
International Journal of Web Engineering and Technology, Vol. x, No. x, xxxx 1

Temporal Optimizations and Temporal
Cardinality in the tOWL Language

Viorel Milea*
Flavius Frasincar
Uzay Kaymak

Econometric Institute,
Erasmus University Rotterdam,
P.O. Box 1738, 3000 DR Rotterdam, the Netherlands
Fax: +31-10-4089162
E-mail: {milea,frasincar,kaymak}@ese.eur.nl
*Corresponding author

Geert-Jan Houben

Web Information Systems Group,
Software Technology Department,
Delft University of Technology,
PO Box 5031, 2600 GA Delft, the Netherlands
Email: g.j.p.m.houben@tudelft.nl

Uzay Kaymak is also associated with the
School of Industrial Engineering,
Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, the Netherlands

Abstract: The tOWL language is a temporal Web ontology language
based on OWL-DL without nominals. The language enables the
representation of time and time-related aspects, such as state
transitions. The design choices of the language pose new challenges
from a temporal perspective. One such challenge is the representation
of temporal cardinality. Another challenge consists of optimizing the
temporal representations in order to reduce the number of axioms.
One such optimization is temporal coalescing, which merges concepts
that are associated with time intervals that either meet or share at
least one instant with each other. In this paper we formally introduce
these concepts into the tOWL language and illustrate how they can be
applied.

Keywords: tOWL, temporal coalescing, temporal cardinality.

Biographical notes: Viorel Milea obtained the M.Sc. degree in
Informatics & Economics from Erasmus University Rotterdam, the
Netherlands, in 2006. Currently, he is working towards his Ph.D. degree
at the Erasmus University Rotterdam, the Netherlands. The focus of
his Ph.D. is on employing Semantic Web technologies for enhancing

Copyright c© 2009 Inderscience Enterprises Ltd.

2 V. Milea, F. Frasincar, U. Kaymak and G.J. Houben

the current state-of-the-art in automated trading with a focus on
processing the information contained in economic news messages and
assessing its impact on stock prices. His research interests cover areas
such as Semantic Web theory and applications, intelligent systems in
finance, and nature-inspired classification and optimization techniques.

Flavius Frasincar obtained the M.Sc. degree in computer science
from Politehnica University Bucharest, Romania, in 1998. In 2000,
he received the professional doctorate degree in software engineering
from Eindhoven University of Technology, the Netherlands. He got
the Ph.D. degree in computer science from Eindhoven University of
Technology, the Netherlands, in 2005. Since 2005, he is assistant
professor of information systems at Erasmus University Rotterdam, the
Netherlands. He has published in numerous conferences and journals
in the areas of databases, Web information systems, personalization,
and the Semantic Web. He is a member of the editorial board of the
International Journal of Web Engineering and Technology.

Uzay Kaymak received the M.Sc. degree in electrical engineering,
the Degree of Chartered Designer in information technology, and
the Ph.D. degree in control engineering from the Delft University
of Technology, Delft, the Netherlands, in 1992, 1995, and 1998,
respectively. From 1997 to 2000, he was a Reservoir Engineer with Shell
International Exploration and Production. He is currently Professor
of Intelligence and Computation in Economics with the Econometric
Institute, Erasmus University Rotterdam, the Netherlands. He is also
affiliated with the School of Industrial Engineering of the Technical
University of Eindhoven. Prof. Kaymak is an associate editor of IEEE
Transactions on Fuzzy Systems and is a member of the editorial board
of several journals.

Geert-Jan Houben holds a doctorate in computer science from the
Eindhoven University of Technology (TU/e), the Netherlands (1990).
Since then he has been working as an assistant and associate professor
at the TU/e, as an IT-consultant with several consultancy firms in
the Netherlands, as a guest-professor at the University of Antwerp,
Belgium, as a guest-researcher at the Centre for Mathematics and
Computer Science (CWI), the Netherlands, and as a full professor
in information systems at the Free University of Brussels (VUB),
Belgium. Since the summer of 2008 he is working as a full
professor in Web-based information systems at Delft University of
Technology (TUD), the Netherlands, performing research on large-scale
information systems, specifically information systems that involve Web
and Semantic Web technology. He is member of editorial boards such
as IJWET, IJWS or ACM TWEB.

1 Introduction

tOWL is a temporal Web ontology language based on the SHIN (D) description
logic, a subset of OWL-DL (OWL-DL without nominals) (Milea et al., 2007, 2008;
Frasincar et al., 2010). It addresses shortcomings of OWL-DL (Patel-Schneider
et al., 2004) by enabling temporal representations in ontologies. The tOWL
language is focussed on the representation of concrete time, in the form of instants

Temporal Coalescence and Temporal Cardinality in the tOWL Language 3

and intervals, and change, such as involved in the representation of processes.
For the representation of concrete time, the tOWL language relies on a concrete
domains extension to the language. For the representation of change, tOWL relies
on a four-dimensional representation based on fluents and timeslices.

The language enables different temporal representations in ontologies, from
more simple aspects such as the change in the attribute value of a property, to
more complex aspects such as processes and the associated state transitions. Such
representations are not possible in OWL-DL as this ontology language does not
provide any semantics of time. Therefore, any representation of change or processes
in OWL-DL will be limited by static semantics, and will not enable any inference
related to the temporal aspects of the representation. In a tOWL representation of
a process, for example, one could infer the state of the process in which an entity
finds itself based on information of the states an entity has already transitioned.

In this paper we develop the tOWL language further by discussing temporal
coalescing in this context, and increasing the expressiveness of the language
through temporal cardinality. Temporal coalescing is an operation similar to
duplicate elimination in databases, applied to a temporal context (Bohlen et al.,
1996). In the case of the tOWL language, this relates to merging timeslices that
represent the same relation over time intervals that meet or share at least one
instant. The motivation for temporal coalescing in tOWL knowledge bases is two-
fold. One aspect relates to the proliferation of objects in the knowledge base,
inherent to a timeslice approach where new timeslices are created every time
something is changing. By temporally coalescing the knowledge base, the number
of timeslices can be greatly reduced. Another aspect relates to posing temporal
queries upon the knowledge base.

Representing change by means of a 4d approach based on timeslices and fluents
in the tOWL language also poses some interesting challenges to some of the
static OWL-DL concepts. One such concept is the cardinality construct, that is
employed in OWL for restricting the number of attribute values that a property
is allowed to take. For example, an imaginary hasBiologicalFather property in
OWL-DL, indicating the individual representing the biological father of another
individual, should have a cardinality of exactly one, as any person can have
exactly one biological father. Such a cardinality construct is also relevant from
a temporal context, where one might want to represent that, at any point in
time, a person may have exactly one biological father. Introducing the temporal
cardinality construct in tOWL increases the expressiveness of the language when
regarded from a temporal context and allows for more accurate representations of
the world.

Several optimizations are possible in the tOWL language, optimizations that
can be related directly to the language or optimizations at the reasoner level. At
language level, a possible optimization relates to making a distinction between
datatype fluents and object fluents. By not requiring the creation of timeslices
for datatypes everytime a concrete value is changing, the number of timeslices
is considerably reduced. Another optimization at language level could involve
the definition of the time for which timeslices hold as a union of intervals, thus
preventing the creation of separate timeslices for each interval in the union and
reducing the number of timeslices in the knowledge base. This latter optimization
is not considered in the current work. At reasoner level we consider temporal

4 V. Milea, F. Frasincar, U. Kaymak and G.J. Houben

coalescing as a technique for reducing the number of timeslices in the knowledge
base and enabling a large number of queries to be correctly answered when posed
on the coalesced knowledge base.

Temporal cardinality and temporal coalescence are also of practical relevance
in a Semantic Web context. The concept of temporal cardinality, for example,
can be employed in a variety of applications, such as online retailers or corporate
knowledge bases, to name a couple. In the case of online stores, one could envision
restrictions posed in the store’s knowledge base, such as each customer having
exactly one customer number at any point in time. In corporate knowledge bases
one might want to enforce the restriction that at any point in time, an employee
has at least one direct manager. In the same context, temporal coalescing comes
to increase the number of queries that can be correctly answered when posed upon
a coalesced knowledge base. For example, one employee, e.g., consultant, works
for a company for two years, during which period he has a temporary contract.
In a tOWL knowledge base, timeslices are instantiated for this fact and the
employment relationship is represented. After two years, the employee’s contract
is extended for an additional period of three years. In the tOWL knowledge base,
new timeslices are created to represent this employment relationship for a period of
three years. Provided the tOWL knowledge base is uncoalesced, queries posed by,
for example, clients of the company on the company’s website, seeking to retrieve
the consultants with at least four years of experience in the company, will fail to
retrieve the employee discussed in this paragraph, since no relationship describes
the employment relationship for a period longer than three years. The coalesced
knowledge base would enable this consultant to be recongnized as an individual
working for the company for five years.

This paper is organized as follows. In Section 2 we discuss work related to
the research presented in this paper. In Section 3 we present an overview of
the tOWL language and illustrate how the envisioned optimizations and new
constructs that we seek to introduce affect the language. In Section 4 we present
temporal coalescing in the context of the tOWL language. Section 5 discusses
temporal cardinality for the tOWL language. Finally, we conclude in Section 6.

2 Temporal Coalescing and Temporal Cardinality

In the context of the Semantic Web, a number of approaches have already
been designed, addressing different temporal aspects in relation to ontology
languages. A rather extensive approach towards extending ontology languages with
a temporal dimension is Temporal RDF (Gutierrez et al., 2007). This work is
similar to the tOWL language as it concerns the ability to represent temporal
information in ontologies, but differs in that the language considered is the
Resource Description Framework (RDF). Another approach is OWL-Time, which
focusses on OWL rather than RDF. The initial purpose behind the design of a
time ontology (OWL-Time) (Hobbs et al., 2004) was to represent the temporal
content of Web pages and the temporal properties of Web Services. This approach
is rather extensive in describing quantitative time and the qualitative relations that
may exist among instants and intervals. Being based on OWL-DL, it employs the
underlying SHOIN (D) description logic and thus relies on datatypes rather than

Temporal Coalescence and Temporal Cardinality in the tOWL Language 5

Name Employer Time

John Yahoo [01/01/2001 14/02/2003)
John Yahoo [15/02/2003 16/07/2005)

Table 1 Uncoalesced relation.

Name Employer Time

John Yahoo [01/01/2001 16/07/2005)

Table 2 Coalesced relation.

concrete domains for the description of instants and intervals, while tOWL uses
concrete domains for the representation of concrete time. The problem of change
in ontologies has also been addressed in the context of ontology evolution, such as
in (Noy et al., 2004) and (Haase et al., 2005). However, the problem of ontology
evolution relates to changing TBoxes, while tOWL focusses on representing change
at ABox level. These approaches do not attempt to deal with concepts such as
temporal cardinality or temporal coalescing.

The concept of temporal coalescing can best be illustrated with the example
provided in tables 1 and 2. Table 1 describes John as being an employee of Yahoo
over two adjacent intervals. Clearly, queries posed to this knowledge base of the
form employees of Yahoo who have worked for this employer for at least 3 years
cannot be answered correctly in the case of John, since both intervals associated
with this description are shorter than 3 years. In such cases, and in cases where
the intervals share at least one instant instead of being adjacent, in the presence of
equivalent attribute values, the relations can be summarized into a single relation
without loss of information. The desired result is presented in Table 2.

A similar definition of coalescence is employed in the XBit datamodel (Wang
et al., 2004), while a discussion of temporal coalescence in RDF is provided
in (Grandi, 2009). The problem of temporal coalescence was addressed in the
context of temporal databases (Bohlen et al., 1996; Dyreson, 2003). In (Bohlen
et al., 1996), the authors address the coalescing of timestamped tuples where the
attribute values are equal and the timestamps associated with the tuples either
meet or overlap (for a formal description of the temporal relations that may
exist between time intervals, such as meet and overlap, we refer the reader to
(Allen, 1983)). As is the case for this paper, in (Bohlen et al., 1996) the focus
is on valid time. It should also be noted that the tOWL language, our current
context for temporal coalescing, only focuses on valid time in the representation
of temporal relations. The work in (Bohlen et al., 1996) is similar to parts of the
work presented in this paper, with the crucial difference that we address temporal
coalescence in the context of timeslices connected by fluents, rather than tuples
with identical attribute values. Thus, our focus is on those timeslices that represent
the same individuals and are connected by equivalent fluents, and hold over
temporal intervals that either meet or share at least one instant amongst them.
Finally, an SQL implementation of temporal coalescence for Oracle is provided in
(Bohlen et al., 1996).

6 V. Milea, F. Frasincar, U. Kaymak and G.J. Houben

Since tOWL allows different time granularities in the language, the approach
described in (Dyreson, 2003) presents some overlap with the current work. The
authors discuss the problem of temporal coalescing, and also take into account
the possibility that the coalesced relations may be associated with timestamps at
different levels of granularity.

Temporal cardinality is a constraint used to limit the number of values
an attribute can have over the life-time of its entity (?Zimanyi et al., 1997;
Spaccapietra et al., 1998). The problem of expressing temporal cardinality in
the context of the tOWL language has been preliminarily addressed in (Milea
et al., 2008). Here, the authors develop an approach for moving beyond the
expression of fluent cardinality, enabled by OWL, and represent cardinality also
when overlapping timeslices are involved. The issue of overlapping timeslices is also
briefly discussed in (Welty et al., 2006) in the context of a reusable OWL ontology
for fluents. A distinction can be made in terms of temporal cardinality between
snapshot cardinality, a temporal cardinality that holds over a limited period of
time, and lifetime cardinality, a constraint holding across the whole lifetime of
an entity (Tauzovich, 1991; Wijsen, 1999). The current work focuses on lifetime
cardinality. Some discussion on the concept of snapshot cardinality is also provided
in (Artale et al., 2010) in the context of the DL-Lite description logic. The same
concept in the context of the Temporal ER model is described in (Gregersen et al.,
2002).

3 The tOWL Language

In this section we provide a general description of the tOWL language. This
description is not meant to be exhaustive, and for more in-depth discussions of
tOWL we refer the reader to (Milea et al., 2007, 2008; Frasincar et al., 2010). This
description is presented in Section 3.1. A discussion of the issues that we address
in this paper relative to the tOWL language is presented in Section 3.2.

3.1 General Description of the Language

The tOWL language (Milea et al., 2007, 2008; Frasincar et al., 2010) is a
temporal Web ontology language based on the SHIN (D) description logic, an
expressive subfragment of OWL-DL (Patel-Schneider et al., 2004). An overview
of the different layers introduced by the tOWL language on top of OWL-DL is
provided in Figure 1. The language enables the representation of time and time-
related aspects, such as change. For the representation of time, the tOWL language
relies on concrete domains, and enables both instant-based as well as interval-
based representations, as well as the relations that may exist between instants
and intervals (such as Allen’s 13 interval relations (Allen, 1983) in the case of
intervals). For the representation of more complex aspects, such as change, the
tOWL language is designed around a 4-dimensional view of the world. In this
view, timeslices are employed to represent otherwise static OWL individuals across
temporal intervals, and fluents, a type of temporal property, are employed to
indicate what is changing. This design enables the representation of, for example,
processes, and the associated state transition axioms. An example of how a

Temporal Coalescence and Temporal Cardinality in the tOWL Language 7

O W L - D L

C o n c r e t e D o m a i n s

T e m p o r a l R e f e r e n c e
t O W L

4 d F l u e n t s

Figure 1 tOWL layer cake.

complex process, in this case a leveraged buyout process, can be represented in the
tOWL language is given in (Frasincar et al., 2010). The focus of the language is
solely on valid time, i.e., the time when an axiom is true in the real world.

The timeslices-based representation has the ability to determine, at any point
in time, what holds true. In order to employ this representation, one has to create
timeslices for the static individuals that are involved in a relation that is ephemeral
in nature. For example, if one wants to represent the changing CEO of a company,
and the ontology contains static individuals that represent both the person that is
a CEO, as well as the company, then timeslices have to be instantiated for both
these static concepts. Upon having done this, the two timeslices can be connected
by a fluent, such as the hasCEO fluent, to indicate that, over the time interval
associated with the timeslices, the two timeslices are in the hasCEO relationship.
This is illustrated in Figure 2.

In the example presented in Figure 2, two OWL classes have been defined,
namely Company and Person. For each of these classes, one individual is
instantiated, namely iGoogle, representing the company Google, an instance of the
Company class, and iEricSchmidt, representing the individual with the name Eric
Schmidt, an instance of the Person class. For each of these individuals, a timeslice
is instantiated, namely iGoogle TS1 and iEricSchmidt TS1, respectively. These
timeslices both hold over the same interval, iInterval1, a consequence of the design
of the tOWL language (fluents can only connect timeslices that hold over the same
interval), and thus represent the static individuals with which they are associated
over that interval. To denote that Eric Schmidt is the CEO of Google over the
period denoted by iInterval1, we connect the two timeslices by the hasCEO fluent.
In this way, we represent that Eric Schmidt was the CEO of Google over the
interval iInterval1 by employing two timeslices and a fluent property.

3.2 Representational and Reasoning Issues in the tOWL Language

Temporal coalescing is an operation similar to duplicate elimination in databases,
applied to a temporal context (Bohlen et al., 1996). In the case of the tOWL
language, this relates to merging timeslices that represent the same relation over
temporal intervals that either meet or share at least one instant with each other.
Both the case of meeting timeslices, as well as the case of overlapping timeslices,
are depicted in Figure 3.

8 V. Milea, F. Frasincar, U. Kaymak and G.J. Houben

o w l : C l a s s

C o m p a n y P e r s o n

i G o o g l e i E r i c S c h m i d t

r d f : t ype rd f : t ype

i G o o g l e _ T S 1 i E r i c S c h m i d t _ T S 1
h a s C E O

t o w l : t i m e S l i c e O f t o w l : t i m e S l i c e O f

t o w l : T i m e S l i c e

i I n te r va l1

t o w l : t i m e t o w l : t i m e

Figure 2 Representing change in tOWL.

i J o h n _ T S 1

i Y a h o o _ T S 1

t i m e

e m p l o y e e O f

i J o h n _ T S 2

i Y a h o o _ T S 2

e m p l o y e e O f

i J o h n _ T S 1

i Y a h o o _ T S 1

t i m e

e m p l o y e e O f

e m p l o y e e O f

i J o h n _ T S 2

i Y a h o o _ T S 2

M E E T

O V E R L A P

t1 t2 t3

t1 t3 t2 t4

Figure 3 tOWL coalesce candidates.

Temporal Coalescence and Temporal Cardinality in the tOWL Language 9

i J o h n _ T S 3

i Y a h o o _ T S 3

t i m e

e m p l o y e e O f

t 1 t 3 = t 4

Figure 4 tOWL coalesced timeslices.

The desired result of temporal coalescing in the case of the tOWL language is
depicted in Figure 4. Here we depict the cases of meeting as well as overlapping
timeslices, and the resulting, merged timeslice. For the case of meeting timeslices, a
new timeslice is created holding from the beginning timestamp of the timeslice that
appears chronologically first (t1), until the ending timestamp of the timeslice that
appears chronologically second (t3). Upon removal of the two original timeslices,
the knowledge base is simplified with no loss of information. The lack of loss of
information comes from the design of the language, since timeslices are not reused
in the representation of temporal information. Thus, when removing coalesced
timeslices, we do not encounter references to other timeslices (such as a fluent
relation between the removed timeslice and another timeslice in the knowledge
base) that might be lost once the coalesced timeslices are removed. This is due
to the fact that timeslices are created everytime something is changing, thus not
relying on the reuse of timeslices for representation purposes. For this reason, we
do not consider the problem of referential integrity (Widagdo, 2007; Steiner et al.,
1997) in our current approach, and assume that the timeslices that are coalesced
have no references to/from other timeslices.

The same procedure applies to the case of overlapping timeslices, where the
resulting, merged timeslice again holds from the beginning of the timeslice that
appears chronologically first (t1) until the end of the timeslice that appears
chronologically second (t4). A similar mechanism is applied when the intervals can
be described by the equal, starts, finishes, and during Allen relationships, as well
as the inverses of the latter three relationships.

The motivation for temporal coalescing in tOWL knowledge bases is two-fold.
One aspect relates to the proliferation of objects in the knowledge base, inherent
to a timeslice approach where new timeslices are created every time something is
changing. By temporally coalescing the knowledge base the number of timeslices
can be greatly reduced. Another aspect relates to posing temporal queries upon
the knowledge base. In the case of the employeeOf relationship where the two
timeslices meet, one could query whether John was an employee of Yahoo during
the [t1, t3) time interval. Since, in the original state, no relationship describes the
link between John and Yahoo over the whole time interval, but rather subintervals
hereof, this query would be evaluated as the empty set. The temporally coalesced
version of this knowledge base correctly describes John as being an employee of

10 V. Milea, F. Frasincar, U. Kaymak and G.J. Houben

i J o h n _ T S 1

i Y a h o o _ T S 1

t i m e

e m p l o y e e O f

e m p l o y e e O f

i J o h n _ T S 2

i G o o g l e _ T S 1

t1 t3 t2 t4

Figure 5 tOWL temporal cardinality example.

Yahoo during the whole time interval, thus enabling more queries on the knowledge
base than previously.

Representing change by means of a 4d approach based on timeslices and fluents
in the tOWL language also poses some interesting challenges to some of the
static OWL-DL concepts. One such concept is the cardinality construct, that is
employed in OWL for restricting the number of attribute values that a property
is allowed to take. For example, an imaginary hasBiologicalFather property in
OWL-DL, indicating the individual representing the biological father of another
individual, should have a cardinality of exactly one, as any person can have
exactly one biological father. Such a cardinality construct is also relevant from a
temporal context. We might want to state, returning to our employee example,
that John may be an employee of not more than one company, at a time. With
this assumption in mind, we depict an example violating this temporal cardinality
constraint in Figure 5. As can be observed from this depiction, there exists an
interval [t3, t2) over which John is both an employee of Yahoo, as well as Google,
thus violating our temporal cardinality constraint stating that John may be an
employee of at most one company, at any time (assuming that Google is different
from Yahoo).

The static cardinality construct that tOWL inherits from OWL-DL can be
applied directly to the fluent employeeOf, stating that this fluent may take at most
one value. However, as depicted in Figure 5, our cardinality constraint may be
violated in a temporal context without violating the static cardinality constraint
attached to the fluent, thus rendering the OWL-DL cardinality construct not
expressive enough in a temporal setting.

The motivation for the representation of temporal cardinality in tOWL
arises mainly from the increased expressiveness that this construct has to offer.
Returning to the employee example, many such situations can be pictured where
the concept of cardinality is not only relevant from the static perspective, but also
from the temporal one. Increasing the expressiveness of the language with temporal
cardinality will provide for more precise descriptions of the world, at least when
regarded from a temporal point of view.

Temporal Coalescence and Temporal Cardinality in the tOWL Language 11

i E r i c S c h m i d t _ T S 1 i E r i c S c h m i d t _ T S 2

i E r i c S c h m i d t

t o w l : t i m e S l i c e O f

Figure 6 Individual equivalence in tOWL.

4 Temporal Coalescing in tOWL

In this section we introduce temporal coalescing in the tOWL language. Temporal
coalescing implies merging timeslices that represent the same individual and
are connected to timeslices of the same individual by the same fluent, over
temporal intervals that either meet or share at least one instant amongst them.
This operation is similar to duplicate elimination in databases (Bohlen et al.,
1996). Temporal coalescing in tOWL has two desirable consequences, namely the
reduction of the proliferation of objects in the knowledge base, and resolving
temporal queries in an appropriate way.

We introduce the concept of individual equivalence, which is illustrated in
Figure 6, where the timeslices iEricSchmidt TS1 and iEricSchmidt TS2 are
individual equivalent.

Definition 1 (Individual equivalence)
Two timeslices are individual equivalent (ie) if they are connected to the same
static individual, i.e., they represent the same individual over arbitrary temporal
intervals.

ie(m, n) ≡ m, n ∈ towl:TimeSliceI ∧ (∃p, q ∈ (¬(towl:TimeSlicet

towl:Intervalt rdfs:Literal))I , (m, p) ∈ towl:timeSliceOfI

∧(m, q) ∈ towl:timeSliceOfI ∧ (p, q) ∈ owl:sameAsI)

We also introduce the concept of fluent equivalence and illustrate this concept
in Figure 7, where iEricSchmidt TS1 and iEricSchmidt TS2 are fluent equivalent.

Definition 2 (Fluent equivalence)
Two timeslices are fluent equivalent (fe) if the values of any object fluent that
is connected to these timeslices are individual equivalent and the values of any
datatype fluent are the same.

fe(m, n) ≡ m, n ∈ towl:TimeSliceI ∧ (∀f ∈ towl:FluentObjectPropertyI

∃p, q ∈ towl:TimeSliceI (m, p) ∈ fI ∧ (n, q) ∈ fI ∧ ie(p, q)) ∧

(∀f ∈ towl:FluentDatatypePropertyI ∃p, q ∈ owl:DatatypeI

(m, p) ∈ fI ∧ (n, q) ∈ fI ∧ (p = q))

12 V. Milea, F. Frasincar, U. Kaymak and G.J. Houben

i G o o g l e _ T S 1 i G o o g l e _ T S 2

i E r i c S c h m i d t _ T S 1 i E r i c S c h m i d t _ T S 2

i E r i c S c h m i d t

t o w l : t i m e S l i c e O f

h a s C E O h a s C E O

Figure 7 Fluent equivalence in tOWL.

Finally, we introduce the concept of temporal relatedness as a temporal
relationship between timeslices. This concept has already been illustrated in Figure
3, where, for example, the timeslices iJohn TS1 and iJohn TS2 are temporally
related.

Definition 3 (Temporal relatedness)
Any pair of timeslices is temporally related (tr) if the intervals over which they
are defined can be described by one of following Allen’s interval relations: equal,
meet, overlaps, starts, during, or finishes. We use only the direct Allen relations
and not their inverses, as the order of timeslices m and n, and thus of variables
p and q, is not important here (we can always swap these to obtain the direct
relations if needed).

tr(m, n) ≡ m, n ∈ towl:TimeSliceI ∧ (∃p, q ∈ towl:TimeIntervalI

(m, p) ∈ towl:timeI ∧ (n, q) ∈ towl:timeI ∧

(p, q) ∈ allen:meetsI ∨ (p, q) ∈ allen:overlapsI ∨

(p, q) ∈ allen:startsI ∨ (p, q) ∈ allen:finishesI ∨

(p, q) ∈ allen:duringI ∨ (p, q) ∈ allen:equalI)

Having defined individual equivalence, fluent equivalence and temporal
relatedness, we can move on to introduce the concept of timeslices that are apt
for temporal coalescence, i.e., timeslices that can be merged into a new timeslice
representing the previous two timeslices over the union of the intervals over which
the latter are defined.

Definition 4 (Binary aptness for temporal coalescence)
Any pair of timeslices is apt for temporal coalescing (coal2) if the timeslices are
individual equivalent, fluent equivalent, and temporally related.

coal2(m, n) ≡ m, n ∈ towl:TimeSliceI ∧ ie(m, n) ∧ fe(m, n) ∧ tr(m, n)

Temporal Coalescence and Temporal Cardinality in the tOWL Language 13

Having defined aptness for temporal coalescence when two timeslices are
involved, we can define this aptness for each individual timeslice, such that, given
any timeslice in the knowledge base, it can be determined whether this timeslice
can be merged with any other timeslice that satisfies the given conditions.

Definition 5 (Unary aptness for temporal coalescence)
Any individual timeslice is apt for temporal coalescing (coal1) if there exists some
other timeslice such that the pair consisting of these two timeslices is apt for
temporal coalescing.

coal1(m) ≡ m ∈ towl:TimeSliceI ∧ (∃n ∈ towl:TimeSliceI coal2(m, n))

Provided that two timeslices, m and n satisfy the coal2(m, n) relationship, we
perform temporal coalescing according to the algorithm presented in Algorithm 1.
Starting from these 2 timeslices, we begin by creating a new timeslice that will
represent the coalesced relation over the merged time intervals, and attach the
static individual describing m and n to the new timeslice. Additionally, we merge
the intervals associated to m and n and attach the thus obtained interval to the
new timeslice. Finally, we attach all fluents describing the 2 timeslices to the newly
created timeslice, and complete the process by deleting the timeslices m and n

that initiated the process.

Algorithm 1
(∗ Temporal coalescing algorithm ∗)
Input: m and n timeslices which are apt for temporal coalescing
Output: p timeslice which is obtained by coalescing m and n

1. create new timeslice ts
2. attach the static individual linked to m and n as static individual of ts
3. start(i) = min(start(time(m)), start(time(n)))
4. end(i) = max(end(time(m)), end(time(n)))
5. attach interval i as interval of ts
6. for all fluents f attached to m
7. do attach fluents f to ts
8. delete timeslices m and n

5 Temporal Cardinality in tOWL

The concept of cardinality in OWL-DL, which we denote as static cardinality,
relates to the number of values that may be assigned to a property. It is used for
representing the number of attribute values that may describe, through some static
property, an OWL individual. In this static context, one might for example want
to represent that a bicycle has exactly two wheels, namely the front wheel and the
back wheel. Thus, when assigning attribute values to a property hasWheels, one
must invariably assign both a front wheel and a back wheel to the individual being
described. Static cardinality comes in three flavours. In addition to describing

14 V. Milea, F. Frasincar, U. Kaymak and G.J. Houben

the exact cardinality one might also define the minimum cardinality, i.e., the
minimum number of attribute values describing an individual through some
property, or, conversely, the maximum cardinality. Formally, these three concepts
can be described as in (Bechhofer et al., 2004):

• minCardinality: if stated to have the value a on a property P , with respect
to a class C, then any instance of C will be related through P to at least a

semantically distinct values (individuals or data values) (of which the type
may further be restricted by the range of P);

• maxCardinality: if stated to have the value a on a property P , with respect
to a class C, then any instance of C will be related through P to at most a

semantically distinct values (individuals or data values) (of which the type
may further be restricted by the range of P);

• cardinality: if stated to have the value a on a property P , with respect
to a class C, then any instance of C will be related through P to exactly
a semantically distinct values (individuals or data values) (of which the
type may further be restricted by the range of P). In other words, both a
minCardinality of a and a maxCardinality of a are simultaneously satisfied.

The static cardinality implies the ability to determine when timeslices are
equal, thus avoiding counting the latter more than once. Equality of timeslices can
be determined by the following formula, where two timeslices m, n are considered
to be equal if they hold over the same interval and describe the same static
individual.

equal(m, n) ≡ (∃o, p ∈ towl:TimeIntervalI (m, o) ∈ towl:timeI ∧

(n, p) ∈ towl:timeI ∧ (o, p) ∈ allen:equalI) ∧

(∃q, r ∈ owl:ClassI (m, q) ∈ towl:timeSliceOfI ∧

(n, r) ∈ towl:timeSliceOfI ∧ (q, r) ∈

(¬(towl:TimeSlicet towl:Intervalt rdfs:Literal))I)

In a temporal context in the tOWL language, the concept of static cardinality
can be employed to describe the cardinality of a fluent. Returning to the example
presented in Figure 2, the concept of static cardinality can be applied to the
fluent hasCEO, stating that this fluent can point to exactly one individual, since
a company may have only one CEO. This restriction would thus be violated when
we assign, for example, two different CEO’s to the same fluent holding for the
same timeslice. This is graphically depicted in Figure 8, where the left-hand side
represents a non-violating example of the static cardinality applied to a fluent, and
the right-hand side represents a violation of this restriction.

Thus, a straight-forward extension of the static cardinality concept might be
applied directly to fluents in a temporal setting, instead of static properties, and
maintain its semantics in the context of the tOWL language. However, due to
the timeslices representation employed in tOWL, this use of the static cardinality

Temporal Coalescence and Temporal Cardinality in the tOWL Language 15

i G o o g l e _ T S 1

i E r i c S c h m i d t _ T S 1

i G o o g l e _ T S 1

i E r i c S c h m i d t _ T S 1 i L a r r y P a g e _ T S 1

h a s C E O
h a s C E O

Figure 8 Static cardinality applied to fluents.

i G o o g l e _ T S 1

i E r i c S c h m i d t _ T S 1

t i m e

h a s C E O

h a s C E O

i G o o g l e _ T S 2

i L a r r y P a g e _ T S 1

t1 t3 t2 t4

Figure 9 Violation of hasCEO temporal cardinality constraint.

concept proves insufficient. For illustrating why such a concept is insufficient, we
consider the example already presented in Figure 5. Translating this to our current
hasCEO example results in the illustration presented in Figure 9.

As can be seen from this figure, the fluent cardinality constraint is not violated,
as, at all times, the hasCEO fluent is pointing to exactly one individual. However,
we can clearly see that over the time interval [t3, t2), the company Google has two
CEOs, which is against the spirit of the cardinality contraint that we envision (a
company may have exactly one CEO at a time). Thus, when discussing the concept
of cardinality in a temporal context, we deem it necessary to make a distinction
between two types of temporal cardinality.

1. Fluent cardinality: the (static) cardinality of the hasCEO fluent should be
equal to one, following the description above. In other words, the hasCEO
fluent must be associated to exactly one timeslice (of a static individual of
type Person) each time it is defined for a timeslice of an individual of type
Company. This issue can easily be addressed by employing the OWL-DL
cardinality construct, as shown in (Welty et al., 2006).

2. Overlapping timeslices: the (temporal) cardinality of the hasCEO fluent
should be equal to 1. In other words, at any point in time, the hasCEO
relation must be described by one timeslice of a static individual of type
Person.

Clearly, simply addressing fluent cardinality in a temporal context is insufficient
for expressing truly temporal cardinality constraints in tOWL. Therefore, we seek

16 V. Milea, F. Frasincar, U. Kaymak and G.J. Houben

to extend the static cardinality constructs presented in this section in a temporal
setting, and thus introduce the concepts of temporalMinCardinality, temporalMax-
Cardinality, and temporalCardinality. We define these concepts as follows.

Definition 1 (temporalMinCardinality)

Given a fluent property f , and a value a such that a ∈ N, we represent by
temporalMinCardinality(f,a) the restriction on timeslices of an arbitrary individual
so that f is defined such that, at any point in time, the number of individuals
that are associated to timeslices referred to by the fluents f is at least a.

Definition 2 (temporalMaxCardinality)

Given a fluent property f , and a value a such that a ∈ N, we represent by
temporalMaxCardinality(f,a) the restriction on timeslices of an arbitrary individual
so that f is defined such that, at any point in time, the number of individuals
that are associated to timeslices referred to by the fluents f is at most a.

Definition 3 (temporalCardinality)

Given a fluent property f , and a value a such that a ∈ N, we represent by
temporalCardinality(f,a) the restriction on timeslices of an arbitrary individual so
that f is defined such that, at any point in time, temporalMinCardinality(f,a) and
temporalMaxCardinality(f,a) simultaneously hold.

We next focus on giving a formal semantic representation of the three types
of temporal cardinality we introduced. In achieving this, we first define a function
g that, given a fluent f , a static individual i and a point in time t, returns the
number of different individuals j, for which f refers from a timeslice of i to a
timeslice of j, for an interval that includes t. The result of this function is a
natural number, obtained by counting the unique individuals obeying the above
constraints, as shown next.

g(f,i,t) = |{j ∈ (¬(towl:TimeSlicet towl:Intervalt rdfs:Literal))I |

∀x ∈ towl:TimeSliceI∃y ∈ towl:TimeSliceI ∧

s ∈ xsd:dateTimeI ∧ e ∈ xsd:dateTimeI ∧

p ∈ towl:TimeIntervalI ∧

(x, i) ∈ towl:timeSliceOfI ∧ (y, j) ∈ towl:timeSliceOfI ∧

(x, y) ∈ fI ∧ (y, p) ∈ towl:timeI ∧ (p, s) ∈ towl:startI ∧

(p, e) ∈ towl:endI ∧ s ≤ t < e}|

This function enables the definition of the three temporal constructs we
seek to introduce in the language, namely temporalMinCardinality, temporalMax-
Cardinality, and temporalCardinality. In the following, ≥T , ≤T , and =T denote
the three constructs we introduce, a is a natural number larger than 0, f denotes
a fluent and t denotes a point in time. It should be noted that the definition of
temporal cardinality includes (is stronger than) the definition of static cardinality.

Temporal Coalescence and Temporal Cardinality in the tOWL Language 17

Class(Company)

Class(Person)

Class(Person_TS partial TimeSlice

restriction(timeSliceOf someValuesFrom(Person)))

Class(Company_TS partial TimeSlice

restriction(timeSliceOf someValuesFrom(Company))

restriction(hasCEO someValuesFrom(Person_TS))

restriction(hasCEO temporalCardinality(1)))

Figure 10 Using temporal cardinality in tOWL abstract syntax.

(≥T a f)I = {x ∈ towl:TimeSliceI | ∃i ∈ (¬(towl:TimeSlicet

towl:Intervalt rdfs:Literal))I ,

∃p ∈ towl:TimeIntervalI , ∃s, e ∈ xsd:dateTimeI ∧

(x, i) ∈ towl:timeSliceOfI ∧ (x, p) ∈ towl:timeI ∧

(p, s) ∈ towl:startI ∧ (p, e) ∈ towl:endI ∧

∀t ∈ xsd:dateTimeI , s ≤ t < e, g(f,i,t) ≥ a}

(≤T a f)I = {x ∈ towl:TimeSliceI | ∃i ∈ (¬(towl:TimeSlicet

towl:Intervalt rdfs:Literal))I ,

∃p ∈ towl:TimeIntervalI , ∃s, e ∈ xsd:dateTimeI ∧

(x, i) ∈ towl:timeSliceOfI ∧ (x, p) ∈ towl:timeI ∧

(p, s) ∈ towl:startI ∧ (p, e) ∈ towl:endI ∧

∀t ∈ xsd:dateTimeI , s ≤ t < e, g(f,i,t) ≤ a}

(=T a f)I = (≥T a f)I ∩ (≤T a f)I

Returning to the hasCEO example presented in this section, the newly
introduced concepts can be employed for representing the fact that a company
may only have one CEO at a time. For representing this example we rely on
tOWL abstract syntax. Upon defining the two static OWL classes, Company and
Person, we define the class of all timeslices of a person, namely Person TS. The
class Company TS is defined as the class of all timeslices of an individual of type
Company for which the hasCEO fluent takes a value that is a timeslice of Person.
Finally, the temporal cardinality of the hasCEO fluent is defined to be equal to 1,
i.e., one company may have exactly one CEO at a time. It should be noted that,
since the formal definition of temporal cardinality includes static cardinality, there
is no need to additionally define the static cardinality of the hasCEO fluent.

18 V. Milea, F. Frasincar, U. Kaymak and G.J. Houben

6 Conclusions

In this paper we have introduced two novel concepts in the tOWL language:
temporal coalescing and temporal cardinality. The first concept, temporal
coalescing, ensures a reduction of the proliferation of objects in the knowledge
base, while also ensuring that a larger number of temporal queries can be resolved
than previously. Temporal cardinality comes to address the limitations of the
concept of static (OWL-DL) cardinality when timeslices are involved. Rather than
focussing on the range of a property, the temporal cardinality introduced in tOWL
involves overlapping timeslices that may violate a cardinality constraint, such as a
company with two CEOs at a moment in time.

Temporal coalescence, as introduced in this paper in the context of the tOWL
language, is a reasoner-based optimization aimed at reducing the number of
timeslices contained in the knowledge base. Although this does not impact the
representational power available to the user, we deem this optimization relevant
in a practical context, where the size of the knowledge is of crucial importance in
determining the speed of the applications based on the tOWL language. Also, it
allows to answer correctly more temporal queries than using tOWL without this
optimization.

As future work we focus on further extending the expressiveness of the
tOWL language in a temporal context, as well as the optimizations that may be
envisioned in such a context. A possible research direction is introducing multi-
dimensional time (e.g., transaction time, user-defined time, etc.) in the language.
An example of an optimization that we plan to investigate is the ability to relate
multiple intervals to the same timeslice.

Acknowledgements

This work has partially been supported by the EU funded IST STREP Project
FP6 - 26896: Time-determined ontology-based information system for realtime
stock market analysis and by the European Science Foundation through COST
Action IC0702 Combining Soft Computing Techniques and Statistical Methods to
Improve Data Analysis Solutions.

References

Allen, J.F. (1983) ‘Maintaining Knowledge about Temporal Intervals’,
Communications of the ACM, vol. 26, no. 11, pp. 832–843, ACM.

Artale, A., Kontchakov, R., Ryzhikov, V. and Zakharyaschev, M. (2010)
‘Temporal Conceptual Modelling with DL-Lite’, 23rd International Workshop
on Description Logics (DL 2010), CEUR-WS series, vol. 573. Online: http://
ceur-ws.org/Vol-573/paper_28.pdf.

Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,
Patel-Schneider, P.F. and Stein, L.A. (2004) ‘OWL Web Ontology Language
Reference’, W3C Recommendation, 2004.

Temporal Coalescence and Temporal Cardinality in the tOWL Language 19

Bohlen, M.H. and Snodgrass, R.T. (1996) ‘Coalescing in Temporal Databases’,
Twenty-Second International Conference on Very Large Data Bases (VLDB
1996), pp. 180–191, Morgan Kaufmann Publishers.

Dyreson, C.E. (2003) ‘Temporal Coalescing with Now Granularity, and Incomplete
Information’, ACM SIGMOD International Conference on Management of Data
(SIGMOD 2003), pp. 169–180, ACM.

Frasincar, F., Milea, V. and Kaymak, U. (2010) ‘tOWL: Integrating Time in
OWL’, Semantic Web Information Management, ch. 11, pp. 225–246, Springer.

Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E. and Srinivas, K. (2006) ‘The
Summary ABox: Cutting Ontologies Down to Size’, 5th International Semantic
Web Conference (ISWC 2006), pp. 343–356, Springer.

Gutierrez, C. and Hurtado, C. and Vaisman, A. (2007) ‘Introducing Time into
RDF’, IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 2,
pp. 207–218, IEEE.

Grandi, F. (2004) ‘Multi-temporal RDF Ontology Versioning’, International
Workshop on Ontology Dynamics (IWOD 2009). Online: www-db.deis.unibo.
it/~fgrandi/papers/IWOD09.pdf.

Gregersen, H. and Jensen, C.S. (2002) ‘Temporal Entity-Relationship Models - A
Survey’, IEEE Transactions on Knowledge and Data Engineering, vol. 11, no. 3,
pp. 464–497.

Haase, P. and Stojanovic, L. (2005) ‘Consistent Evolution of OWL Ontologies’,
2nd European Semantic Web Conference (ESWC 2005), pp. 182–197, Springer.

Hobbs, J.R. and Pan, F. (2004) ‘An Ontology of Time for the Semantic Web’,
ACM Transactions on Asian Language Information Processing, vol. 3, no. 1, pp.
66–85, ACM.

Jensen, C.S., Clifford, J., Elmasri, R., Gadia, S.K., Hayes, P.J. and Jajodia,
S. (1994) ‘A Consensus Glossary of Temporal Database Concepts’, SIGMOD
Record, vol. 23, no. 1, pp. 52–64, ACM.

Milea, V., Frasincar, F., Kaymak, U. and di Noia, T. (2007) ‘An OWL-Based
Approach Towards Representing Time in Web Information Systems’, 4th
International Workshop of Web Information Systems Modeling (WISM 2007),
pp. 791–802, Tapir Academic Press.

Milea, V.,Frasincar, F. and Kaymak, U. (2008) ‘Knowledge Engineering in
a Temporal Semantic Web Context’, International Conference on Web
Engineering (ICWE 2008), pp. 65–74, IEEE Computer Society Press.

Milea, V., Mrissa, M., Sluijs, K. and Kaymak, U. (2008) ‘On Temporal Cardinality
in the Context of the TOWL Language’, Fifth International Workshop on Web
Information Systems Modeling (WISM 2008), pp. 457–466, Springer-Verlag.

Noy, N.F. and Klein, M. (2004) ‘Ontology Evolution: Not the Same as Schema
Evolution’, Knowledge and Information Systems, vol. 6, no. 4, pp. 428–440,
Springer.

20 V. Milea, F. Frasincar, U. Kaymak and G.J. Houben

Patel-Schneider, P.F. and Hayes and P., Horrocks, I. (2004) ‘Web Ontology
Language (OWL) Abstract Syntax and Semantics’, W3C Recommendation,
W3C.

Spaccapietra, S., Parent, C. and Zimanyi, E. (1998) ‘Modeling Time from a
Conceptual Perspective’, Seventh International Conference on Information and
Knowledge Management (CIKM 1998), pp. 432–440, ACM.

Steiner, A. and Norrie, M.C. (1997) ‘Implementing Temporal Databases in Object-
Oriented Systems’, Fifth International Conference on Database Systems for
Advanced Applications (DASFAA 1997), vol.6, pp. 381–390, World Scientific
Press.

Tauzovich, B. (1991) ‘Toward Temporal Extensions to the Entity-Relationship
Model’, 10th International Conference on the Entity Relationship Approach (ER
1991), pp. 163–179, ER Institute.

Wang, F. and Zaniolo, C. (2004) ‘XBiT: An XML-Based Bitemporal Data Model’,
23rd International Conference on Conceptual Modeling (ER 2004), pp. 810–824,
Springer.

Welty, C., Fikes, R. and Makarios, S. (2006) ‘A Reusable Ontology for Fluents
in OWL’, Fourth International Conference on Formal Ontology in Information
Systems (FOIS 2006), pp. 226–336, IOS Press.

Widagdo, T.E. (2007) ‘Managing Referential Integrity in Bitemporal Databases’,
International Conference on Electrical Engineering and Informatics (ICEEI
2007), pp. 305–308.

Wijsen, J. (1999) ‘Temporal FDs on Complex Objects’, ACM Transactions on
Database Systems, vol. 24, no. 1, pp. 127–176, ACM.

Zimanyi, E., Parent, C., Spaccapietra, S. and Pirotte, A. (1997) ‘TERC+: A
Temporal Conceptual Model’, International Symposium on Digital Media
Information Base (DMIB 1997). Online: cs.ulb.ac.be/publications/

P-97-12.pdf.

