right and from top
to bottom. The sort attribute specifies the sorting criteria for region instances.
For example alpha(Slice.Technique.tname,ascending) specifies an alphabetical
sorting in ascending order based on the name of artistic techniques. Besides the
existing sorting functions like alpha and num, for alphabetical and numerical
sorting, one can use its own sorting function (e.g., a multi-sort for data with
different facets). If the sort criteria is not provided, the regions will be arranged
in the order in which region content (data) is given by the data collection
phase.

Table 6
Layout-related region attributes inside BoxLayout/TableLayout.

Attribute Meaning Usage Values

valign vertical alignment optional “left”|“center”|“right”

halign horizontal alignment optional “top”|“center”|“bottom”

ratio space to be filled optional percentage

order order in the sequence optional integer

sort sorting criteria optional string

wml visible show on same card optional Boolean

wml description anchor description optional string

Even though most attributes are platform-independent, there are platform-
dependent attributes in order to consider the specific card-based structure of
WML presentations. The optional attribute wml visible determines whether
in a WML presentation a region should be shown on the same card. If not, it
is put onto a separate card that is accessible by an automatically generated
hyperlink, the text of which is defined in wml description. The wml description
attribute can refer to a constant string or one of the simple slices that give
some of the content for a region. Note that this kind of content separation
provides scalability by fragmenting the presentation according to the small
displays of WAP phones.

Table 7 summarizes the possible layout-related attributes for a region used
inside a FlowLayout. It is a subset of the previous set of attributes.

Table 7
Layout-related region attributes inside FlowLayout.

Attribute Meaning Usage Values

order order in the sequence optional integer

sort sorting criteria optional string

wml visible show on same card optional Boolean

wml description anchor description optional string

25

Table 8 summarizes the possible attributes for a region used inside a TimeLay-
out. The begin, duration, and end attributes have float values that represent
the number of seconds.

Table 8
Layout-related region attributes inside TimeLayout.

Attribute Meaning Usage Values

begin (absolute) start time optional float

duration play time optional float

end (absolute) end time optional float

Table 9 presents some of the possible style attributes. These attributes refer
to the font characteristics (e.g., size, color), background, link colors, etc. The
definition of these attributes is inspired from the very elaborate standard to
represent style information Cascading Style Sheets (CSS) [48]. We chose not
to use directly CSS because not all considered platforms support CSS (e.g.,
cHTML browser or WML browser), in which case one needs to translate the
abstract representation of style to a concrete implementation (e.g., cHTML or
WML without CSS).

Table 9
Style attributes.

Attribute Meaning Usage Values

font-family the family of a font optional “times”|“helvetica”| ...

font-style the style of a font optional “normal”|“italic”

font-size the size of a font optional “small”|“medium”|“large”

font-color the color of a font optional “red”|“green”|...

font-weight the weight of a font optional “normal”|“bold”|...

background-color the color of the background optional “red”|“green”|...

link-color the color of a not-visited link optional “red”|“green”|...

visited-color the color of a visited link optional “red”|“green”|...

...

We chose for an RDF-based representation of the presentation style (instead
of using CSS directly), as this allows sharing the RDF data model for the
application’s models (instead of using the CSS data model), and thus enables
reusing the same parsing tools and adaptation techniques (appearance condi-
tions) proposed for the previous models also for the presentation model.

The layout managers need to be instantiated in order to be used in the PM.
The layout manager instances are used for complex regions. Also when refer-
encing a region (or set of regions) one needs to define values for the layout-
related region attributes corresponding to the layout associated to the con-
tainer region.

Figure 15 shows an excerpt of the PM for the running example. Regions are
depicted as rectangles. There are two top-level regions: RegionFullT and Re-
gionFullA. RegionFullT and RegionFullA are owned by Slice.Technique.main

26

and Slice.Artifact.main, respectively. We use the convention to denote the re-
gion (long) name by Region.<Slice full name>.<Region short name>. The
short name of a region can be omitted from its full name, if the full name
unambiguously identifies the region. The full name of RegionFullT is Re-
gion.Slice.Technique.main.RegionFullT. As the full names are quite long in
the rest of the explanation it is used the short name of regions when these
short names are available.

The region RegionFullT aggregates (by means of slice aggregation relation-
ships) three regions: one contains the technique name, one contains the tech-
nique description and, one contains the set of pictures that exemplify a paint-
ing technique. As simple regions, the first two regions do not need a layout.
The third region, a complex region, has a TableLayout specified for arranging
the set of pictures. All three regions are arranged using a BoxLayout specified
in the RegionFullT. The style information is given by the DefaultStyle. As can
be seen from the figure the inner regions do not have the style information
explicitly defined which means that they inherit the style information from the
container region. In a similar manner the region RegionFullA is defined. The
region navigation relationship connects RegionBottomA with RegionFullA.

picture

aname

year

picture

Artifact

Set

Technique Artifact

mainmain

tname

description

cname

Creator

navigation

RegionFullA (BoxLayout2, DefaultStyle)RegionFullT (BoxLayout1, DefaultStyle)

RegionBottomA (TableLayout1)

Fig. 15. Presentation model.

Figure 16 shows some of the layout attributes and layout-related region at-
tributes for our running example. RegionFullT has a BoxLayout with two
attributes defined: axis with value y which indicates that this layout has a
vertical arrangement and width with value 100% which means that this layout
will completely fill the width of its container. As RegionFullT is a top-level
region, the container is the user’s display. In BoxLayout1 there are three re-
gions embedded in the order specified by the order attribute. All three regions
have the halign layout-related attribute defined in order to specify that their
horizontal alignment will be centered. The third layout, RegionBottomA has
two attributes defined: cols with value 3 which indicates that this layout has
three columns and width with value 100% which means that this layout will
completely fill the width of its container. The container is in this case Region-

27

FullT. RegionBottomA contains pictures for which the horizontal alignment is
centered.

picture

Artifact

Set

Technique

main

tname

description

axis

width

halign

halign

halign

halign

cols

width

order

order

order

property

RegionFullT (BoxLayout1, DefaultStyle) y

100%

center

center

center

center

RegionBottomA (TableLayout1)
3

100%

1

2

3

Fig. 16. Layout and layout-related region attributes.

The PM presented in Figure 15 depicting the main regions for techniques
and artifacts can be refined to a specific artistic domain. Figure 17 shows the
specialization (in a type hierarchy) of the previous PM to the painting domain.

picture

aname

year

picture

Artifact

Set

Technique Artifact

mainmain

tname

description

Creator

cname

Painting

emain

area

Technique

tname

subClassOf

navigation

RegionFullA (BoxLayout2, DefaultStyle)RegionFullT (BoxLayout1, DefaultStyle)

RegionBottomA (TableLayout1)

RegionFullP (BoxLayout2r, DefaultStyle)

RegionBottomT

Fig. 17. Specialization in the presentation model.

Regions are specialized by the subClassOf property. For example, the region

28

RegionFullA is specialized by the region RegionFullP. RegionFullP inherits all
the region relationships of RegionFullA and adds three new region relationships
to it: two region aggregations and one region navigation. The aggregation rela-
tionships refer to the regions Region.Slice.Painting.area and RegionBottomT.
As RegionFullP contains more regions than RegionFullA, the BoxLayout2 is
replaced with BoxLayout2r which among other things specifies in which order
the added regions are placed. The navigation relationship links backwards the
RegionBottomT with RegionFullT.

PM adaptation selects layouts or styles from PM to be used in the presen-
tation. Figure 18 shows two adaptation examples in PM. In one example,
depending on the size of the screen, the RegionBottomA uses a BoxLayout for
PDA and a TableLayout for PC. The small screen size of the PDA requires a
vertical arrangement of the data. In the other example the DefaultStyle uses
medium fonts for a user with a average level of vision and large fonts for a user
with a low level of vision. Other possible adaptation examples are: increasing
the font of links for users with limited manual dexterity, eliminate colors for
color-blind users, etc.

picture

Artifact

Set

Technique

main

tname

description

DefaultStyle

property

condition

RegionBottomA (TableLayout1)

RegionBottomA (BoxLayout3)

RegionFullT (BoxLayout1, DefaultStyle)

large

font−weight

font−weight

medium

up:client = PDA

up:client = PC

up:levelOfVision = Normal

up:levelOfVision = Poor

Fig. 18. Adaptation in the presentation model.

4.4 Implementation

The implementation of the static variant of the Hera presentation genera-
tion phase is based on several data transformations specified by XSLT [49]
stylesheets [50]. These transformations operate on the RDF/XML [51] serial-

29

ization of the RDF models. The XSLT processor used for interpreting XSLT
stylesheets is Saxon [52]. Figure 19 shows the transformation steps for the
static variant of the Hera presentation generation phase. Each transforma-
tion step has a label associated with it. Some of these transformations have
substeps which are labeled using a second digit notation.

In Figure 19 there are two types of dashed arrows: “is used by” to express that
an RDFS model is used by another RDFS model and “has instance” to denote
that an RDFS model has as instance an RDF model. A model vocabulary, a
model, a model instance, and the generated presentations are depicted by
rectangles. The transformation specifications are represented by ovals.

application model
instance
(rdf)cmi2ami

(xsl)

rdfs2rdf
(xsl)

presentation model
vocabulary
(rdfs)

HTML+TIME

AU

pmi2html+time
(xsl)

SMIL

RT

AU

(xsl)
pmi2smil

WML

HTML

(xsl)
pmi2wml

pmi2html
(xsl)

Query−dependent

Application−independent

Application−dependent

(rdfs)

media
vocabulary

vocabulary

conceptual model
instance
(rdf)

application model
(rdfs)

application model

(rdfs)

conceptual model
(rdfs)

has instance

is used by

(rdfs)

3.21

has instance

vocabulary

application model
unfolded
(rdf)

application model
unfolded, adapted
(rdf)

adaptation
(xsl)(xsl)

rdf2xsl3.1 2.2

2.1

ami2pmi
(xsl)

presentation model
instance
(rdf)

presentation model
unfolded
(rdf)

presentation model
unfolded, adapted
(rdf)

adaptation
(xsl)(xsl)

rdf2xsl5.1 4.2

4.1

5.2

presentation model
(rdfs)

(rdfs)

has instance

CC/PP user/platform

user/platform profile
(rdf)

vocabulary

vocabulary

(rdfs)

is used by

user/platform profile

has instance

data
collection

is used by is used by

is used by

6

6

6

6

is used by

conceptual model

has instance has instance

has instance

Fig. 19. Presentation generation using XSLT.

There are three types of model/transformation specifications: application-
independent, application-dependent, and query-dependent. The application-
independent specifications do not refer to SWIS models (CM, AM, and PM),
the application-dependent specifications refer to SWIS models, and query-
dependent specifications refer to the SWIS models and the retrieved data
(e.g., model instances). One can note that the query-dependent transforma-
tions are also application-dependent transformations. Transformations that
are application-independent are also called generic transformations. Transfor-

30

mations that are application-dependent are also referred as specific transfor-
mations.

The input to the presentation generation phase is the conceptual model in-
stance (CMI), i.e., the data retrieved in response to a user query. This data is
produced in the data collection phase from a given set of input sources. This
is step 1 in the figure and is not described here. More information on step 1
can be found in [33]. At the current moment CM and media adaptation are
performed in the AM adaptation. Future implementations will separate the
CM and media adaptation from the AM adaptation.

Step 2, the AM generation, builds an adapted AM template. This step contains
two substeps: the AM unfolding and the AM adaptation.

Step 2.1, the AM unfolding, generates the AM template. The AM template
represents the structure of an AM instance (RDF) based on the AM schema
(RDFS). Such a template will ease the specification of an XSLT stylesheet
used to convert a CM instance (CMI) to an AM instance (AMI). By unfolding
the AM we mean repeating the process of adding properties inside the subject
classes until slice references or media items are reached. In this way one obtains
an AM template which will be filled later on with appropriate instances.

Figure 20 presents an excerpt of an XSLT stylesheet. It is a template which
iterates over all slices in order to unfold them. One of the difficulties that we
encounter when specifying transformations is the fact that it is not easy to
keep track of the structure of the resulting document, while traversing the
input document. This difficulty can be alleviated if one enforces in the built
templates a certain order of parsing the input document.

<xsl:template match="rdf:RDF">

<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:cm="http://wwwis.win.tue.nl/~hera/ns/cm#"

xmlns:type="http://wwwis.win.tue.nl/~hera/ns/type-system#"

xmlns:am="http://wwwis.win.tue.nl/~hera/ns/am#">

<!--

!! select all slices

-->

<xsl:variable name="var_slices"

select="//rdfs:Class[rdfs:subClassOf/@rdf:resource=‘.../am#Slice’]"/>

<xsl:for-each select="$var_slices">

<!--

!! process recursively all slices

-->

<xsl:call-template name="unfoldclass">

<xsl:with-param name="var_class_name" select="@rdf:ID"/>

</xsl:call-template>

</xsl:for-each>

</rdf:RDF>

</xsl:template>

Fig. 20. An excerpt of an XSLT stylesheet.

31

Step 2.2, the AM adaptation, executes the adaptation specifications on the
AM template. The transformation stylesheet of this step has two inputs: the
AM template and the UP. The UP attributes are replaced in the conditions
by their corresponding values. The slices that have the conditions not valid
are discarded and the hyperlinks pointing to these slices are disabled.

Step 3, the AMI generation, instantiates the AM with the retrieved data. This
step is composed of two substeps: the AMI transformation generation and the
AMI creation.

Step 3.1, the AMI transformation generation, builds the XSLT stylesheet that
will convert a CMI to an AMI. This step uses an XSLT stylesheet that will
generate another XSLT stylesheet. One should note that an XSLT stylesheet
is a valid XML file that can be produced by another XSLT stylesheet. This
technique was also successfully used in the previous version of the implementa-
tion which was XML-based [53]. This transformation is based on the owner of
a slice and the concept attribute of a simple slice. The following name conven-
tion is used: a slice instance name (e.g., Slice.Painting.main ID1) is obtained
from the slice name (e.g., Slice.Painting.main) concatenated with the suffix
(e.g., ID1) of the associated concept instance identifier (e.g., Painting ID1).
The implemented algorithm is straightforward: instantiate all slices for all the
corresponding retrieved concept instances and each time a slice is referenced
add its identifier based on the above name convention.

The transformation used in this phase is a generic one, but the output that it
produces is used for a specific transformation (the next step).

Step 3.2, the AMI creation, converts the CMI to an AMI. The XSLT stylesheet
obtained in the previous substep is applied to the CMI to yield an AMI.
As opposed to the previous transformations, this stylesheet will operate for
inputs and outputs that are both query-dependent. For each query, Hera will
dynamically instantiate the AM with the query result, i.e., a CMI.

The PM-related transformation steps (steps 4 and 5) are realized in a similar
manner as the AM-related transformation steps (steps 2 and 3).

Step 4, the PM generation, builds a PM template. This step contains two
substeps: the PM unfolding and the PM adaptation.

Step 4.1, the PM unfolding, generates the PM template. The PM template
represents the structure of a PM instance (RDF) based on the PM schema
(RDFS). Such a template will ease the specification of an XSLT stylesheet
used to convert an AM instance (AMI) to a PM instance (PMI). By unfolding
the PM we mean repeating the process of adding properties inside the sub-
ject classes until slice references or media items are reached. In this way, one
obtains a PM template which will be filled later on with appropriate instances.

32

Step 4.2, the PM adaptation, executes the adaptation specifications on the
PM template. The transformation stylesheet of this step has two inputs: the
PM template and the UP. The UP attributes are replaced in the conditions
by their corresponding values. The layouts and styles that have the conditions
not valid are discarded.

Step 5, the PMI generation, instantiates the PM with data from the AMI.
This step is composed of two substeps: the PMI transformation generation
and the PMI creation.

Step 5.1, the PMI transformation generation, builds the XSLT stylesheet
that will convert an AMI to a PMI. As in step 3.1, an XSLT stylesheet
that will generate another XSLT stylesheet is used. This transformation is
based on the owner of a region and the fact that simple regions are asso-
ciated to simple slices. The following name convention is used: a region in-
stance name (e.g., Region.Slice.Painting.main.RegionFullA ID1) is obtained
from the region name (e.g., Region.Slice.Painting.main.RegionFullA) concate-
nated with the suffix (e.g., ID1) of the associated slice instance identifier (e.g.,
Slice.Painting.main ID1). The implemented algorithm is straightforward: in-
stantiate all regions for all the corresponding slice instances and each time a
region is referenced add its identifier based on the above name convention.

Step 5.2, the PMI creation, converts the AMI to a PMI. The XSLT stylesheet
obtained in the previous substep is applied to the AMI to yield a PMI. As
opposed to the previous transformations, this stylesheet will operate for inputs
and outputs that are both query-dependent.

Step 6, the presentation data generation, transforms the PMI into code specific
for the user’s browser. Note that a set of Web pages is generated at-a-time.
Some of supported formats are: HTML, HTML+TIME, WML, and SMIL. For
each type of serialization a specific stylesheet is used. The stylesheets used for
HTML, HTML+TIME, and SMIL utilize the XSLT 2.0 [49] feature to generate
multiple outputs (this feature is not supported in XSLT 1.0 [54]). In order to
generate multiple outputs the XSLT 2.0 result-document() function was used.

For HTML(+TIME), BoxLayout and TableLayout are implemented using
tables. An HTML presentation is composed from the index.html document
(starting point of the presentation) and a set of HTML pages each corre-
sponding to a top-level region.

The FlowLayout is supported by any HTML browser (the content of a table cell
is automatically wrapped if it doesn’t fit one line). TimeLayout is supported
only by HTML+TIME and SMIL browsers.

For WML, there is only one layout supported, i.e., the BoxLayout with a ver-
tical alignment. Because lists are not available in WML, they are implemented

33

as simple sequences of items without any visual cues. To each top-level region
corresponds a WML card. A WML presentation is composed from a single
WML document, a deck that contains a set of cards. The first card is the
starting point of the presentation.

For SMIL, there is an explicit part to describe the layout of a document. As
tables/flow are not supported in SMIL, one needs always to fully define the
layout information for BoxLayout, TableLayout, and FlowLayout. The Time-
Layout was defined using the seq container for regions. Hera regions are im-
plemented as SMIL regions. A SMIL presentation is composed from a main
SMIL document (starting point of the presentation), a set of SMIL documents
each corresponding to a top-level region, a set of RealText (RT) clips, one per
each text media, and a set of audio clips (AU), one per each audio media.

5 Dynamic Presentation Generation

The Hera methodology has been extended in order to accommodate more
complex forms of user interaction in addition to simple link-following, e.g.,
interaction by means of rich forms in which the user can enter data [55]. In
this way the user can better personalize the SWIS according to his needs,
specially regarding the dynamics within a browsing session. Figure 21 shows
the “loop” with which we extended the presentation generation to support
this additional dynamics and to allow the user to influence the generation of
the Web presentation. Note that in response to a user query only one page is
generated at-a-time instead of the full Web presentation as is the case for the
static variant of the presentation generation phase. Generating one-page-at-a-
time allows the system to consider the user input before generating the next
Web page. The request contains the (owner) concept instance identifier and
the slice type of the next slice to be generated (i.e., the one corresponding to
the next Web page).

In order to illustrate the dynamic version of the presentation generation the
running example is extended such that it allows the visitor to buy posters of
the paintings in the museum. For simplicity we didn’t model explicitly the
posters, assuming a one-to-one correspondence with the depicted painting.
Also, after buying a certain painting, the user will not be presented with the
same painting again.

In addition to the data from CM, AM, and PM, interaction requires a support
for creating, storing, and accessing data that emerges while the user interacts
with the system. This support is provided by means of the user session (US).
US is composed of the navigation data model, user/platform model, form mod-
els, and variables.

34

Application LayerConceptual Layer Presentation Layer

Presentation Design

Presentation Model (PM)Application Model (AM)Conceptual Model (CM)

CM Adaptation Model AM Adaptation Model PM Adaptation Model

Conceptual Design Application Design

(External)

User/Platform Profile

Request

User Session (Navigation Data Model, User/Platform Model, Form Models, and Variables)

Web page

Application Engine Presentation Engine
(incl. PM Adaptation)(incl. AM Adaptation)

CM Adaptation

Implementation

Engine
Data Collection

Web Browser

Fig. 21. Presentation generation phase (dynamic).

The purpose of the navigation data model (NDM) is to complement the CM
with a number of auxiliary concepts that do not necessarily exist in the CM
(although this is the decision of the designer in concrete applications) and
which can be used in the AM when defining the behavior of the application
and its navigation structure.

The user/platform model (UM) stores user preferences and device capabili-
ties that change during user browsing (e.g., network connection speed, user
knowledge on some of the displayed topics, etc.). In Section 4 the UP was de-
fined. The UP-based adaptation is done at the beginning of the user browsing
session in order to adapt the CM, AM, and PM. In a similar way the UM is
used to adapt the CM, AM, and PM. Differently than for UP, the UM-based
adaptation is done before each Web page is generated.

The form models (FM) describe the data that is entered by the user by means
of forms. Each form has a so-called form model associated with it. The data
input by the user in a form populates the associated form model. Similar to
XForms [56], a form separates presentation from content. FM describes the
form content. The presentation-related issues of forms are given in the AM.

The session variables are the concept instance identifier, i.e., instanceid, and
the slice type, i.e., slicetype, of the previous slice (the one from which a request
originated), and a number of variables to store temporary data created during
a user browsing session (e.g., for storing the URIs of newly created resources).

35

We remark that from the system perspective the concepts in the NDM can be
divided into two groups. The first group essentially represents views over the
concepts from the CM, the second group corresponds to a locally maintained
repository. A concept from the first group can be instantiated only with a
subset of instances of a concept existing in the CM, without the possibility
to change the actual content of the data. A concept from the second group
is populated with instances based on the user’s interaction, i.e., the data is
created, updated, and potentially deleted on-the-fly. The AM can refer to the
concepts from NDM as if they were representing “real” data concepts.

One can note that in the current version of Hera it is not allowed to change the
concepts from the CM. The reason is that such updates need to be reflected
in the original data sources on which the Hera environment might not have
control. Of course in environments in which Hera fully controls the data sources
the updates will happen as for the locally maintained repository. Nevertheless,
updating the data sources is outside the scope of the current Hera version.

The NDM of our example is depicted in Figure 22. It consists of the following
concepts: SelectedPainting, Order, and Trolley 4 (Painting is a concept from
the CM). The SelectedPainting concept is a subclass of the Painting concept.
It represents those paintings which the user selected in a selection form. We
chose to model the selected items as subclasses of their corresponding types
(instead of just adding a property to model the selection) because we don’t
want to change the data structure of the original items. The Order concept
models a single ordered item consisting of a selected painting (the property
includes) and the quantity represented by an Integer. The Trolley concept
represents a shopping cart containing a set of orders linked by the property
contains.

subClassOf

property

Integer

1* contains

contained_by

11

cm:Painting

quantity

Order TrolleySelectedPainting
included_by

includes

Fig. 22. Navigation data model.

In the example the SelectedPainting concept belongs to the group of view con-
cepts whereas both the Order and the Trolley are updatable concepts with
the values determined at run-time. This is reflected also in the navigational
data model instance (NDMI) depicted in Figure 23 that results from the user’s
desire to buy 1 poster of the selected painting. The instance Painting1 comes

4 Alternative names of the trolley are shopping cart and shopping basket.

36

from the CM, i.e., it is not (re)created: what is created however, is the type
property associating it with the SelectedPainting concept. Both instances Or-
der1 and Trolley1 are created during the user’s interaction; they, as well as
their properties, are depicted in bold in Figure 23. Note that for presentation
purposes (backwards link generation) we also generate for every property its
inverse.

Integer

1* contains

contained_by

1
SelectedPainting

property

type

quantity

Order Trolley

Order1 Trolley1
includes

1

included_by

includes 1

Painting1
included_by contained_by

contains

Fig. 23. Navigation data model instance.

The application model vocabulary from Figure 10 was extended in order to
support forms. Figure 24 shows these extensions, inspired by the XForms
standard. Similar to XForms, a form separates presentation from content.
The presentation-related issues of forms are associated to the AM. In AM, a
form is a particular type of slice which has controls associated with it. The
supported form controls (as in XForms) are:

• Select1 (S1), selects one instance from a set;
• SelectN (SN), selects several instances from a set;
• Input (I), accepts one line of input text;
• TextArea (TA), accepts multiple lines as input text;
• Secret (S), accepts sensitive information entering (e.g., password);
• Range (R), selects from a sequential display of values (e.g., slide bar);
• Output (O, displays instance data (e.g., inline text);
• Upload (U), uploads file or device data (e.g., digital camera images);
• Trigger (T), activates user triggers (e.g., activate trigger button);
• Submit (SB), activates data submission (e.g., submit button).

The dynamics of the application is given by a set of AM queries used for
selecting, deleting, or updating of data. These queries can be attached to:

• slices, to express user-independent updates (e.g., creation of a trolley, as a
trolley is created automatically by the system, independent from the user
actions);

• form controls, to get values for these controls (e.g., select all names of paint-
ings that are not in the trolley);

37

IntegerSlice Navigation

subClassOf

property

Slice

Form

Select1 SelectN Input

Query order

query query

slice navigation

Control
control

. . .

querySelect

query

query queryEnable

Fig. 24. Extended application model vocabulary.

• forms, (1) to enable/disable a form (e.g., if the user has already added all
paintings to his trolley, there is no painting left to be offered to the user
for the next selection, and therefore the selection form is disabled) or (2) to
select the concept instance for the next slice (e.g., after selecting a painting,
the main slice of the selected painting is presented);

• slice navigation, to express user-dependent updates (e.g., create order and
add it to the trolley).

By a query that enables/disables a form it is actually meant a condition that
uses some query results for enabling/disabling a form. The identification of
the query with the condition is done because the condition usually is a very
simple one (in most of the encountered cases it is a comparison of the query
result with ‘0’). An element from AM can have attached a single query or a
sequence of queries. The order in which the sequence queries will be executed
is given by the order attribute.

The content of the form is based on a form model (FM), i.e., the schema of the
data associated with a certain form. The data of the form that populates (at
run-time, based on user actions) the FM is the so-called form model instance
(FMI). The mappings (bindings) of the data provided by the form controls
to the form model instance are outside the scope of this description as this is
done by an external XForms processor. Figure 25 shows an example of a form
model and its instance.

Figure 26 shows two form slices that can be embedded in an AM. The short
names of the forms are SelectForm and DeleteForm and the long names are
Slice.Painting.SelectForm and Slice.Trolley.DeleteForm, respectively. The owner
of the SelectForm is Painting and the owner of the DeleteForm is Trolley. Two
queries are used to enable/disable the forms: QEnableSF and QEnableDF.
Both forms have one control field defined S1 (selects one instance from a set).

38

Integer
quantity

quantity

property

type

1

BuyForm

BuyForm1

Form model instance

Form model

Fig. 25. Form model and form model instance.

The values from which the user makes one selection are given by the queries
QSelectSFPn and QSelectDFPn. The first form has associated QSelectP a
query that selects a painting instance identifier based on the user’s choice.
The second form has a slice navigation relationship associated with an update
query, i.e., QDeleteO.

Painting

DeleteForm

s1 aname

SelectForm

s1 aname

Trolley

QSelectDFPn
QDeleteO

QEnableDFQEnableSF

QSelectP

QSelectSFPn

Fig. 26. Form in application model.

Figure 27 shows the application model extended with forms. The main slice
of a painting depicts information related to the painting. It also contains the
BuyForm, a form that allows the user to make an order by specifying the
quantity of desired posters for the presented painting. In order not to produce
too much visual clutter, we do not show in the figure the concept owner of the
form (this is the same as the owner of the destination slice when one navigates
from that form). The main slice of the trolley displays the orders contained in
the trolley. Note that when the user makes an order, this order is immediately
added to the trolley. In addition the main slice of the trolley has two other
forms SelectForm and DeleteForm. SelectForm is used to select paintings by
their name, paintings which do not have posters in the trolley. DeleteForm is
used to delete orders from the trolley.

Figure 28 shows the input and output types of a query. Variables are used
to pass data from a query result to the input of another query. Note that
the designer of the AM needs to use these variables as placeholders for data
elements that are not known at design-time.

Because models are represented in RDF(S), the AM queries are described
using an RDF query language. As an RDF query language it was chosen
SeRQL [57], one of the most expressive RDF query languages that supports
not only the selection of RDF data but also the creation of new RDF data.
In the future we plan to investigate the usage of SPARQL [58] when this new

39

BuyForm

i quantity

content

Trolley

includes

Order

quantity

main

aname

Painting

Trolley

contains

Set

main

Order

content

year

aname

Painter

cname

painted_by

main

SelectForm

s1

DeleteForm

s1

main

Trolley

picture

Painting

aname aname

aggregation (with CM property name)

navigation

QEnableSF QEnableDF

QSelectSFPn QSelectDFPn

QDeleteO

QCreateT

QCreateOP
QCreateOU

QSelectP

Fig. 27. Extended application model.

Variables

NDMI

FMI
CMI

AM

Query

User Session

Fig. 28. Query input/output types.

RDF query language proposed by World Wide Web Consortium will reach
maturity. In the rest of this section the queries from Figure 27 are presented
in their SeRQL syntax. Due to the fact that SeRQL doesn’t support nested
queries some queries are expressed in RQL [24].

An alternative approach for Se(RQL) queries could have been the use of a
Java library for manipulating RDF models (e.g., Jena, Elmo). Using such
procedural approach instead of the declarative language like (Se)RQL makes
more difficult the maintenance of the implementation. Moreover as there is a
lot of effort put nowadays in having a very expressive RDF query language and
fast querying engines for it, we would like to benefit from such developments.
Nevertheless, in such a case we will limit ourselves to the performance of these
existing engines.

Figure 29 shows QCreateT a query attached to the main slice of painting.

40

It is used to create a trolley for a user. The SeRQL was extended with the
new() function that is able to create a URI unique in the application for a
new resource. The new URI is stored in the user session variable trolleyid.

CONSTRUCT {new()}<rdf:type><ndm:Trolley>

Fig. 29. QCreateT (create trolley).

QCreateOU and QCreateOP are a sequence of queries attached to the slice
navigation from BuyForm to the main slice of the trolley. Figure 30 depicts
QCreateOU, a query that creates a new order. The newly created URI is stored
in the user session variable orderid.

CONSTRUCT {new()}<rdf:type><ndm:Order>

Fig. 30. QCreateOU (create order).

Figure 31 shows QCreateOP, a query that fills the order properties and adds
the order to the trolley. Note that the order is captured in NDM, the owner
concept instance identifier of the current slice and the newly generated order
identifier are user session variables, and the user input (the poster’s quantity)
is captured in BuyForm1, the form model instance of the form BuyForm.

CONSTRUCT

{x}<ndm:contains>{y},

{y}<ndm:contained_by>{x},

{y}<ndm:includes>{z},

{z}<ndm:included_by>{y},

{y}<ndm:quantity>{v}

FROM

{session}<var:trolleyid>{x},

{session}<var:instanceid}{z},

{session}<var:orderid>{y},

{BuyForm1}<bf:quantity>{v}

Fig. 31. QCreateOP (add order to trolley).

Figure 32 shows QEnableSF, a query attached to the SelectForm form in order
to enable/disable this form. If all paintings have orders associated with them,
the SelectForm is disabled, as there are no paintings left for user selection.
SeRQL was extended with aggregation functions like the count() function.

(SELECT count(x)

FROM {x}<rdf:type><cm:Painting>

WHERE NOT x IN SELECT y

FROM {session}<var:trolleyid>{v},

{v}<ndm:contains>{w},

{w}<ndm:includes>{y}) > 0

Fig. 32. QEnableSF (condition that enables/disables SelectForm).

Figure 33 shows QSelectSFPn, a query attached to the control of the form
SelectForm in the main slice of trolley. Note that QSelectSFPn is a nested
query: first the paintings included in the order are computed and the result

41

is subtracted from the set of all the paintings. The query returns the name of
the paintings that are not in the trolley.

SELECT xname

FROM {x}<rdf:type><cm:Painting>,

{x}<cm:aname>{xname}

WHERE NOT x IN SELECT y

FROM {session}<var:trolleyid>{v},

{v}<ndm:contains>{w},

{w}<ndm:includes>{y}

Fig. 33. QSelectSFPn (select paintings (names) that are not in the trolley).

Figure 34 shows QSelectP, a query attached to the SelectForm in order to select
the concept instance that owns the next slice to be presented (i.e., the main
slice of a painting). In the future we would like to exploit this selection feature
(based on queries) at a more general level, i.e., in the navigation between any
two slices and not just between forms (form slices) and slices. In this way
the restriction that slice navigation relationships connect slices that have the
same owner will be eliminated. Nevertheless one should ensure that only one
instance of the destination slice is created.

SELECT x

FROM {SelectForm1}<sf:aname>{yname},

{x}<cm:aname>{yname}

Fig. 34. QSelectP (select painting).

Figure 35 shows QEnableDF, a query attached to DeleteForm in order to
enable/disable this form. If the trolley is empty, DeleteForm is disabled, as
there are no orders to delete.

(SELECT count(x)

FROM {session}<var:trolleyid>{y},

{y}<ndm:contains>{x}) > 0

Fig. 35. QEnableDF (condition that enables/disables DeleteForm).

Figure 36 shows QSelectDFPn, a query attached to the control of the form
DeleteFrom in the main slice of trolley. The query returns the name of the
paintings that are in the trolley.

SELECT xname

FROM {session}<var:trolleyid>{y},

{y}<ndm:contains>{x},

{x}<cm:aname>{xname}

Fig. 36. QSelectDFPn (select paintings (names) that are in the trolley).

Figure 37 shows the query QDeleteO associated to DeleteForm used to delete a
selected painting order from trolley. The SeRQL query language was extended
with the DELETE construct. Basically it is a deletion of statements from an

42

RDF model. The deletion of resources from an RDF model can be easily done
by deleting statements of the form {x}<rdf:type>{rdf:Resource}, where x is
the URI of a resource. A garbage collector will make sure that the properties
of the deleted resources will be also removed from the model.

DELETE

{x}<ndm:contains>{y},

{y}<ndm:contained_by>{x},

{y}<ndm:includes>{z},

{z}<ndm:included_by>{y},

{y}<ndm:quantity>{a}

FROM

{session}<var:trolleyid>{x},

{DeleteForm1}<df:aname>{yname},

{y}<cm:aname>{yname},

{y}<ndm:includes>{z},

{y}<ndm:quantity>{a}

Fig. 37. QDeleteO (delete selected order from trolley).

In the above queries we did need to extend Se(RQL) with new constructs like
URI generators, aggregation functions, and DELETE statements. We do hope
that future RDF query languages will be equipped with all these constructs.

5.1 Implementation

The implementation of the dynamic variant of the Hera presentation gener-
ation phase is based on several data transformations realized in Java. The
Se(RQL) queries are executed by Sesame [57] and the data transformations
are implemented in Jena [59]. In this way the data transformations exploit
more of the RDF(S) semantics given by the Hera models than the ones based
on XSLT. A transformation language for XML documents like XSLT cannot
use the full RDF semantics stored in the RDF/XML serialization of an RDF
model.

Figure 38 shows the transformation steps for the dynamic variant of the Hera
presentation generation. Each transformation step has a label associated with
it. Some of these transformations have substeps which are labeled using a
second digit notation.

In Figure 38 there are two types of dashed arrows: “is used by” to express
that an RDFS model is used by another RDFS model and “has instance” to
denote that an RDFS model has as instance a certain RDF model. A model
vocabulary, a model, a model instance, and the generated presentations are
depicted by rectangles. The transformation specifications are represented by
ovals. In the same way as for the static variant of the implementation, models
and transformation specifications are classified as application-independent,
application-dependent, and query-dependent.

43

Web
page
(html)

application model
adapted
(rdf)

presentation model
vocabulary
(rdfs)

conceptual model
(rdfs)

navigation data model
(rdfs)

(rdfs)
form models

Query dependent

Application independent

Application dependent

(rdfs)

media
vocabulary

conceptual model
instance
(rdf)

1
data

variables

form models instances

(rdf)

(rdf)

navigation data model
instance
(rdf)

user session

collection

region
instance
(rdf)

slice
instance
(rdf)

requestslice
instance
creation

user
session
update
(java)

conceptual model
vocabulary

application model
(rdfs)

application model

(rdfs)

is used by

(rdfs)
vocabulary

is used by presentation model
(rdfs)

(rdfs)

has instance

CC/PP user/platform

user/platform profile
(rdf)

vocabulary

vocabulary

(rdfs)

is used by

user/platform profile

presentation model
adapted
(rdf)

is used by is used by

2.1

2.2

3.1

3.2 4

have instance

has instance

application model
adaptation

(java)
adaptation

(java)

presentation model

region
instance
creation
(java)

creation
(java)

Web
page

is used by is used by

is used by

has instance

has instance has instance
has instance

Fig. 38. Presentation generation using Java.

Step 1, the data collection phase, is the same as in the static variant of the
implementation. The result of this step is the CMI, i.e., the data retrieved in
response to a user query. More information on step 1 can be found in [33].

Step 2, the slice instance generation, computes a top-level slice instance in
response to a user request. This step contains two substeps: the AM adaptation
and the slice instance creation.

Step 2.1, the AM adaptation, executes the adaptation specifications on the
AM. This transformation has two inputs: the AM and the UP. The UP at-
tributes are replaced in the conditions by their corresponding values. The slices
that have the conditions not valid are discarded and the hyperlinks pointing
to these slices are disabled. This step is executed only once at the beginning of
a user session. In the current version of the implementation, AM adaptation

44

based on the UM is not performed. Future versions of the implementation, that
will make use of the user model will execute this step at each user request.

Step 2.2, the slice instance creation, creates the next slice instance. The user
request provides: the slice type and the concept instance identifier of the slice
instance corresponding to the next Web page to be computed, and possibly
form model information, in case that request originates from a form. The
first user request in a session specifies also the Hera models that will be used
in the current session. The queries associated with the slice navigation that
initiated the request and the queries associated to the slice to be computed
are executed in the user session update. Besides updating the NDMI, the user
session update also stores in the user session the form models and the value
of the variables associated to queries.

Step 3, the region instance generation, computes the top-level region instance
corresponding to the previously computed slice instance. This step contains
two substeps: the PM adaptation and the region instance creation.

Step 3.1, the PM adaptation, executes the adaptation specifications on the PM.
This transformation has two inputs: the PM and the UP. The UP attributes
are replaced in the conditions by their corresponding values. The layouts and
styles that have the conditions not valid are discarded. Similar to step 2.1,
this step is executed only once at the beginning of a user session. In the
current version of the implementation, PM adaptation based on the UM is
not performed. Future versions of the implementation, that will make use of
the UM, will execute this step at each user request.

Step 3.2, the region instance creation, creates the region instance for the pre-
viously computed top-level slice instance.

Step 4, the Web page creation, transforms the region instance generated in the
previous step into code specific to the user’s browser. Note that only one Web
page is generated at-a-time. At the current moment only HTML is supported
by the implementation.

6 Evaluation

The evaluation of the Hera Presentation Generation approach is done at two
levels. First, a thorough comparison is made between the static presenta-
tion generation and the dynamic presentation generation, the two variants
of the Hera presentation generation. After that, we evaluate the Hera pre-
sentation generation approach with respect to the requirements set forth for
Data-Intensive Interactive Web applications at the beginning of this paper.

45

6.1 Static Presentation Generation vs. Dynamic Presentation Generation

The static and dynamic presentation generation in Hera have both their ad-
vantages and disadvantages. Figure 10 compares the main features of these
two variants of the Hera presentation generation.

Table 10
Static presentation generation vs. dynamic presentation generation.

Static presentation
generation

Dynamic presentation
generation

generation of full Web
presentation

generation of one page
at-at-time

+ short response time
(precomputed pages)

− longer response time (than
for the static presentation
generation)

+ deployable on any Web server − deployable only on Web
servers supporting Java
servlets

− simple user interaction + complex user interaction

The static presentation generation builds the whole presentation at once which
usually requires a long computation time. Nevertheless if the pages are pre-
computed and deployed on a Web server the user will not experience any delays
during his browsing session. The creation of one-page-at-a-time in the dynamic
presentation generation of Hera has as a consequence a larger response time
than for the static presentation generation.

Table 11 shows the average response times per page for different applications
built with Hera’s static presentation generation and Hera’s dynamic presen-
tation generation. In order to be able to use Hera’s static presentation gen-
eration, these applications have as user-system interaction only link following
navigation. The experiments have been performed on a DELL Latitude D600
laptop with Intel Pentium M 1600 Mhz processor, and 512 MB RAM. As
software we used the Windows XP Service Pack 2 platform with Java 1.4,
Apache Tomcat 4 as Web server, Internet Explorer 7 as Web browser, Saxon
5.5.3 for the XSLT transformations, Sesame 1.1-RC2 and Jena 2.0 for the Java
transformations.

The pre-computed pages of the static presentation generation can be deployed
on any Web server, with or without servlet support. The dynamic presentation
generation can be deployed in a Web server that has servlet support, due to the
need to consider the user input before each page is generated. Most modern
Web servers (like Apache) do support servlets.

46

Table 11
Average response time per page.

Application Static presentation
generation

Dynamic presentation
generation

paintings museum site 34 ms 4065 ms

comic strips site 28 ms 1352 ms

Hera site 25 ms 791 ms

In the dynamic presentation generation we do consider the generation of one
page-at-a-time. Due to the granularity offered by slices, in the future we plan
to use slices instead of pages as information units exchanged between Web
servers and browsers. For the implementation of this extension one can make
use of AJAX technology to generate only the part of the page that has changed
instead of the whole page, improving thus system performance.

Besides the fact that we can generate truly dynamic content and enable the
(dynamic) personalization of the Web application, Hera’s dynamic presenta-
tion generation can be used for other purposes as well, e.g., i18n (interna-
tionalization), i.e., generate content in different languages, accessibility, i.e.,
allow people with disabilities access the presented information, customized ads
(based on the page content generate appropriate advertisements), etc.

In order to improve the performance of the system we did experiment with two
methods: building indexes to speed up the query evaluation and data trans-
formations, and precomputation of static information. In the future we would
like to experiment with other forms of optimization as preloading (by using
heuristics) the content of the next pages to be visited, storing on the client pre-
viously computed pages, storing data fragments and performing simple data
transformations on the client (e.g., presentation generation), etc.

The static presentation generation has no support for complex forms of user
interaction with the system. The only way a user can influence the next page
to be displayed is by link-following. In the dynamic presentation generation
the user is able to control better the generated presentation by using more
advanced forms of interaction like forms. These forms of interaction can be
successfully applied in applications like shopping sites or review systems.

The static presentation generation uses XSLT for the data transformations.
One of the advantages of XSLT is that it allows to easily update the system
by changing only the concerned XSLT stylesheets and not having to recompile
the application. Nevertheless XSLT is not able to cope with the full RDF(S)
semantics and there is little support to optimize (with respect to the com-
putation time) the data transformations. In order to reduce the computation
time for large models we did make use of XSLT keys.

47

The dynamic presentation generation uses Java for the data transformations.
A disadvantage of the dynamic presentation generation is the need to recom-
pile the whole application when a software update is performed. Despite this,
the dynamic presentation generation has many advantages like the ability to
cope with the full semantics of RDF(S) models and the possibility to opti-
mize the data transformations by defining appropriate data structures and
processing units.

It is worth noticing that XSLT and (Se)RQL are declarative languages com-
pared to Java which is a procedural language. In general using the declarative
paradigm enables the programmer to focus on what needs to be done and
not on how it is done, it is easy to reuse code, and it requires little coding.
Nevertheless, such programs are harder to debug and there is little room for
optimization (e.g., with respect to program execution time).

Using a procedural language makes the programmer work at a lower level of ab-
straction than while using a declarative language. In this case the programmer
focuses on how to achieve a certain goal and not on what the goal represents.
Nevertheless, such an approach allows a full control over the optimization of a
program (e.g., with respect to its execution time). Also, procedural programs
are relatively easy to be debugged. Disadvantages of procedural languages are
that the code is difficult to be reused, and it tends to be rather long.

Several applications were built using the static generation phase of Hera: a
portal for a virtual paintings museum, a portal for comic strips, a site for
music CDs, etc. The virtual painting museum is based on real-world dataset
containing tens of thousands of artifact descriptions made available by the
Rijksmuseum in Amsterdam (http://www.rijksmuseum.nl), the largest art
and history museum in the Netherlands. Due to the fact that we used RDF
for our model representations we were able to reuse existing domain models
as the ones developed for the museum descriptions in the TOPIA (Topic-
based Interaction with Archives) project [35] or previously developed models
for specifying device capabilities and user preferences as proposed by the User
Agent Profile (UAProf) [36] standard.

Some of the applications built using the dynamic presentation generation
phase of Hera are: a shopping site for posters depicting paintings, a review
system for the Hera papers, a shopping site for vehicles, etc. For the shopping
site for posters we did reuse the models that were developed for the virtual
museum portal developed using the static generation phase of Hera which we
extended with more complex forms of user interaction. The RDF extensibility
feature (e.g., adding new properties to existing resources, specializing previ-
ously defined concepts, etc.) enabled us to easily extend the models developed
for the static presentation generation.

48

6.2 Evaluation of the Approach

Some of the most representative applicative requirements for the considered
Web applications are: presentation personalization (for user/platform), com-
plex user interaction with the system, and defining the look-and-feel of the
application. The managerial requirements relevant for the considered Web
applications are scalability, interoperability, reuse, and accessibility. Most of
these requirements are seamlessly supported by Hera due to its model-based
approach, used adaptation techniques, as well as its reliance on Semantic Web
technologies.

The presentation personalization is specified by means of appearance condi-
tions in the different Hera models[38]. Using these conditions the designer can
adapt the presentation generation so that it is tailored to the user platform and
user preferences. These adaptations are specified in the conceptual model, ap-
plication model and presentation model, selecting only the relevant concepts,
appropriate navigation, and layout and style, respectively, that match the user
browser and user interests.

Hera allows the development of WIS with advanced forms of user interaction
with the system by allowing the user to enter information into the system
so that he can control the content and navigation structure of the generated
presentation[60]. The input is gathered by means of input controls and subse-
quently stored in the session model. The session model is used at runtime to
adapt the conceptual model, application model, and presentation model, as
well as input new data into the system in order to make the application more
amenable to the current user needs/activities.

The look-and-feel aspects of the application are specified in Hera using pre-
sentation modeling [31]. The result of this activity is the presentation model,
which defines the layout and style information for the generated presentation.
The layout information allows building presentations for different platforms:
HTML browsers for PC, cHTML browsers for PDA, and WML browsers for
WAP phones. Styling the presentation enables the designer to control the
finest details of the presentation as, for example, font colors and sizes.

By using Hera, the designer needs to follow a rigorous methodology based on
a sequence of steps: conceptual design, application design, and presentation
design. During these steps models that specify different aspects of the appli-
cation are being built. In order to ease the specification of a WIS using the
Hera methodology we provide a support tool: the Hera Presentation Genera-
tor (HPG) [26]. In addition to its design function, this tool also implements
the data transformations that automate the generation of hypermedia presen-
tations from given specifications and input data.

49

We measure the scalability of our approach by its ability to handle large
amounts of data, and undergo minimum changes when the system require-
ments change. Model-driven approaches, as Hera, benefit from the fact that
an increase in the data volume, does not influence the applications logic, all
the data models and associated transformations remaining unchanged. Also,
changes to the application logic require modifications in the used models and
possibly the data transformations which usually require less time than chang-
ing the application code.

Some of the main benefits of using Semantic Web technologies are reuse and
interoperability. Due to the fact that we employed the UAProf standard for
modeling the user profile device capabilities and user preferences, we were
able to reuse existing profiles made for different mobile devices. Also, the
conceptual model is largely based on RDFS data model which allows for the
reuse of existing RDFS domain models (as for example the ones retrieved
using the Swoogle query engine [61]). All the hera models can be reused while
specializing them using the RDFS inheritance mechanism [38].

There are several ways in which a system built using Hera can interact with
other systems. First of all the fact that we employ an existing standard for
modeling the user profile UAProf, enables us to interoperate with systems that
provide such a profile as a service. Also, we can benefit from services provided
by external applications, like for example an application service, presentation
service, or code generator service [62], given that the meta-models stay the
same. For example a code generator service that shares the same presentation
meta-model with our application can produce code that is not yet supported
by our implementation (e.g., in i-mode format).

The Hera presentation generation supports some aspects related to the acces-
sibility of the built Web application. In this sense Hera aims to make the access
to the presented information available for people with disabilities, achieving
thus a broader user coverage. For example if the user has a lower level of vi-
sion, the application will adapt to the user condition and produce Web pages
using large fonts and images. Also, for users with a limited dexterity the font
of the links is increased and for color-blinded users colors are removed from
the presentation.

The built applications help us validate that Hera provides a scalable approach
for developing SWIS, supports presentation personalization based on device
capabilities and user preferences, enables advanced forms of user interaction
with the system, reuses previously developed design artifacts, specifies and
implements in detail the look-and-feel aspects of the application. Moreover,
Hera provides a flexible and extensible approach for WIS developing which is
seamlessly supported by the use of Semantic Web technologies.

50

An interesting experiment is to compare the building of data-intensive in-
teractive applications with and without using the Hera methodology. For this
purpose, we have experimented with building Web applications using the Hera
approach and the traditional, non-model based, approach. For the specifica-
tion of Hera models we made use of the visual editors of the Hera Presentation
Generator (HPG) [26]. As can been noticed from Table 12, at the beginning
(first application in the table) it takes more time to build a Web application
using the Hera approach, as the developer needs to get familiar with the Hera
models. Nevertheless, once the developer gets more experience with building
Hera models, he is able to produce the required Web applications faster than
in the traditional approach (second application in the table).

Table 12
Average building time.

Application Method Average building time

first application: paintings museum site Hera 7 days

second application: comic strips site Hera 3 days

paintings museum site traditional 5 days

Another experiment that we performed is related to the easiness of updating
a Web application with new concepts, new links, or new layouts/styles. Based
on the data from Table 13 collected for the Web applications that we have
implemented, we observe that it takes less time to update the Hera models
by adding new concepts, new links, or new layouts/styles, instead of updating
the code used in traditional approaches. The average time needed to add a
concept is larger than the time needed for adding a link or a layout/style (in
both approaches), as one needs to propagate the conceptual changes to the
navigational and presentational aspects of the application.

Table 13
Average update time.

Update action Method Average update time

add a concept Hera 1 hour

traditional 3 hours

add a link Hera 5 minutes

traditional 9 minutes

add a layout/style Hera 12 minutes

traditional 25 minutes

51

7 Conclusions

Hera is a model-driven methodology for designing Semantic Web Information
Systems. The presentation generation phase of the Hera methodology builds
a Web presentation for some given input data. The Hera presentation gener-
ation phase has two variants: a static one that computes at once a full Web
presentation, and a dynamic one that computes one-page-at-a-time by letting
the user influence the next Web page to be presented. The design of both
variants uses models that are specified in RDF. The implementation of the
static variant is based on XSLT data transformations and the implementation
of the dynamic variant is based on Java data transformations.

From the investigated SWIS design methodologies the most mature ones are
OntoWebber and (A)SHDM. As OntoWebber and (A)SHDM, Hera is a design
methodology which proposes well-defined steps that the SWIS designer needs
to follow. Differently than OntoWebber and (A)SHDM, Hera supports more
advanced forms of user interaction with the system by allowing the user to
input data into the system (in addition to making selections based on existing
data) that allows him to control the content of the next page to be generated.
Also, Hera supports complex presentation models in which time-based layouts
(slide shows) and detailed styling information can be specified.

To our knowledge, none of the examined SWIS design methodologies (XWMF,
SEAL, OntoWebber, (A)SHDM) makes explicit the data transformations that
need to take place in SWIS built using one of these methodologies. All these
methodologies focus on the statical aspects of design, and emphasize less the
transformations between models. In Hera we provide a detail description of
not only the design models but also the data transformations that use the
model specifications in order to build hypermedia presentations.

One of the important contributions of the Hera methodology is the ability
to personalize the generated presentation at all application levels: conceptual
level, navigational level, and presentation level. In order to support the de-
signer tasks with respect to application personalization, Hera identifies which
adaptation aspects can be specified in each of these three application levels.
Also, the proposed adaptations use a UAProf user profile that, being based
on an industry standard, can be easily reused between applications.

As future work we would like to improve the design and implementation of the
Hera presentation generation phase. For the static variant we would like to
implement the CM and media adaptation as given in the design specifications
as a separate (from AM adaptation) data transformation. The design of the
dynamic variant can be extended by adding specifications for UM-based adap-
tation [63]. With respect to this we anticipate to reuse some of the work done

52

in the adaptive hypermedia field [64]. The implementation of the dynamic
variant needs to be extended with other code generators like HTML+TIME,
WML, and SMIL.

Also we would like to investigate the use of a declarative RDF transforma-
tion language (similar to XSLT but exploiting better than XSLT the RDF
semantics). In [65] it is proposed the use of XSLT stylesheets in combination
with SeRQL queries (for selections) as a possible RDF transformation lan-
guage. This hybrid solution is easy to implement and it exploits more of the
RDF semantics than XSLT. Nevertheless it relies on the RDF/XML serializa-
tion of RDF models and it is less elegant than a solution based on the RDF
data model. Lacking an RDF data transformation language based on the RDF
data model, we plan investigate the definition and implementation of such a
language.

At the current moment Hera doesn’t support the requirements phase of the
development life cycle of a SWIS. We would like to extend our methodology
with a task (activity) model that will specify the activities that can be per-
formed by a user with the system. Once devising a task model one can generate
the navigation structure of the application from the task model making easier
the design of new application models. The task models can be assigned to a
particular user or to a group of users (users that share the same task model)
facilitating thus the definition of adaptation at navigation level.

References

[1] T. Isakowitz, M. Bieber, F. Vitali, Web information systems, Communications
of the ACM 41 (1) (1998) 78–80.

[2] S. Murugesan, Y. Deshpande, S. Hansen, A. Ginige, Web engineering: A new
discipline for development of web-based systems, in: Web Engineering, Vol. 2016
of Lecture Notes in Computer Science, Springer, 2001, pp. 3–13.

[3] P. Barna, F. Frasincar, G. J. Houben, R. Vdovjak, Methodologies for
web information system design, in: International Conference on Information
Technology: Coding and Computing (ITCC 2003), IEEE Computer Society,
2003, pp. 420–424.

[4] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, M. Matera, Designing
Data-Intensive Web Applications, Morgan Kaufmann, 2003.

[5] D. Schwabe, G. Rossi, An object oriented approach to web-based application
design, Theory and Practice of Object Systems 4 (4) (1998) 207–225.

[6] A. Diaz, T. Isakowitz, V. Maiorana, G. Gilabert, Extending the capabilities of
rmm: Russian dolls and hypertext, in: 30th Hawaii International Conference on

53

System Sciences (HICSS-30), Vol. 6, IEEE Computer Society, 1997, pp. 177–
186.

[7] N. Koch, A. Kraus, R. Hennicker, The authoring process of the uml-based
web engineering approach, in: First International Workshop on Web-Oriented
Software Technology (IWWOST 2001), 2001.

[8] J. Gomez, C. Cachero, Information Modeling for Internet Applications, Idea
Group Publishing, 2003, Ch. OO-H Method: extending UML to model web
interfaces, pp. 144–173.

[9] O. Pastor, J. Fons, V. Pelechano, Oows: A method to develop web applications
from web-oriented conceptual models, in: International Workshop on Web-
Oriented Software Technology (IWWOST 2003), 2003, pp. 65–70.

[10] Y. Jin, S. Xu, S. Decker, Ontowebber: Model-driven ontology-based web site
management, in: 1st International Semantic Web Working Symposium (SWWS
2001), Stanford University, 2001, pp. 529–547.

[11] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific American
284 (5) (2001) 34–43.

[12] R. Klapsing, G. Neumann, Applying the resource description framework to
web engineering, in: First International Conference on Electronic Commerce
and Web Technologies (EC-Web 2000), Springer, 2000, pp. 229–238.

[13] A. Maedche, S. Staab, R. Studer, Y. Sure, R. Volz, Seal - tying up information
integration and web site management by ontologies, IEEE Data Engineering
Bulletin 25 (1) (2002) 10–17.

[14] F. Lima, D. Schwabe, Application modeling for the semantic web, in: 1st Latin
American Web Congress (LA-WEB 2003), IEEE Computer Society, 2003, pp.
93–102.

[15] P. S. de Assis, D. Schwabe, D. A. Nunes, Ashdm - model-driven adaptation and
meta-adaptation, in: Adaptive Hypermedia and Adaptive Web-Based Systems
(AH 2006), Vol. 4018 of Lecture Notes in Computer Science, Springer, 2006,
pp. 213–222.

[16] T. R. Gruber, A translation approach to portable ontology specifications,
Knowledge Acquisition 5 (2) (1993) 199–220.

[17] R. Klapsing, G. Neumann, W. Conen, Semantics in web engineering: Applying
the resource description framework, IEEE MultiMedia 8 (2) (2001) 62–68.

[18] O. Lassila, R. R. Swick, Resource description framework (rdf) model and syntax
specification, W3C Recommendation 22 February 1999, http://www.w3.org/
TR/1999/REC-rdf-syntax-19990222 (1999).

[19] D. Brickley, R. Guha, Rdf vocabulary description language 1.0: Rdf
schema, W3C Recommendation 10 February 2004, http://www.w3.org/TR/

rdf-schema/ (2004).

54

[20] M. Sintek, S. Decker, Triple - an rdf query, inference, and transformation
language, in: First International Semantic Web Conference (ISWC 2002), Vol.
2342 of Lecture Notes in Computer Science, Springer, 2002, pp. 364–378.

[21] A. Maedche, S. Staab, N. Stojanovic, R. Studer, Y. Sure, Semantic portal: The
seal approach, in: Spinning the Semantic Web Bringing the World Wide Web
to Its Full Potential [outcome of a Dagstuhl seminar], MIT Press, 2003, pp.
317–359.

[22] F. Lima, D. Schwabe, Designing personalized web applications, in: Web
Engineering, International Conference (ICWE 2003), Vol. 2722 of Lecture Notes
in Computer Science, Springer, 2003, pp. 417–426.

[23] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, L. A. Stein, Owl web ontology language reference, W3C
Recommendation 10 February 2004, http://www.w3.org/TR/owl-ref/ (2004).

[24] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl, Rql:
a declarative query language for rdf, in: Eleventh International World Wide Web
Conference (WWW2002), ACM, 2002, pp. 592–603.

[25] A. R. Hevner, S. T. March, J. Park, S. Ram, Design science in information
systems research, Managmenet Information Systems Quarterly (MIS Quarterly)
28 (1) (2004) 75–106.

[26] F. Frasincar, G.-J. Houben, P. Barna, HPG: the Hera presentation generator,
Journal of Web Engineering 5 (2) (2006) 175–200.

[27] P. Fraternali, Tools and approaches for developing data-intensive web
applications: A survey, ACM Computing Surveys 31 (3) (1999) 227–263.

[28] H. L. Quang, Integration of web data sources: A survey of existing problems,
in: Foundations of Databases, Institute of Computer Science, Martin-Luther-
University, 2005, pp. 78–82.

[29] O. De Troyer, S. Casteleyn, Modeling complex processes for web applications
using wsdm, in: Third International Workshop on Web Oriented Software
Technology (IWWOST 2003), 2003, pp. 1–12.

[30] D. Schwabe, G. Rossi, R. Guimaraes, Designing personalized web applications,
in: Tenth International World Wide Web Conference, ACM, 2001, pp. 275–284.

[31] Z. Fiala, F. Frasincar, M. Hinz, G. J. Houben, P. Barna, K. Meissner,
Engineering the presentation layer of adaptable web information systems, in:
Web Engineering - 4th International Conference on (ICWE 2004), Vol. 3140 of
Lecture Notes in Computer Science, Springer, 2004, pp. 459–472.

[32] H. Knublauch, D. Oberle, P. Tetlow, E. Wallace, A semantic web primer for
object-oriented software developers, W3C Working Group Note 9 March 2006,
http://www.w3.org/TR/sw-oosd-primer/ (2006).

[33] R. Vdovjak, F. Frasincar, G. J. Houben, P. Barna, Engineering semantic web
information systems in hera, Journal of Web Engineering 2 (1-2) (2003) 3–26.

55

[34] D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, L. A. Stein, Daml+oil (march 2001) reference description, W3C Note
18 December 2001, http://www.w3.org/TR/daml+oil-reference (2001).

[35] L. Rutledge, M. Alberink, R. Brussee, S. Pokraev, W. van Dieten,
M. Veenstra, Finding the story: Broader applicability of semantics and discourse
for hypermedia generation, in: 14th ACM Conference on Hypertext and
Hypermedia (Hypertext 2003), ACM, 2003, pp. 67–76.

[36] Wireless Application Protocol Forum, Ltd., Wireless application group: User
agent profile, 20 October 2001 (2001).

[37] G. Klyne, F. Reynolds, C. Woodrow, O. Hidetaka, J. Hjelm, M. H. Butler,
L. Tran, Composite capability/preference profiles (cc/pp): Structure and
vocabularies 1.0, W3C Recommendation 15 January 2004, http://www.w3.

org/TR/2004/REC-CCPP-struct-vocab-20040115/ (2004).

[38] F. Frasincar, P. Barna, G. J. Houben, Z. Fiala, Adaptation and reuse in
designing web information systems, in: International Conference on Information
Technology: Coding and Computing (ITCC 2004), IEEE Computer Society,
2004, pp. 387–291.

[39] Z. Fiala, M. Hinz, K. Meissner, F. Wehner, A component-based approach for
adaptive, dynamic web documents, Journal of Web Engineering 2 (1-2) (2003)
58–73.

[40] J. M. Martinez, Mpeg-7 overview, Version 9, ISO/IEC
JTC1/SC29/WG11/N5525 March 2003 (2003).

[41] G. Rossi, D. Schwabe, F. Lyardet, Web application models are more than
conceptual models, in: International Workshop on the World-Wide Web and
Conceptual Modeling (WWWCM 1999), ER 1999, Vol. 1727 of Lecture Notes
in Computer Science, Springer, 1999, pp. 239–253.

[42] F. Frasincar, G. J. Houben, R. Vdovjak, An rmm-based methodology for
hypermedia presentation design, in: Advances in Databases and Information
Systems (ADBIS 2001), Vol. 2151 of Lecture Notes in Computer Science,
Springer, 2001, pp. 323–337.

[43] F. Frasincar, G. J. Houben, Hypermedia presentation adaptation on the
semantic web, in: Adaptive Hypermedia and Adaptive Web-Based Systems (AH
2002), Vol. 2347 of Lecture Notes in Computer Science, Springer, 2002, pp. 133–
142.

[44] P. Brusilovsky, Adaptive hypermedia, User Modeling and User-Adapted
Interaction 11 (1-2) (2001) 87–110.

[45] N. Souchon, J. Vanderdonckt, A review of xml-compliant user interface
description languages, in: International Workshop on Design, Specification and
Verification of Interactive Systems (DSV-IS 2003), Vol. 2844 of Lecture Notes
in Computer Science, Springer, 2003, pp. 377–391.

56

[46] P. Schmitz, J. Yu, P. Santangeli, Timed interactive multimedia extensions
for html (html+time)-extending smil into the web browser, W3C Note 18
September 1998, http://www.w3.org/TR/NOTE-HTMLplusTIME (1998).

[47] J. Ayars, D. Bulterman, A. Cohen, K. Day, E. Hodge, P. Hoschka, E. Hyche,
M. Jourdan, M. Kim, K. Kubota, R. Lanphier, N. Layaida, T. Michel,
D. Newman, J. van Ossenbruggen, L. Rutledge, B. Saccocio, P. Schmitz,
W. ten Kate, Synchronized multimedia integration language (smil 2.0) - [second
edition], W3C Recommendation 07 January 2005, http://www.w3.org/TR/

SMIL/ (2005).

[48] B. Bos, T. Celik, I. Hickson, H. W. Lie, Cascading style sheets, level 2 revision 1
css 2.1 specification, W3C Working Draft 13 June 2005, http://www.w3.org/
TR/CSS21/ (2005).

[49] M. Kay, Xsl transformations (xslt) version 2.0, W3C Recommendation 23
January 2007, http://www.w3.org/TR/xslt20/ (2007).

[50] F. Frasincar, G. J. Houben, P. Barna, C. Pau, Rdf/xml-based automatic
generation of adaptable hypermedia presentations, in: International Conference
on Information Technology: Coding and Computing (ITCC 2003), IEEE
Computer Society, 2003, pp. 410–414.

[51] D. Beckett, Rdf/xml syntax specification (revised), W3C Recommendation 10
February 2004, http://www.w3.org/TR/rdf-syntax-grammar/ (2004).

[52] M. Kay, Saxon (the xslt and xquery processor), http://saxon.sourceforge.
net (2006).

[53] F. Frasincar, G. J. Houben, Xml-based automatic web presentation generation,
in: WebNet 2001 World Conference on the WWW and Internet (WebNet 2001),
AACE, 2001, pp. 372–377.

[54] J. Clark, Xsl transformations (xslt) version 1.0, W3C Recommendation 16
November 1999, http://www.w3.org/TR/xslt (1999).

[55] G. J. Houben, F. Frasincar, P. Barna, R. Vdovjak, Modeling user input
and hypermedia dynamics in hera, in: Web Engineering - 4th International
Conference (ICWE 2004), Vol. 3140 of Lecture Notes in Computer Science,
Springer, 2004, pp. 60–73.

[56] M. Dubinko, L. L. Klotz, R. Merrick, T. V. Raman, Xforms 1.0, W3C
Recommendation 14 October 2003, http://www.w3.org/TR/xforms/ (2003).

[57] Aduna, BV, openrdf.org ... home of sesame, http://www.openrdf.org/ (2006).

[58] E. Prud’hommeaux, A. Seaborne, Sparql query language for rdf, W3C Working
Draft 20 February 2006 (2006).

[59] Hewlett-Packard Development Company, LP, Jena - a semantic web framework
for java, http://jena.sourceforge.net/ (2006).

57

[60] G. J. Houben, P. Barna, F. Frasincar, R. Vdovjak, Hera: Development of
semantic web information systems, in: Web Engineering - 3th International
Conference (ICWE 2003), Vol. 2722 of Lecture Notes in Computer Science,
Springer, 2003, pp. 529–538.

[61] L. Ding, T. W. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari,
V. Doshi, J. Sachs, Swoogle: a search and metadata engine for the semantic
web, in: International Conference on Information and Knowledge Management
(CIKM 2004), ACM, 2004, pp. 652–659.

[62] F. Frasincar, P. Barna, G. J. Houben, A Web Service-Oriented Architecture for
Implementing Web Information Systems, Frontiers in Artificial Intelligence and
Applications, IOS Press, 2006, pp. 219–232.

[63] P. Barna, G. J. Houben, F. Frasincar, Specification of adaptive behavior using
a general-purpose design methodology for dynamic web applications, in: Third
International Conference on Adaptive Hypermedia and Adaptive Web-Based
Systems (AH 2004), Vol. 3137 of Lecture Notes in Computer Science, Springer,
2004, pp. 283–286.

[64] P. De Bra, G. J. Houben, H. Wu, Aham: A dexter-based reference model for
adaptive hypermedia, in: 10th ACM conference on Hypertext and Hypermedia
(Hypertext 1999), ACM, 1999, pp. 147–156.

[65] J. van Ossenbruggen, L. Hardman, L. Rutledge, Combining rdf semantics with
xml document transformations, International Journal of Web Engineering and
Technology 2 (2/3) (2005) 248–263.

58

