
A Linguistic Approach for Semantic Web
Service Discovery

Jordy Sangers, Flavius Frasincar, Frederik Hogenboom, Alexander Hogenboom,
and Vadim Chepegin

Abstract We propose a Semantic Web Service Discovery framework for finding se-
mantically annotated Web services by using natural language processing techniques.
The framework searches through a set of annotated Web services for matches with
a user query, which consists of keywords, so that knowledge about semantic lan-
guages is not required. For matching keywords with Semantic Web service descrip-
tions given in Web Service Modeling Ontology (WSMO), techniques like part-of-
speech tagging, lemmatization, and word sense disambiguation are used. Three dif-
ferent matching algorithms are defined and evaluated for their ability to do exact
matching and approximate matching between the user query and Web Service de-
scriptions.

1 Introduction

With the emergence of Web services and the Service Oriented Architecture (SOA),
business process components are increasingly decoupled, while systems and busi-
ness processes converge, forcing companies to change their management strategies.
The usage of Web services in SOA creates a wide network of services that collab-
orate in order to implement complex tasks. Web services are commonly described
via narrative Web pages containing information about their operations in natural
languages. These Web pages contain plain text with no machine interpretable struc-
ture and hence cannot be used by machines to automatically process the descriptive
information about a Web service.

Jordy Sangers (e-mail: jordysangers@hotmail.com) · Flavius Frasincar (e-mail: frasin-
car@ese.eur.nl) · Frederik Hogenboom (e-mail: fhogenboom@ese.eur.nl) ·Alexander Hogenboom
(e-mail: hogenboom@ese.eur.nl)
Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands

Vadim Chepegin (e-mail: vadim.chepegin@tieglobal.com)
Tie Kinetix, P.O. Box 3053, NL-2130 KB, Hoofddorp, The Netherlands

Several semantic languages [1, 13, 19] have been created to aid machines in
automatically processing information on Web services. These languages allow de-
scribing the functionality of services in a machine interpretable form, while original
Web service descriptions contained only information about the data types and bind-
ings as a description of a Web service functionality [5]. These Semantic Web service
descriptions use ontologies to describe the behavior of a Web service by applying
reasoning over their semantics. The semantics described in ontologies enable sys-
tems to interpret what a Web service is doing, stimulating service discovery [3]
and composition [11]. The ontologies, however, are created by humans and there-
fore contain natural language as ontology meta-data. This lets humans understand
the concepts defined, while a system can only understand concepts and their rela-
tionships to a limited extent as specified in the ontology axioms. Natural Language
Processing (NLP) techniques can therefore help in better defining the context of a
Web service.

When using a single holistic ontology, machines can discover and compose Web
services automatically based on the semantics defined. Using one holistic ontology
is, however, hardly reachable and therefore it is impossible to reason based only on
formal logic. NLP techniques can help overcoming the ambiguity problems between
multiple ontologies that are being used by Semantic Web service descriptions. Ser-
vice composition is often driven by people with expertise in business processes and
not by technicians. Thus, end users must be able to discover these Web services
based on a search query written in an easy to understand language, i.e., human lan-
guage. Therefore, a discovery mechanism must be developed in such a way that
Semantic Web services can be found using natural language queries.

In this paper the Semantic Web Service Discovery (SWSD) framework is pro-
posed, which enables users to search (using keywords) for existing Web services
that are described by means of a Semantic Web language for service annotation.
This process consists of several steps including information extraction, word sense
disambiguation, and matching the user search context and Web service context by
means of a similarity measure. The result of this process is a ranked list of Web
services that match the users search criteria.

This paper is structured as follows. Section 2 discusses related technologies for
describing and searching Web services. Section 3 proposes the SWSD framework
for Web Services Discovery based on keywords. Our implementation of the frame-
work is described in Sect. 4. Section 5 presents an evaluation of different matching
algorithms between the user input and a Web service description. Last, Sect. 6 con-
cludes the paper and discusses future work.

2 Related Work

Current approaches for Web Service Discovery (WSD) can be divided into two
types. One approach for Web service discovery is based on clustering operation
parameters, while the other approach uses rich semantics for Web service discov-

ery. These two different approaches are explained below by describing existing or
proposed Web service discovery systems.

One approach for Web service discovery is by searching for similarities among
different Web Service Definition Language (WSDL) service descriptions. In this
way, similar operations and services can be discovered based on operation param-
eters, which enables searching for substitutable and composable Web services [8].
With this approach, the semantics of the Web service operations can be extracted
and used for discovery purposes.

A Web service search engine that uses clustering of operation parameters is
Woogle [7]. It is designed to search for similar Web service operations and com-
posable Web service operations. Woogle computes automatically the underlying se-
mantics of WSDL descriptions and uses these to match operations. The semantics
are solely defined based on the operation parameters. However, if independent on-
tologies which define the Web service semantics exist, the behavior of a Web service
can be known without investigating parameter names and is therefore preferable to
use.

Seekda! [16] also uses clustering of operation parameters for discovery of Web
services. It also extracts semantics from the WSDL files, which enables runtime ex-
change of similar services and composition of services. Seekda! is part of a bigger
system called Service-Finder [4]. Service-Finder is a platform for service discov-
ery where information about services is gathered from different sources such as
Web pages, blogs, and Web 2.0 services. The information is automatically added to
a semantic model using automatic service annotation, realizing flexible discovery
of services. Service-Finder uses its own semantics for discovery and composition,
therefore does not taking into account predefined semantics.

GODO [10] does not search for similar Web services, but uses a Goal-Driven ap-
proach. It consists of a repository with Web Service Modeling Ontology (WSMO)
Goals and lets users state their goal by writing a sentence in plain English. A lan-
guage analyzer will extract keywords from the user sentence and an existing WSMO
Goal will be searched based on those keywords. The WSMO Goal with the highest
match will be sent to WSMX [6], an execution environment for WSMO service dis-
covery and composition. WSMX will then search for a WSMO Web service that is
linked to the given WSMO Goal via some WSMO Mediators and return the WSMO
Web service back to the user. This approach makes good use of the capabilities of
the WSMO framework, but it cannot be applied for other semantic languages like
OWL-S and WSMO-Lite, which do not have such goal representation elements.

The framework proposed in this paper aims to address a multitude of semantic
description languages using a novel approach that combines the ontology structure
with Web services similarities using natural language processing techniques for the
automatic discovery of Web services. From this point of view it can be considered
as a hybrid of the previously introduced approaches able to deal with a larger cate-
gory of (semantic) Web services. In addition, our framework supports next to exact
matching also approximate matching, improving the recall when perfect matching
is not possible.

3 Semantic Web Service Discovery Framework

The SWSD framework proposes a keyword-based discovery process for searching
Web services which are described using a semantic language. This search mecha-
nism incorporates NLP techniques to establish a match between a user search query,
containing English keywords, and a Semantic Web service description. It does not
take into account the logic-based semantics defined in the Web service descriptions,
but uses the definitions of concepts stated in imported ontologies. By making use of
these definitions, the framework can establish a broader search field by also employ-
ing related concepts from the ontologies to identify the context in which the Web
service is operating.

The SWSD framework assumes that there is a set of Web services described using
semantic languages such as WSMO [1], WSMO-Lite [19] or OWL-S [13]. These
annotations can be read by the system and words that might represent the context of
the Web services will be extracted (e.g., the names of the operations or nouns and
verbs stated in non-functional descriptions of concepts or conditions). These words
must then be disambiguated, because words can have different senses. If the system
knows the sense of the words, they can be matched with the senses disambiguated
from the search query. This will result in a ranked list of Web services according to
the matching degree with the user search.

The process consists of three major steps: Service Reading, Word Sense Disam-
biguation (WSD), and Match Making. Service Reading consists of parsing a Se-
mantic Web service description and extracting names and non-functional descrip-
tions of used concepts. WSD determines the senses of a set of words present in the
previously extracted information. During Match Making the similarity between the
different sets of senses is determined, which is subsequently used for ranking the
Web services.

3.1 Semantic Web Service Reader

In order to enable a search engine to look through Web service descriptions writ-
ten in different languages, several different Web service description readers are re-
quired, i.e., one for each language. A Semantic Web service reader must be able to
extract various elements out of a Web service description and its used ontologies.
Names and non-functional descriptions of elements such as the capabilities, condi-
tions, and effects of the Web service help in understanding the context of the Web
service, i.e., they can foster establishing the right context. The non-functional de-
scriptions are written in natural language and thus contain a human description of
the specified element. Before extracting words from a Web service description, this
description has to be parsed using language-specific parsers. Subsequently, word
splitting needs to be performed based on case transition, after which each word is
tagged with the right Part-of-Speech (POS).

3.2 Word Sense Disambiguation

A user can represent its goal by defining two different sets of words. One set contains
only nouns and the other only verbs. Because words can have multiple meanings
disambiguation is needed, resulting in a set of senses, each representing a single
meaning of a word. Once a set of senses from the user query and a set of senses
from a Web service are established, a matching between the two can be performed.

As non-supervised WSD allows disambiguation of words without user interfer-
ence, we use a variant of the SSI algorithm [15] to get the senses out of a set of
words using a semantic lexicon (e.g., WordNet [14]). The algorithm disambiguates
a word based on a previously disambiguated set of words and their related senses.
Per sense of the word, a similarity with the senses from the context is calculated and
the sense with the highest similarity is chosen. After that, the word and its chosen
sense will be added to the context and another iteration is performed. This process
continues until there are no ambiguous words left.

At the start of the process, a context is not yet established. In order to disam-
biguate meanings of the words that can have multiple senses, one first has to find
the words that have only one sense (monosemous words) to initialize the context. If
all the words in the set have multiple senses (polysemous words), the least ambigu-
ous word is chosen and for each of its senses, the algorithm is simulated as if the
sense was used as the starting context. Each time a new sense is added to the con-
text, the similarity between the new sense and the context is stored. The sense which
creates the highest sum of pair-wise context sense similarities (after disambiguating
all words) is used for the context initialization.

Because studies have shown that the method of Jiang and Conrath [12] performs
better than other semantic distance measures [2], this method is chosen to compute
the semantic distance between two senses. Using this method, given two senses, a
number between 0 and 1 is obtained, stating the similarity between the two senses. If
this number is high, then the two senses given are close to each other and therefore
are similar.

3.3 Sense Matching

After disambiguating each word gathered from the user input or a Semantic Web
service description, we have obtained several different sets of senses. The frame-
work assumes each word in the user query is equally important for the matching
process and therefore the user input will contain, after the WSD, one set of senses.
However, a Web service description can contain words that represent the context of
the Web service better than other words. Therefore, after the WSD, several sets of
senses (each having a different weight for the matching process) are computed for a
Web service.

3.3.1 Level Matching

Besides matching only disambiguated senses, words that do not appear in the used
semantic lexicon should also be taken into account. These words can represent im-
portant names or concepts for the discovery of Web services and hence must also be
used in the matching process. For matching user input with a Semantic Web service
description, the user input contains a set of words that could not be disambiguated
(wsu) and a set of senses (ssu), and the Web service description contains multiple sets
of words (mwsw) and senses (mssw). Because the Web service description, presented
in the next section, provides a number (n) of sets containing words and senses, each
having a different importance for the matching process, the final similarity between
the user input and the Web service input will be a weighted average of the similar-
ities between each set of words (mwswi ∈ mwsw) and senses (msswi ∈ mssw) from
the Web service description and the set of words and senses from the user input, as
shown in (1). The weights (wi) are established by means of experiments with dif-
ferent values and must sum up to 1 in order to make sure that the final similarity
between the user query and a Web service description ranges between 0 and 1.

f inalSim(ssu,mssw,wsu,mwsw) =
n

∑
i=1

wi× levelSim(ssu,msswi,wsu,mwswi) (1)

For each set of words and senses from the Web service description, the system
performs two different types of measures: one for the sense matching (shown in (3))
and one for the matching of words that could not be disambiguated (shown in (4)).
These two measures will have a range between 0 (no match) to 1 (exact match) and
will be combined into a single measure using a weighted average (shown in (2)).
These weights are, as with the final similarity, established by means of experiments
with different rates and must sum up to 1.

levelSim(ssu,ssw,wsu,wsw) = wsense × senseSim(ssu,ssw) +

wword × wordSim(wsu,wsw) (2)

3.3.2 Jaccard Matching

For matching the user set of senses with a set of senses from one of the levels of a
Web service description, the Jaccard matcher uses the Jaccard Index. This method
is often used for computing the similarity between two sets and can so compare the
different sets of senses:

senseSim(ssu,ssw) =
|ssu

⋂
ssw|

|ssu
⋃

ssw|
. (3)

By dividing the number of senses which appear in both sets by the total number
of senses in both sets, a similarity coefficient can be calculated. With this approach
the Jaccard matcher calculates the percentage of exact matching items and can also
be applied for matching the words that could not be disambiguated (not present in
the semantic lexicon):

wordSim(wsu,wsw) =
|wsu

⋂
wsw|

|wsu
⋃

wsw|
. (4)

3.3.3 Similarity Matching

To overcome the fact that for calculating similarity values only exact matching items
are used, the similarity matcher uses a similarity based approach for matching dif-
ferent sets of senses or non-disambiguated words. Using this approach, words that
are almost identical are not considered to be a mismatch, but an almost match. The
same applies for sense matching. If two senses are closely related, their similarity
value will approach 1. This approach allows more flexible matching between differ-
ent items than previously considered.

For calculating a similarity between two sets of senses, the same similarity func-
tion as in WSD is applied. Equation (5) describes how the similarity between the
user set of senses (ssu) and a Web service set of senses (ssw) is computed. The av-
erage of the similarity between each sense (su) from the user set of senses, and the
Web service set of senses (sw) is computed. The average of the similarity between
each sense (sw) from the Web service set of senses, and the user set of senses (su) is
added to that to provide a symmetric match.

senseSim(ssu,ssw) = ∑
su∈ssu

senseScore(su,ssw)

|ssu|+ |ssw|
+

∑
sw∈ssw

senseScore(sw,ssu)

|ssu|+ |ssw|
(5)

The similarity between a sense (sa) and a set of senses (ssb) is determined by the
maximum similarity between the sense and one of the senses (sb) from the other set.
Equation (6) shows this computation.

senseScore(sa,ssb) = argmaxsb∈ssb
senseNorm(sa,sb) (6)

Because the similarity distance method from Jiang and Conrath can give any
value between 0 and infinity as a result and a range between 0 and 1 is preferred for
quantifying the degree of match, a logarithmic function must be used to transform
the values of the similarity. Using Equation (7), exact similar senses will result in 1
as resulting similarity and a total mismatch between senses will result in 0:

senseNorm(sa,sb) = 1− e−sim(sa,sb) . (7)

For matching the sets of non-disambiguated words, the Levenshtein Distance
metric is used. This metric calculates the total number of edit operations that needs
to be done in order to transform one word to another. The similarity between two sets
of words is done in the same way as when comparing two sets of senses. The only
difference is that instead of the similarity function from WSD, now the Levenshtein
Distance is applied.

The similarity function for calculating the similarity between the user set of
words (wsu) and a Web service set of words (wsw) is described in (8). Equation (9)
shows how the similarity between a word and a set of words is computed. Fi-
nally, (10) describes how the Levenshtein Distance is used for comparing two words,
where maxLength is the number of tokens of the longest word that is being com-
pared. If this formula returns a negative value, which means that too many updates
had to be done to change one word into another word, a value of 0 will be used to
indicate a total mismatch.

wordSim(wsu,wsw) = ∑
wu∈wsu

wordScore(wu,wsw)

|wsu|+ |wsw|
+

∑
ww∈wsw

wordScore(ww,wsu)

|wsu|+ |wsw|
(8)

wordScore(wa,wsb) = argmaxwb∈wsb
wordNorm(wa,wb) (9)

wordNorm(wa,wb) = 1−2× levenshtein(wa,wb)

maxLength(wa,wb)
(10)

4 Semantic Web Service Discovery Engine

Our implementation of the SWSD approach, the Semantic Web Service Discovery
Engine, allows users to search for semantically annotated Web services on an exist-
ing repository by defining a set of keywords. It is able to handle Web services that
are annotated using the WSMO [1] framework. Based on the modularity of the im-
plementation, the engine can be extended with readers that can parse other Semantic
Web service languages.

A WSMO Web service reader and a WSMO Ontology reader have been imple-
mented in Java using the WSMO4J [9] API. After reading the Web service files, the
found concepts are used for scanning the ontologies for their descriptions. Based on
a full identifier, the reader can search for a concept. If a concept is found, the non-
functional definition, attributes, and related concepts can be used for WSD. The
engine uses seven different levels of information about the Web service, each of
which has a different associated importance for the matching process. Importance
is expressed using weights (established after examining multiple Semantic Web ser-
vice descriptions and experimenting manually with non-normalized weights ranging
from 1 to 10), which, after normalization, sum up to 1. The different levels and their
associated weights are:

• Non-functional description and name of the Web service, 7/27, (direct relation);
• Non-functional descriptions and names of concepts used by Web service, 5/27,

(direct relation);
• Non-functional descriptions of properties of capabilities of the Web service, 4/27,

(direct relation);
• Non-functional descriptions and names of superconcepts of the concepts used by

the Web service, 4/27;
• Non-functional descriptions and names of subconcepts of the concepts used by

the Web service, 3/27;
• Non-functional descriptions and names of concepts related via attributes with

concepts used by the Web service, 3/27 (indirect relation);
• Non-functional descriptions and names of attributes of concepts used by the Web

service, 1/27 (indirect relation).

The names and non-functional descriptions of the entities returned from the read-
ers undergo an additional NLP step: nouns and verbs are extracted from the non-
functional descriptions using the Stanford POS tagger [17] and words are split if
they consist of case-transitions. Subsequently, our WSD implementation makes use
of the WordNet [14] API and also the JWordNetSim [18] API for similarity calcu-
lation between two WordNet senses.

5 Evaluation

This section covers the evaluation of different matching algorithms that can be used
for Semantic Web service discovery. The algorithms described in Sect. 3 are imple-
mented in the SWSD engine and are evaluated using a set of predefined queries and
sets of preferred Web services related to one of the queries. The evaluated matching
algorithms are: simple, Jaccard-based, and similarity matching. The simple algo-
rithm uses the Jaccard similarity only for lexical representations of words. It does
not make use of NLP and thus it is used as a baseline to check whether the NLP
steps add value to the discovery of Semantic Web services. The Jaccard-based and
similarity matching algorithms work as described in Sect. 3.

In order to evaluate the performance of the three matching algorithms, we have
conducted 61 separate experiments, in which we used 14 Web services semantically
annotated using WSMO. The tests can be divided into two types: 33 tests have been
done to measure the matching performance of the algorithms using queries that have
been designed to search for Web services that are present in the repository. The other
28 tests have been done to measure the performance using queries that have been
designed to search for Web services that are not present in the repository. In the
latter case, a number of similar Web services from the repository have been used to
test how well the algorithms can discover similar Web services.

Testing with 61 queries and three matching algorithms results in 183 PR graphs.
As a thorough analysis of all graphs is cumbersome, PR graphs consisting of average
precision values for the recall points are created. This enables the comparison of all

Fig. 1 PR graphs for discovery of exact matching services

the different algorithms at once. However, the testing is done with lists of preferred
Web services that can vary in the number of listed services. For testing, lists with two
to five preferred Web services have been used. Because these variations in number
of Web services cause different recall values, average precision values could only
be calculated for queries that have the same amount of preferred Web services.

The performances of the different matching algorithms are visualized by eight
different PR graphs. The four PR graphs that are displayed in Fig. 1 show the av-
erage results for the exact matching tests. For each of the four different numbers of
preferred returned Web services (n) a PR graph is created. The four PR graphs that
are shown in Fig. 2 show the average results for the approximate matching tests.

From the different PR graphs that are shown in Fig. 1, we can make two obser-
vations. First, the Jaccard-based algorithm has in most cases a higher precision for
the first half of the graph than the simple and the similarity algorithm. Second, all
algorithms have about the same precision to provide a full recall. This means that to
provide all the preferred Web services to the user, they need about the same amount
of Web services to be displayed. Hence, the user has to browse through a number
of services – the same for each algorithm – to find the last preferred service. How-
ever, as the Jaccard-based algorithm displays a higher precision for a low recall, the
Jaccard-based algorithm provides at least some of the preferred Web services in an
earlier stage to the user then the other algorithms. It can therefore be seen as the best
algorithm to discover exact matching Web services.

From the different PR graphs that are shown in Fig. 2, we can make the obser-
vation that in case of non-exact matching, the similarity algorithm performs over-
all better for discovery of similar Web services than the Jaccard-based and simple
matching algorithms. In most of the cases the precision lines of the similarity algo-
rithm are above the line of the Jaccard-based algorithm.

Fig. 2 PR graphs for discovery of similar services

6 Conclusions and Future Work

In order to facilitate managers to compose Web services for business processes, we
proposed the SWSD framework, which is a keyword-based discovery process for
searching Web services that are described using semantically enriched annotations.
It makes an intensive use of natural language processing techniques and a WordNet-
based similarity measure for matching keywords written in natural language with
semantic Web services described using semantic languages, hereby supporting man-
agers to discover relevant Web services using natural language queries.

Our implementation of the SWSD framework can search for WSMO Web ser-
vices based on user search words for similar matches. A matching score is computed
based on the similarity between the words in the user query and a Web service
description. After experimenting with different matching functions, we found that
Jaccard matching is performing best for discovering exact matching Web services,
while matching using a similarity-based approach gives the best results for finding
similar Web services.

As the SWSD engine is currently limited to WSMO descriptions, as future work,
the SWSD engine could be extended in such a way that it has the ability to read more
annotation formats, e.g., WSMO-Lite. Another limitation of the proposed frame-
work is the lack of detailing in Web service contexts, which can be tackled in future
work by retrieving additional information from WSDL files. Finally, the weights
that are used by the matching algorithms, which are currently established by means
of experiments, could be determined by making use of artificial intelligence tech-
niques such as neural networks or Bayesian networks, to optimize the discovery
process.

References

1. de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M., Konig-
Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman, D., Scicluna, J.,
Stollberg, M.: Web Service Modeling Ontology (WSMO). W3C Member Submission 3 June
2005 (2005). http://www.w3.org/Submission/WSMO/

2. Budanitsky, A., Hirst, G.: Semantic distance in WordNet: An experimental, application-
oriented evaluation of five measures. In: WordNet and Other Lexical Resources: Applications,
Extensions and Customizations. NAACL 2001 Workshop (2001)

3. Bussler, C., Cimpian, E., Fensel, D., Gomez, J.M., Haller, A., Haselwanter, T., Kerrigan, M.,
Mocan, A., Moran, M., Oren, E., Sapkota, B., Toma, I., Viskova, J., Vitvar, T., Zaremba, M.,
Zaremba, M.: Web Service Execution Environment (WSMX). W3C Member Submission 3
June 2005 (2005). http://www.w3.org/Submission/WSMX/

4. Cefriel, Seekda!, Ontoprise, University of Sheffield: Service-Finder (2010).
http://www.service-finder.eu/

5. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description Lan-
guage (WSDL). W3C Note 15 March 2001 (2001). http://www.w3.org/TR/wsdl

6. DERI Galway: Web Service Execution Environment (2010). http://www.wsmx.org/
7. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for Web Services.

In: 30th International Conference on Very Large Data Bases (VLDB 2004), vol. 30, pp. 372–
383 (2004)

8. Ernst, M.D., Lencevicius, R., Perkins, J.H.: Detection of Web Service Substitutability and
Composability. In: International Workshop on Web Services — Modeling and Testing (WS-
MaTe 2006), pp. 123–135 (2006)

9. EU IST, FIT-IT: WSMO4J API (2010). http://wsmo4j.sourceforge.net/
10. Gomez, J.M., Rico, M., Garcia-Sanchez, F., Bejar, R.M., Bussler, C.: GODO: Goal driven

orchestration for Semantic Web Services. In: 1st Workshop on Web Services Modeling On-
tology Implementations (WIW 1004), vol. 113. CEUR Workshop Proceedings (2004)

11. Hikimpour, F., Sell, D., Cabral, L., Domingue, J., Motta, E.: Semantic Web Service Com-
position in IRS-III: The Structured Approach. In: 7th IEEE International Conference on E-
Commerce Technology (CEC 2005), pp. 484–487. IEEE Computer Society (2005)

12. Jiang, J., Conrath, D.: Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy.
In: International Conference Research on Computational Linguistics (ROCLING X), pp. 19–
33 (1997)

13. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S. W3C
Member Submission 22 November 2004 (2004). http://www.w3.org/Submission/OWL-S/

14. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Wordnet: An on-line lexical
database. International Journal of Lexicography 3(4), 235–244 (1990)

15. Navigli, R., Velardi, P.: Structural Semantic Interconnections: a Knowledge-Based Approach
to Word Sense Disambiguation. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, pp. 1075–1086. IEEE Computer Society (2005)

16. Semantic Technology Institute: Seekda! (2009). http://seekda.com/
17. The Stanford Natural Language Processing Group: Stanford Log-linear Part-Of-Speech Tag-

ger (2009). http://nlp.stanford.edu/software/tagger.shtml
18. The University of Sheffield: Pure Java WordNet Similarity Library (2010).

http://nlp.shef.ac.uk/result/software.html
19. Vitvar, T., Kopecky, J., Fensel, D.: WSMO-Lite: Lightweight Semantic Descriptions for Ser-

vices on the Web. In: 5th IEEE European Conference on Web Services (ECOWS 2007), pp.
77–86. IEEE Computer Society (2007)

