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Abstract
Aspect-based sentiment analysis allows one to compute the sentiment for an
aspect in a certain context. One problem in this analysis is that words possib-
ly carry different sentiments for different aspects. Moreover, an aspect’s
sentiment might be highly influenced by the domain-specific knowledge. In
order to tackle these issues, in this paper, we propose a hybrid solution for
sentence-level aspect-based sentiment analysis using A Lexicalized Domain
Ontology and a Regularized Neural Attention model (ALDONAr). The bidi-
rectional context attention mechanism is introduced to measure the influence
of each word in a given sentence on an aspect’s sentiment value. The classifi-
cation module is designed to handle the complex structure of a sentence. The
manually created lexicalized domain ontology is integrated to utilize the field-
specific knowledge. Compared to the existing ALDONA model, ALDONAr
uses BERT word embeddings, regularization, the Adam optimizer, and di-
fferent model initialization. Moreover, its classification module is enhanced
with two 1D CNN layers providing superior results on standard datasets.
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1. Introduction

Sentiment Analysis (SA) is usually addressed using aspect extraction [1,
2], opinion identification [3], or aspect-based sentiment classification [4, 5, 6].
Due to the scale of each approach, we solely focus on the latter. Knowledge-
based, machine learning, and hybrid are the most frequently used techniques
for aspect-based sentiment classification [7].

Hybrid sentiment classifiers, which use machine learning and knowledge-
driven models, tend to show superior performance compared to separate
approaches [8, 9, 10, 11]. In a two-step procedure, [10] uses a lexicalized
domain ontology classifier backed up with a support vector machine (SVM).
However, recent studies have proposed advanced deep learning methods as
auspicious substitutes for SVMs [12, 13, 14, 15]. [13] introduces the Content
Attention-Based Aspect-Based Sentiment Classification model (CABASC).
By employing two sequential neural attention mechanisms: one for a global
view (disregarding word order) and one for a local view (considering word
order by integrating a gated recurrent unit (GRU) [16]), CABASC proves to
be a state-of-the-art aspect-based sentiment classification model. Because of
this the SVM model from [10] was replaced with a Deep Bidirectional Gated
Recurrent Unit (DBGRU) based on CABASC and presented in our previous
work [8]. The proposed model dubbed A Lexicalized Domain Ontology and a
Neural Attention Model (ALDONA) provided increased accuracy for aspect-
based sentiment classification compared to the CABASC model.

Although time consuming, the manually created ontology is chosen to
ensure accurate relationships among entities and their properties. Thus,
the field-specific knowledge is captured using a lexicalized domain ontology
introduced in [10]. The classifier distinguishes generic, category-dependent,
and context-dependent sentiment types, and using different rules categorizes
them into Positive and Negative classes. Due to its ambiguous representation,
the Neutral class has been omitted.

The data flows through the neural attention model as follows. Initially,
the sentence and aspect words are converted into corresponding word em-
bedding vectors, then the bidirectional context attention mechanism extracts
word ordering, past, and future information and correlations among aspects
and their context words and assigns weights for every word. This information
is summarized into the weighted embedding sentence vector by the sentence-
level content attention mechanism. Finally, the aspect sentiment is derived
in the classification module.
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In this paper, we extend our previous work on ALDONA [8]. We replace
GloVe word embeddings [17] with BERT Large Uncased word embeddings
[18] (BERT contextual word embeddings are better proxies for word seman-
tics in text than GloVe non-contextual word embeddings), the minibatch
gradient descent with the minibatch Adam optimizer [19] (a state-of-the-art
optimizer), adjust initialization of weight matrices (using a normal distribu-
tion with a smaller variance due to the relatively high number of neurons),
and introduce an L2 norm regularization term (to reduce overfitting). More-
over, the classification module has been enhanced with two 1D CNN layers for
additional flexibility in the sentiment computations. The resulting method
is called A Lexicalized Domain Ontology and a Regularized Neural Atten-
tion Model (ALDONAr). Evaluated on benchmark datasets, ALDONAr
produced higher accuracy in comparison with other models, including the
state-of-the-art CABASC [13], DBGRU [8], and ALDONA [8].

The structure of the paper is as follows. Some complementary literature
is presented in Section 2. The detailed definition of ALDONAr is given in
Section 3. Section 4 and Section 5 explain the data and compare ALDONAr
performance with other benchmark models, respectively. Conclusion and
future research are presented in Section 6. The source code (in Python 3) is
provided at https://github.com/donmesh/ALDONAr.

2. Related Literature

Due to its complexity, sentiment analysis (SA) [20] is usually performed
using several subtasks, such as aspect extraction [1, 2], opinion identification
[3], and aspect-based sentiment classification [4, 5, 6]. The latter subtask
is often solved using knowledge-based, machine learning, and hybrid mo-
dels [7]. Knowledge-driven sentiment classification exploits domain specific
knowledge derived by an ontology reasoner from a given ontology to deter-
mine a sentiment value. The employed ontology can be designed manually
[10, 11], semi-automatically [21], or fully automatically [22]. Methods using
ontologies crafted using design criteria [23] have shown good performance for
aspect-based sentiment classification [10, 21].

Although advanced machine learning algorithms might increase efficacy
of the classification performance, this approach usually requires an expen-
sive manual feature engineering in a data preprocessing stage. The Bag-
of-Words (BoW) model is often used as an effective simplifying approach
[24, 25, 26]. Neglecting word semantics and ordering strongly undermines
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the performance of this technique [27]. As a result, intricate deep learning
methods have gained attention in the recent research [28, 29].

[30] presents a relative aspect-context position model which penalizes dis-
tant context words. To account for word semantic relationships, the recur-
rent neural networks (RNN) have been employed in sentiment analysis tasks
[15, 31, 32]. Extracting information from the left and right context words
for a given aspect [32], as well as exploiting syntax and semantics of a given
sentence by means of a bidirectional gated neural network [15], have proved
to be exceptionally useful. The state-of-the-art Recurrent Attention Network
(RAN) employs this idea and extracts polarity values with a deep position-
weighted bidirectional LSTM [12]. On the other hand, CABASC has shown
that the used LSTM could be successfully replaced by a Gated Recurrent Unit
(GRU) in order to increase classification efficiency [13]. CABASC has also
shown better performance than many other advanced classifiers, including
Attention-Based Aspect Embedding-LSTM (ATAE-LSTM) which enhances
word embeddings and LSTM hidden states with the aspect embeddings [33],
Memory Network (MemNet) which uses multi-hop attention memory [30],
Interactive Attention Network (IAN) exploiting one LSTM attention model
for a target and another for context [34].

Using domain-specific knowledge and statistical relations, hybrid senti-
ment classification models have proven to be highly effective [9, 11]. [10] in-
troduces a two-step classifier: a lexicalized domain ontology is backed up with
a support vector machine (SVM). In the first stage the ontology reasoner in-
fers the sentiment type (generic, category-dependent, or context-dependent)
of a word and predicts its polarity value (positive or negative). Given that
both or none of the values are assigned, the SVM bag-of-words phase is acti-
vated. The proposed solution was enhanced with neural networks [12, 14] and
their gated representations [13, 15] and elaborated in [8]. In this paper we
extend this former research and propose a new model dubbed A Lexicalized
Domain Ontology and a Regularized Neural Attention model (ALDONAr).

3. Methodology

To determine the polarity value of a specific sentiment ALDONAr aims
to extract the domain-based knowledge using a lexicalized domain ontology.
If this is unsuccessful, the sentiment is derived using word ordering, past, and
future information, as well as correlations among context and aspect words
by a neural attention model.
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3.1. Lexicalized Domain Ontology
The lexicalized domain ontology reasoner infers indirect relationships

among entities and their properties and in conjunction with direct relation-
ships determine the polarity value of an aspect.

We make use of a manually created ontology (proposed by [10]), as it is
more reliable in terms of its correctly defined elements compared to its (semi-)
automatically created counterparts. The ontology’s main components are the
SentimentValue, a super-class of Positive and Negative classes, the Neutral
class is not implemented due to its ambiguous representation in datasets; the
AspectMention models aspect mentions; the SentimentMention specifies the
various sentiment expressions and their types.

Three sentiment types are defined in this ontology. Type-1 represents
generic sentiments which have unequivocal meaning in every situation and for
every aspect (e.g., “disgusting” belongs to Negative class). Type-2 sentiments
are category-dependent, and thus depend on the category they are used with
(e.g., “savory” is Positive for the SustenanceMention class, but is not defined
and ignored for the NamedLocationMention). Type-3 represents context-
dependent sentiments that depend on an aspect’s category (e.g., warm beer is
Negative, but warm pizza is Positive). Driven by domain text, new subclasses
are created given that those sentiment-aspect combinations do not yet exist
in the knowledge graph. As the types are ordered and exclusive, dependency
to the higher order category is only possible if none of the lower order types
is matched (e.g., a given sentiment can be of type-2 only if its type is not
type-1). Sentiment mentions are linked to their corresponding aspects by
means of the aspect annotation.

In order to cope with multiple words having the same meaning, word
lexicalizations (as lemmas) are introduced in terms of the lex annotation
attached to every concept. Word negation is handled by confirming that nei-
ther of its three preceding words is in the negation set {not, no, never, isn’t,
aren’t, won’t, wasn’t, weren’t, haven’t, hasn’t, don’t, doesn’t, can’t, couldn’t}
[35]. When encountered, these words change sentiment polarity value to its
opposite.

3.2. Neural Attention Model
The neural attention model is designed to extract an aspect’s polarity

value based on statistical relationships among an aspect and its context
words. The model has four main components which are built on top of
another one and are presented in the following subsections.
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3.2.1. Word Embeddings
Given an input sentence of length N and an aspect of length L, these

can be represented as sequences of tokens S = [s1, s2, ..., sN ]T and Sa =
[si, si+1, ..., si+L]T , respectively. For each word, which is in the WordPiece
vocabulary [36], the BERT Uncased assigns a predefined word id. As there
might be some domain specific words which are not in the vocabulary, the
model contains 1000 empty slots which can be used to overcome this issue.
The input sentence is converted into a tensor of shape [V x N x d], where
V is number of layers (12 for BERT Base and 24 for BERT Large), N is
the length of a sentence, and d is the length of an embedding vector (768
for BERT Base and 1024 for BERT Large). Summing the last four layers is
shown to produce favorable results [18]. Hence, the embedded sentence and
the embedded aspect are given by:

E = [e1, e2, ..., eN ]T ∈ RN×d, (1)

EA = [ei, ei+1, ..., ei+L]T ∈ RL×d, (2)
respectively.

The sentence S is split into two parts: from the beginning of the sentence
to the end of the aspect (SLS) and from the beginning of the aspect to the
end of the sentence (SRS). Their respective embedded representations are:

ELS = [e1, ..., ei−1, ei, ..., ei+L]T ,
ERS = [ei, ..., ei+L, ei+L+1, ..., eN ]T .

(3)

3.2.2. Bidirectional Context Attention Mechanism
A potential flaw of the unidirectional gated recurrent unit (presented

as a sufficient method to infer relationships among words in [13]) is that
it accounts only for information produced by processing words in forward
manner. As a result, importance of each word is not completely determined.

The problem can be handled by the bidirectional recurrent neural net-
works (BRNN) which incorporate both past (words which are before the
current word) and future (words which are after the current word) informa-
tion to infer the attention weight for every word in a sentence.

We provide an overview of the unidirectional gated recurrent unit (GRU)
[16] and the bidirectional gated recurrent unit (BGRU) in order explain the
bidirectional context attention module. Influence of a previous hidden state
hn−1 on a newly generated memory h̃n is determined by the reset gate rn
in the gated recurrent unit. The new hidden state hn is then constructed
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from the output of the previous hidden state hn−1 and the new memory h̃n
controlled by the update gate un:

rn = σ(enWr + hn−1Ur + br),
un = σ(enWu + hn−1Uu + bu),
h̃n = tanh(enWh + (rn � hn−1)Uh + bh̃),
hn = un � hn−1 + (1− un)� h̃n,

(4)

where � represents the element-wise multiplication, σ and tanh are the sig-
moid and hyperbolic tangent functions, respectively, en ∈ R1×d is a word
embedding vector, rn ∈ R1×d and un ∈ R1×d are the reset and update gates,
and h̃n ∈ R1×d and hn ∈ R1×d are the new memory and the new hidden state,
respectively. Wr ∈ Rd×d, Ur ∈ Rd×d, Wu ∈ Rd×d, Uu ∈ Rd×d, Wh ∈ Rd×d,
Uh ∈ Rd×d are weight matrices and br ∈ R1×d, bu ∈ R1×d, bh̃ ∈ R1×d are
bias vectors. An alternative to GRU is the long short-term memory model
(LSTM) [37], which introduces additional flexibility. We have used GRU
instead of LSTM due to its reduced complexity that enables a shorter com-
putation time.

The bidirectional gated recurrent unit (BGRU) is created by applying
GRU from both ends of a sequence and then combining their final states into
one:

−→
hn = f(−→Θ | en,

−−→
hn−1),

←−
hn = f(←−Θ | en,

←−−
hn+1),

hn = g(−→hn,
←−
hn),

(5)

where −→hn and ←−hn are hidden states obtained from the forward and backward
directions, en is the new input, −→Θ and ←−Θ are parameters to be optimized
(here, two sets of weight matrices and bias vectors described in Equation 4),
f(·) is the unidirectional recurrent neural network (here, GRU) and g(·) is the
activation function combining −→hn and ←−hn. Here, the g(·) function is defined
as follows:

hn = tanh(−→hnWfw +←−hnWbw + bbi), (6)

where Wfw ∈ Rd×d and Wbw ∈ Rd×d are weight matrices and bbi ∈ R1×d is
a bias vector. The hyperbolic tangent activation function is used instead of
the classical sigmoid due to its better performance [38].

The bidirectional gated recurrent unit separately transforms the left and
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right embedded sentence parts into the final hidden states:
HLS = [h1, ..., hil−1, hil , ..., hil+L]T ,
HRS = [hir , ..., hir+L, hir+L+1, ..., hN ]T .

(7)

The multilayer perceptron is then utilized to assign a bidirectional context
attention weight for each word:

βl = σ(hlW1 + b1) + bl,

βr = σ(hrW2 + b2) + br,
(8)

βLS = [β1, ..., βil , ..., βil+L]T ,
βRS = [βir , ..., βir+L, ..., βN ]T ,
βA = [βil

+βir

2 , ...,
βil+L+βir+L

2 ]T ,
βLC = [β1, ..., βi−1]T ,
βRC = [βi+L+1, ..., βN ]T ,
β = [βLC , βA, βRC ]T ,

(9)

where W1 ∈ Rd×1 and W2 ∈ Rd×1 are weight matrices, b1 ∈ R and b2 ∈ R are
biases, and bl ∈ R and br ∈ R are hyperparameters.

As βLS and βRS both contain aspect information (namely, [βil , ..., βil+L]T
and [βir , ..., βir+L]T ), the final aspect weight βA is constructed as an average
of their respective parts. The left and right context weights (βLC and βRC ,
respectively) are then obtained by excluding aspect information. The bidi-
rectional context attention weights β ∈ RN×1 are produced by concatenating
the left context, aspect, and right context attention weights.

The weighted memory Mw = [mw1 , ...,mwN
]T ∈ RN×d is constructed to

incorporate relations between a word and its context. Each element mwn ∈
R1×d is calculated as follows:

mwn = βtiled � en, (10)

where βtiled ∈ R1×d is formed by replicating an element β ∈ R d times and
� represents the element-wise multiplication. The weighted memory Mw is
then fed into the sentence-level content attention module.

3.2.3. Sentence-Level Content Attention Module
The sentence-level content attention module captures the global view of

a sentence by integrating the weighted memory with the explicit aspect and
sentence representations.
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Vector representations produced by averaging all word embedding vectors
have been shown to be an effective representation technique in the past [39].
Thus, aspect and sentence’s summaries are given by:

va = 1
L

L∑
l=1

el, vs = 1
N

N∑
n=1

en. (11)

Then a word attention score cn is computed for every word in a sentence:

cn = tanh(mwnW3 + vaW4 + vsW5 + b3)W6, (12)

where mwn ∈ R1×d is the weighted memory slice of the word sn, va ∈ R1×d

and vs ∈ R1×d are the aspect and sentence representations, respectively,
W3 ∈ Rd×m, W4 ∈ Rd×m, W5 ∈ Rd×m, W6 ∈ Rm×1 are weight matrices and
b3 ∈ R1×m is a bias vector.

By means of the softmax function every word attention score is converted
into a word attention weight:

αn = exp(cn)/
N∑
j=1

exp(cj) (13)

producing a sentence attention weight vector α = [α1, ..., αN ]T ∈ RN×1. The
locally weighted memory is weighted using the newly constructed attention
weights that results in a weighted embedding sentence vector vwe ∈ R1×d:

vwe = αTMw (14)

where α = [α1, ..., αN ]T ∈ RN×1, Mw ∈ RN×d.

3.2.4. Classification Module
A combination of explicit relationships between the weighted embedding

sentence vector vwe and the aspect representation va, and the former vec-
tor vwe and the sentence representation vs, generated by the classification
module, support model’s ability to generalize:

vsw = tanh(vsW7 + vweW8 + b4),
vaw = tanh(vaW9 + vweW10 + b5),
vo = tanh(vswW11 + vawW12 + b6),

(15)

where W7 ∈ Rd×d, W8 ∈ Rd×d, W9 ∈ Rd×d, W10 ∈ Rd×d, W11 ∈ Rd×k, and
W12 ∈ Rd×k are weight matrices, b4 ∈ R1×d, b5 ∈ R1×d, and b6 ∈ R1×k are bias
vectors, va ∈ R1×d and vs ∈ R1×d are the aspect and sentence representations,
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and vwe ∈ R1×d is the weighted embedding sentence vector.
The output vector vo ∈ R1×k is fed into two 1D convolutional layers

(CONV 1D) with stride = 1 and padding = SAME to extract meaning
from the weighted embedding sentence vector.

conv1 = tanh(CONV 1D(vo, kernel1) + bconv1),
conv2 = tanh(CONV 1D(conv1, kernel2) + bconv2),

(16)

where kernel1 and kernel2 are kernels ([kernel_size, input_units = k,
output_units = q] and [kernel_size, input_units = q, output_units = q],
respectively), bconv1 ∈ R1×q and bconv2 ∈ R1×q are bias vectors.

An illustration of 1D CNN is given in Figure 1. A horizontal sequence of
black rectangles represents an input vector, a striped black block - a convo-
lutional kernel, a checked black block - an output vector. How many blocks
to the right the kernel is pushed is determined by stride, while padding =
SAME ensures the same dimensions of input and output vectors.

Figure 1: Given an input vector (a sequence of black rectangles) and a kernel (a black
striped rectangle), their 1D convolution is represented as a sequence of checked black
rectangles. Both parts have the same input vector of length 8, kernel_size = 3, and
stride = 1. However, part a) does not use any padding (padding = 0), whereas part b)
has padding = SAME. The same dimensions are achieved by appending enough zeros at
the beginning and at the end of the input vector.

The output conv2 ∈ R1×q is converted into a vector vL ∈ R1×|C| by the
linear layer:

vL = conv2W13 + b7, (17)

where |C| is the number of possible aspect polarity categories, W13 ∈ Rq×|C|

is a weight matrix and b7 ∈ R1×|C| is a bias vector.
Finally, aspect’s polarity probabilities p ∈ R1×|C| are then obtained by

applying the softmax function on the output vector of the linear layer vL:
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p = softmax(vL). (18)

3.2.5. Regularization and Loss Function
The model’s complexity is controlled by employing the dropout tech-

nique. An additional method that has been used to reduce overfitting is L2
(Tikhonov) regularization. The cross-entropy loss is chosen as the objective
function:

loss = −
∑
C

∑
S

yc,s ln(pc,s) + λ||Θ||22, (19)

where C is the set of polarity categories, S are the training examples, pc,s ∈
[0, 1] is the estimated probability that a given aspect in a sentence s belongs
to a category c, yc,s ∈ B is the true probability that the aspect in the sentence
s is in the category c, λ is the weight of the L2-regularization term, and Θ is
the parameter set which contains all weight matrices introduced previously.

4. Data

The Special Interest Group on the Lexicon of ACL (SIGLEX) has made
the data publicly available in terms of an annually held SemEval (Seman-
tic Evaluation) workshop. We make use of “Subtask 1 Restaurant Domain
English Training Data” (train dataset 2016) and “Subtask 1 Restaurant Do-
main English Gold Annotations Data” (test dataset 2016) from the SemEval
2016 Task 5 [6]. Additionally, we utilize “2015 ABSA Restaurant Reviews
- Train Data” (train dataset 2015) and “2015 ABSA Restaurants Reviews -
Test Data - Gold Annotations” (test dataset 2015) from the SemEval 2015
Task 12 [5]. Every opinion in a review sentence has an aspect (target), aspect
category (category), character-wise location of an aspect (from and to), and
the aspect’s polarity value (polarity). An example is shown in Figure 2.

It can be seen in Table 1 that data is skewed and positive reviews form
the majority class in training and test datasets. The bar charts in Fig-
ure 3 depict aspect category distributions. The most dominant category is
“food#quality”.

The following normalization procedure is performed. We replace all upper
case letters by their lower case counterparts, change “&quot;”, “&apos;” and
“&amp;” into a double quote symbol (”), an apostrophe (’), and the word
“and”, respectively. Furthermore, we strip blank spaces, punctuation signs,
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<sentence id="en_PagodaRestaurant_478006817 :4">
<text>Nice ambience , but h igh ly over rated p lace .</ text>
<Opinions>

<Opinion ta r g e t="ambience " category="AMBIENCE#GENERAL"
po l a r i t y=" p o s i t i v e " from="5" to="13"/>

<Opinion ta r g e t="p lace " category="RESTAURANT#GENERAL"
po l a r i t y="negat ive " from="36" to="41"/>

</Opinions>
</sentence>

Figure 2: Example data snippet.

Negative Neutral Positive Total
Freq. % Freq. % Freq. % Freq. %

Train data 2016 488 25.97 72 3.83 1319 70.20 1879 100
Test data 2016 135 20.77 32 4.92 483 74.31 650 100
Train data 2015 280 21.89 36 2.81 963 75.29 1279 100
Test data 2015 207 34.67 37 6.20 353 59.13 597 100

Table 1: Polarity distribution in train and test datasets

Figure 3: Aspect categories in train and test datasets.
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and numbers. Sentences having only implicit aspects (target=“NULL”) are
left out, reducing our train and test datasets by approximately 25%. The im-
plicit aspects are not considered by our model. Moreover, sentences without
Opinions are also excluded (up to 5% from train and test datasets) without
any loss, as they are irrelevant for aspect-based sentiment analysis. Sentences
containing several aspects are treated as separate instances. Moreover, the
train dataset is split into 75/25 proportions for training and validation (hy-
perparameter search) purposes. To be used in conjunction with our domain
ontology, words are tokenized and lemmatized.

5. Performance Evaluation

We compare the performance of ALDONAr to other benchmark models.
The lexicalized domain ontology classifier (Ont) proposed by [10] is limited
to Negative and Positive aspect polarity values. In case it does not provide
a definite prediction, the majority class is assigned (here, Positive).

Along with simpler neural attention models we evaluate the state-of-the-
art CABASC which is based on the context attention model [13]. BaseA
exploits the content attention mechanism [13], BaseB uses the sentence-level
content attention model [13], while BaseC employs the sentence-level position
attention mechanism [13].

Furthermore, we modified the context attention mechanism and intro-
duced other reference models. By replacing the unidirectional gated recu-
rrent unit with the unidirectional long short-term memory model, we created
CTX-LSTM [8]. Substitution of the mentioned model with the bidirectional
long short-term memory module resulted in CTX-BLSTM [8]. Similarly, we
introduced CTX-BGRU which utilizes the bidirectional gated recurrent unit
[8]. Additionally, the Deep Bidirectional Gated Recurrent Unit (DBGRU)
[8] and A Lexicalized Domain Ontology and a Neural Attention model (AL-
DONA) [8] have been assessed. ALDONAr-base is obtained substituting
BERT Large with BERT Base in ALDONAr.

Performance of ALDONAr and all methods mentioned above have been
summarized in Table 2. Accuracy has been chosen as a common evaluation
criterion for SemEval assignments. It is not surprising that higher accuracy
has been achieved by more sophisticated techniques, as they tend to capture
various data peculiarities unavailable to less intricate models. This is mainly
caused by additional flexibility provided by the neural attention layers.
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2016 2015
Train accuracy Test accuracy Train accuracy Test accuracy

Ont 75.5 77.4 79.8 66.2
BaseA 87.7 84.6 87.7 76.4
BaseB 87.8 84.6 85.4 78.2
BaseC 85.3 83.8 90.4 79.2
CABASC 85.3 84.8 89.0 77.7
CTX-LSTM 86.5 84.6 91.6 77.7
CTX-BGRU 86.0 85.4 86.0 75.9
CTX-BLSTM 86.0 85.2 85.7 75.9
DBGRU 91.1 85.5 85.9 77.4
ALDONA 90.7 86.1 88.8 80.6
ALDONAr-base 88.8 86.5 89.8 82.2
ALDONAr 93.1 87.1 92.7 83.8

Table 2: Percentage classification accuracy for train and test datasets achieved by various
models

Compared to our previous research from [8], ALDONAr includes the ad-
vanced Adam optimizer [19] (β1 = 0.9, β2 = 0.999), L2 norm regularization
term (λ = 0.01), and normally (N(0, 0.0152)) initialized weight matrices. We
have also replaced GloVe with BERT Large word embeddings and introduced
two 1D CNN layers (stride = 1, padding = SAME, kernel_size = 2).
Other hyperparameters are br = bl = 0.5, d = 1024, m = 300, q = 256,
k = 128, dropout_probability = 0.3, and batch_size = 128. We have reim-
plemented all benchmark models and introduced their stable versions. Based
on the accuracy reported in Table 2 ALDONAr is the best performing model.

Hyperparameters (dropout_probability, batch_size, β1, β2, kernel_size,
stride, padding, m, q, k, initialization of Normal distribution) are obtained
using the grid search method and evaluated based on the accuracy on the
validation set (25% of the train dataset). The hyperparameter d is deter-
mined by the length of the used word embedding vectors, whereas br and bl
are taken as given in [13].

As it can be observed in Figure 4, ALDONAr can handle complex sen-
tences, where sentiment is rather implicitly expressed. The model assigns
similar weights to all words, showing their almost uniform importance deriv-
ing the polarity value (negative) of “margaritas” (because the whole sentence
conveys the meaning and not a specific word). However, the word “either” is
stonger emphasized, which indicates that it plays a major role in the given
sentence (as backed also by intuition).
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Figure 4: ALDONAr attention visualization.

6. Conclusion

In this paper, we proposed a new model called ALDONAr that extends
the 2-stage hybrid model for sentence-level aspect-based sentiment classi-
fication ALDONA. As ALDONA, ALDONAr is constructed to determine
aspect’s polarity by means of a lexicalized domain ontology reasoner and
statistical relations extracted by a neural attention model. Differently than
ALDONA, ALDONAr uses a more advanced optimizer, a regularizer, a dif-
ferent model initialization, as well as a CNN-boosted classification module
and BERT Large word embeddings. Using two standard datasets, it has been
shown that ALDONAr provides better results (in terms of accuracy) than
ALDONA.

Future research can concentrate on classification of implicit aspects. For
this purpose, one could identify the most similar aspect words which could
serve as proxies for aspects. Moreover, expansion of the lexicalized domain
ontology would allow one to capture new concept relationships that could
potentially lead to better classification accuracy. Thus, we plan to investi-
gate semi-automatic methods for domain ontology building in our sentiment
analysis context.
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