
Combining Generality and Specificity in Generating
Hypermedia Interfaces for Semantically Annotated

Repositories

Lloyd Rutledge Geert-Jan Houben Flavius Frasincar
Lloyd.Rutledge@cwi.nl G.J.Houben@tue.nl F.Frasincar@tue.nl

CWI Eindhoven University of Technology
PO Box 94079 PO Box 513

NL-1090 GB Amsterdam, the Netherlands NL-5600 MB Eindhoven, the Netherlands

Abstract
Hera and Topia are separate research implementations for
generating hypermedia presentations from media reposito-
ries annotated with Semantic Web technologies. They poten-
tially define two cooperating components of a larger system.
Topia creates a general, high-level outline or story board,
while Hera can be used to fill in the details and make the
smaller-scale components have a rich and engaging presen-
tation. This paper explores combining Topia and Hera, de-
scribing along the way the resulting issues for providing hy-
permedia interfaces to semantic annotations.

Categories & Subject Descriptors
H.1 [Information Systems]: Models and principles; H.5.4,
H.5.1 [Information Interfaces and Presentation (e.g.,
HCI) Hypertext/Hypermedia - Architectures, Navigation;
Multimedia Information Systems - Hypertext navigation
and maps, Evaluation/methodology; I.2.4 [Artificial Intel-
ligence]: Knowledge representation formalisms and meth-
ods; D.2.2 [Software Engineering]: Design tools and
techniques; I.7.2 [Document and Text Processing]: Doc-
ument Preparation - Hypertext/hypermedia, Markup lan-
guages, Multi/mixed media, Standards

General Terms
Algorithms, Documentation, Design, Experimentation, Hu-
man Factors, Management, Standardization, Languages,
Theory

Keywords
WIS, User Interaction, RDF(S), Semantic Web

Introduction
In the Web, the use of hypermedia presentations is a useful
way to convey information. This is especially true in appli-
cations that try to give access to large collections of data.
For these applications the use of hypermedia presentations
is an effective way to convey the semantics of the content
to the user. There are numerous interesting approaches that
aim at generating hypermedia presentations for the output of
Web applications. Many of these approaches use Semantic

Web technology as a way to have an effective extensible and
flexible format to describe the properties of the content to be
presented in the application.

In this paper we show how the combination of two such sys-
tems, Topia [5] and Hera [8], and their accompanying tool
sets can provide an environment for generating hypermedia
presentations over Web content from semantic annotations
over media repositories. We can join Hera and Topia as two
cooperating components in a larger system. This is possi-
ble because Topia intentionally leaves presentation details for
other components of a broader system to process since Topia
is specifically a large-scale presentation structurer. In this
context Hera, with its more controlled presentation genera-
tion, can provide domain-specific modules that process Topia
output or communicate with Topia to state requirements on
the output. This means that in this combination, Topia cre-
ates a general, high-level outline or story board, while Hera
can be used to fill in the details and make the smaller-scale
components have a rich and engaging presentation.

Besides the functional match, the Hera and Topia approaches
also match in terms of the formats, languages and tools used.
Both use an architecture with RDF(S), SeRQL, XSLT and
Java. Topia performs data transformations based on an al-
gorithm that directly works with instances though its combi-
nation of XSLT and SeRQL. Hera’s data transformations are
specified at schema level using the following overlay mod-
els: Conceptual Model (CM), Application Model (AM) and
the Presentation Model (PM). These transformations are en-
coded in XSLT and SeRQL. Topia’s semantic graph corre-
sponds with Hera’s CM instance. Topia’s structured progres-
sion corresponds with Hera’s AM instance. Topia’s transfor-
mations correspond with Hera’s transformations. Topia and
Hera illustrate their possibilities on the same use case as both
process the same RDF-encoded repository of annotated me-
dia items about the Rijksmuseum Amsterdam collection.

Hera
The Hera methodology [8] is a model-driven methodology
for designing Web information systems (WIS). In response
to a user query, a WIS gathers multimedia data, possibly



Figure 1: Conceptual model

from heterogeneous sources, and produces a meaningful hy-
permedia (Web) presentation for the retrieved data. The Hera
methodology automates this process by providing high-level
model-based abstractions that drive (semi-)automatic pre-
sentation generation. Moreover, Hera enables presentation
adaptation based on user preferences and device capabilities,
which means that the presentation generation takes into ac-
count issues like types of platforms used, such as desktop,
PDA or WAP phone [2].

Based on the principle of separation of concerns and for
the sake of interoperability, several models have been dis-
tinguished. Because these models are considered Web meta-
data descriptions that specify different aspects of a WIS, the
choice was made to use the Web metadata language RDF(S)
to represent all models and their instances. This choice is
also justified by the RDF(S) extensibility and flexibility prop-
erties that enable to extend the language with model spe-
cific primitives to achieve the desired power of expression.
As RDF(S) doesn’t impose a strict data typing mechanism
it proved to be very useful in dealing with semistructured
(Web) data.

The Hera tool set implements this methodology by offering
software for the automatic generation of hypermedia based
on the different Hera models. In order to facilitate the build-
ing (and visualizing) of these models, several Visio solutions
were implemented. Such solution is composed of a stencil
that will display all the model shapes, a drawing template,
and a load/export feature providing the RDF(S) serialization
of Hera models. Figure 1 depicts (in the CM Builder) a
part of the CM for our Rijksmuseum example application,
while Figure 2 illustrates the corresponding AM (in the AM
Builder).

The CM describes the application domain in terms of con-
cepts and concept relationships. A concept has attributes, i.e.
properties that refer to some media instances. For concept

Figure 2: Application model

Figure 3: A Topia-generated presentation

relationships we define their cardinalities and their inverse
relationships.

The AM specifies the navigational structure of the hyperme-
dia presentation in terms of slices and slice relationships. A
slice is a meaningful presentation unit that groups concept
attributes (from CM) that need to be presented together on
the user display. There are two types of slice relationships:
compositional relationships (for embedding a slice into an-
other slice) and navigational relationships (as hyperlink ab-
stractions).

Topia

The Topia system generates a broad, general large-scale doc-
ument structure around media-based RDF resources within
an annotated media repository [5]. It then generates a hyper-
media presentation based on this structure. Figure 3 shows a
Topia-generated presentation.



Clustering
(Java)

Semantics Structure PresentationTransform

�

SeRQL

Figure 4: The basics of Topia’s architecture

Topia works as shown in Figure 4. First, a user request se-
lects a matching subset from the RDF repository. Then clus-
tering techniques find groups within this subset. This group-
ing forms the basis for the general document structure, which
is used in generating the presentation.

This general document structure is useful for several reasons.
One is that it applies to most, if not all, conceptual domains.
Another is that it is a structure that has been used in docu-
mentation for centuries, making users quite familiar with it.
Finally, the interface for navigating this structure is readily
recognizable.

Clustering is Topia’s primary means of deriving document
structure. It finds clusters among the selected RDF resources
based on similarities on conceptual proximity [1]. This con-
ceptual proximity can be based on shared properties, place-
ment along measured axes or closeness in a hyperlink node-
edge graph.

These domain-independent clustering techniques and presen-
tation devices enable Topia to apply to any domain and pro-
vide rudimentary large-scale organization of it into a readily
navigable presentation.

Differences
Now that we have given general descriptions of Topia and
Hera and their similarities, this section introduces some of
their differences. One is the system’s domain-independence,
with the inverse characteristic of suitability for a specific do-
main. This relates to the variation in breadth and generality
of presentation structure that each system makes, which re-
sulting impacts on layout and interaction.

Domain-dependence. Topia is domain independent while
Hera is domain dependent. Hera is domain dependent in that
the designer needs to specify the Application Model. Fur-
thermore, the semantic graph in Topia is obtained using AI
techniques applied to the RDF resources while the CM (do-
main schema) is given in Hera. Topia has a general-purpose
algorithm for converting semantic graphs to structures pro-
gressions. Hera, on the other hand, has designer-specified
data transformations by AM on top of CM, which happens at
the schema level.

Layout. Earlier work on Topia [5] mentions little about lay-
out, and only simply because some layout needs to occur for
there to be a demonstration. Topia’s core interest is in gener-
ating the structured progression, not in the details of how it
is presented. That is, layout is “out of scope”, which makes
Topia a component of a larger system that does more with

layout. Earlier work on Topia discusses issues of how to gen-
erate layout and other details of presentation from both un-
derlying RDF with media and a structured progression gen-
erated from it. Many of these issues can be encoded in Hera’s
PM.

Interaction. In Topia, when you have a potentially large
broad structure, you need presentation components that are
specific to it. Free navigation along the structure at the
large-scale level is key. This importance increases as the
generation algorithm depends more on automated, domain-
independent processing and less on human-designed presen-
tation details and domain specifics. Topia’s interactive out-
line, with is ongoing updating, visibility and navigability,
is key to this. The presentation of recurrence in the main
display and in the outline is also important here. The ease
of navigation along hierarchy, sequence and recurrence are
core issues of how the presentation, with its layout, is gen-
erated. Other navigation can be added to discourse model-
dependent, domain-dependent and directly human-designed
components that are more specific and rich in nature. The
bridge between Topia and other Hera components enables
this.

Broad vs. Fine. In general, we find the differences be-
tween Hera and Topia comparable to the role of the cartoon
in the creation of the Renaissance-era paintings that domi-
nate our chosen domain: the Rijksmuseum Amsterdam col-
lection. When painting, the artist first makes the cartoon,
which is a rough, broad sketch on the blank canvas. Once this
cartoon is made, the artist then paints the colors and details
over it. Without the cartoon, the painting would lack large-
scale composition and consistency. We find Topia’s process-
ing analogous to the creation of the cartoon, whereas Hera
provides the framework for the rest of the process.

Potential Bridges
Given the distinctions between Hera and Topia the previ-
ous section explained, we now explore means of bridging
the gap between them. This involves giving means of com-
munication between the systems, allowing each to augment
the functions of the other. Topia intentionally leaves presen-
tation details for other components of a broader system to
process since Topia is specifically a large-scale presentation
structurer. Typically, Hera fills in the localized details under
Topia’s generality with domains and presentation structure.
On the other hand, Hera’s generality of process architecture
provides more specific input topic selection and output pre-
sentation alternatives to Topia’s structure-focused process-
ing.

Model Deduction. One potential Hera extension is to use the
Topia algorithm to deduce the CM when this is not known,
providing schema discovery for use by the designer. This
involves generating an absent RDFS from an RDF instance.
Another is to have an algorithm that automatically maps CM
to AM without knowing the exact concepts in the CM. For



example, a concept from CM can have a slice with all its
attributes presented and hyperlinks based on its concept re-
lationships, providing domain-independence, such as what
Topia already provides.

Clustering the Initial Query Return. The initial query is
not important to Topia-based research because Topia deals
more with the clustering that happens with the return. Hera’s
querying mechanism can be the initial query that then ap-
plies to Topia clustering, giving the Topia component the
larger set of object types, thus making Topia generate richer
presentation structure. In terms of the Hera architecture,
Hera’s integration and data retrieval returns a CM instance.
Topia clusters this CM instance, with access to the underly-
ing RDF for clustering and for finding additional concepts to
serve as hubs (bases for grouping, resulting in introduction
sub-presentations to groups). The Topia component is the
broader structuring part of the application design, generating
the broader structures in each AM instance.

Increased Domain Specificity. Topia’s structured progres-
sion is built by an algorithm that maps from the semantical
graph to the hierarchy, sequence and recurrence. If the de-
signer is allowed to build structured progressions at the type
level based on the schema defined by the identified concept
resources in Topia then we will have instance independent
structured progression which is similar to the AM in Hera.
In this way, Topia becomes domain-dependent, but the qual-
ity of the presentation may increase.

Concept Weights. Topia’s currently-implemented means of
domain-specificity is by providing an interface for assigning
significance weights to RDF predicate types, which are the
potential types of relations or properties. The algorithm for
requesting and processing these is domain-independent, but
the designer’s input to the interfaces is specific to the domain.
This input can also be user-specific, or represent other types
of style, which here is applied just to how structure is built.
This algorithm from Topia can easily be an XSLT-defined
component of the Hera AM.

Impact on Hera’s AM. These last two aspects of Topia’s con-
tribution, completely domain-independent broad structuring
and the significance weights applied to the AM, have inter-
esting interaction with the rest of the AM. There are inter-
esting possibilities for how the established means of spec-
ifying AM in Hera can augment Topia’s broad structuring
and domain-applicability with designer-specific richness at
the structural detail level and with detailed components of a
specific domain.

XSLT. Topia’s clustering is not in XSLT. Some of Topia clus-
tering, particular that involving graph traversal, may not pro-
cess well in XSLT. This can present a problem in Hera’s
XSLT-based system. Thus, Hera needs to provide hooks to
non-XSLT structuring, such as with the current Topia demo’s
Java code for clustering. Some XSLT processors provide

hooks to external programs, and this could perhaps be used.

Fundamental and Hierarchical Nodes
The previous section discussed some smaller areas of overlap
between Hera and Topia, we now begin covering some larger
overlaps: that of different types of nodes that both systems
handle. Topia and Hera each respond to the user request with
a selection from the RDF resources. These items act in both
systems as the main content of the presentation. Topia aug-
ments this content with related information from the reposi-
tory that help relate these items to one another. This section
formalizes this distinction as part of modeling Topia’s pro-
cessing of it into the broader Hera architecture.

Definitions. Topia considers two types of nodes: fundamen-
tal and hierarchical. The fundamental nodes are those re-
turned by the initial query, making up the main content of
the presentation. Topia’s clustering processing groups these
fundamental nodes into a hierarchy. Each internal node in
this tree corresponds thus with a hierarchical node.

Screen Displays. Each leaf node in this tree corresponds
with a fundamental node. Topia gives a screen display to
each of both types of nodes. Hierarchical nodes result in dis-
plays that introduce a group before showing its fundamental
and lower-level hierarchical nodes. They also generate sum-
mary displays after each group.

Hierarchical Nodes in Hera. From the perspective of Topia,
Hera uses only fundamental nodes. In Hera, only the nodes
are returned from an original query appear in the presenta-
tion. Hera joins these nodes into a unified navigation struc-
ture in a manner that, compared to Topia, is localized. Thus
Topia’s contribution to Hera is to find the supplemental hi-
erarchical nodes and build a presentation structure that in-
corporates both types, thus providing a larger scale unifying
navigational structure.

Node Consistency in Topia. The Topia demo currently only
searches for matching text in text fields of artifacts, thus re-
turning only artifacts as concept nodes for subsequent clus-
tering. We can easily extend the demo to search text fields
of all RDF resources, thus allowing all kinds of conceptual
objects to be returned, including genres and places, return-
ing fuller presentations. This would in turn allow artifacts to
be hierarchical nodes, thus making available fuller and more
varied presentation structure. This amounts to increased ex-
ploitation of relationships and the richer semantic graph. The
Topia view of the resulting semantic graph is the original un-
derlying RDF with components selected, or highlighted. The
selection starts the clustering processes, which refers to the
graph as a whole to find additional resources from which the
larger structure is formed.

Concept and Presentation Nodes
Another polarity between node types that helps illustrate
the Topia and Hera architectures is the divisibility of nodes
in both the underlying semantics and the final presentation.



While Topia makes no distinction between these, Hera uses
this distinction as part of its adaptation. Related work on the
Cuypers system [7] provides additional strategies for map-
ping between the node sets.

Definitions. Here we consider a concept node to be an RDF
resource selected as either a fundamental or hierarchical node
for inclusion in the presentation. We define a presentation
node as a single unit of composite presentation on the dis-
play. That is, a presentation node is a collection of media
displayed simultaneously to cooperatively convey one con-
cept or idea. The delimiters between presentation nodes are
navigational steps, or “clicks”.

Correspondence. Topia has a one-to-one correspondence
between concept and presentation nodes. For each concept
node, Topia aims to make a single screen display. Hera’s slic-
ing, on the other hand, enables multiple presentation nodes
to correspond to one concept node. This provides adapta-
tion to devices with varying screen sizes. Smaller devices
get multiple, smaller presentation nodes.

Overflow. In earlier work on the Cuypers system, we dis-
cuss the strategy of overflow to produce, in the language
of this paper, multiple presentation nodes for single concept
nodes [6]. If a concept node has too much media for a single
display, then Cuypers has it overflow into multiple displays.
This overflow can be either as a chain, with a sequence of
presentation nodes joined by next and previous buttons, or it
can fan out from multiple links in a single, central node to
each of multiple nodes.

Granularity. In these manners, both Hera and Cuypers pro-
vide means of resolving differences in granularity between
concept node media size and presentation node display size.
This not only provides adaptation to display size – it also
accounts for the potentially wide variation in how much me-
dia conveys a concept node, and how big it is. Combining
Hera, Cuypers and Topia can provide well-sized presentation
nodes that do not necessarily correspond with the structured
progression’s concept nodes but are reorganized into a mean-
ingful structured progression of the presentation nodes.

mSpace
The mSpace interface to semantic repositories provides rapid
user adjustment for a particular type of overriding presen-
tation structure [3]. Its tabular slices of cascading property
assignment columns provide readily recognizable overviews
and adjustments. This run-time parameter resetting can also
apply to the other types of interfaces that Topia and Hera use.

Tabulation. The mSpace system provides a highly interac-
tive tabular interface for browsing semantically defined struc-
ture. Topia’s consistency component can emulate mSpace’s
tabular display. Each mSpace column shows different val-
ues for one property. Topia’s consistency option ensures that
siblings groups are each grouped by different values of the
same property [1]. While these property types must be the

same between siblings in one group, they can vary between
groups. Topia can thus emulate mSpace tabulation by having
one property type determine the child groups for all groups
in the same level of depth of the hierarchy.

mSpace Live Re-parameterization. The contributions of
mSpace include not just tabulation but also the increased in-
teraction providing fast, run-time changing of which property
type corresponds to each column. Hera and Topia assume
more of a “batch mode” in which the user request generates
a static presentation in which the only interaction is naviga-
tion. mSpace, on the other hand, lets the user change the
parameters of how to generate presentation structure while
continuing the current presentation, keeping the presentation
in its current state but changing the current node’s context to
the new global presentation structure.

Approaching Live Re-parameterization. Topia and Hera
can approach this live parameter adjustment by facilitating
the renewed requesting of presentation generation. The Topia
demonstrator starts this already by providing buttons from
the presentation display to short-cuts for changing parame-
ters. For example, in Topia’s global consistency mode, the
property type used for global consistency can be changed
from each presentation display by a single click on the prop-
erty name. However, in all cases in the current Hera and
Topia demonstrators, such renewed requests start the presen-
tation from the beginning. To approach mSpace’s live ad-
justment, Topia and Hera would need to stay at the current
node after such requests. They would also need to main-
tain information on the user’s history within the presentation
throughout all live adjustments to the structure generating pa-
rameters. Hera is currently extended in this direction in its
provision for dynamic adaptation support [4].

Conclusions

In this paper we have discussed the combination of Topia
and Hera toward cooperating components of a system for
generating hypermedia presentations from media reposito-
ries annotated with Semantic Web technologies. We have
shown how Hera’s architecture allows domain-specific mod-
ules that process Topia output or communicate with Topia
to state requirements on the output. Comparing the systems
brings two polarizations of nodes: fundamental vs. hierar-
chical and concept vs. presentations. The paper has ended
by discussing how Hera and Topia can incorporate mSpace
interface features.

From the current applications we see that Hera has breadth
of architecture, while Topia has breadth of document struc-
ture by having lack of precision or specific discourse. Being
neither detailed about the structure nor specific about the dis-
course allows Topia’s breadth of domain application. On the
other hand, Hera’s tools offer the possibility to have domain
specificity, and the combination can therefore benefit from a
tool box that offers support for different scenarios.



REFERENCES
1. M. Alberink, L. Rutledge, L. Hardman, and M. Veen-

stra. Clustering semantics for hypermedia presentation.
Technical Report INS-E0403, CWI, 2004.

2. F. Frasincar and G. J. Houben. Hypermedia presentation
adaptation on the semantic web. In Adaptive Hyperme-
dia and Adaptive Web-Based Systems, Second Interna-
tional Conference, AH 2002, volume 2347 of Lecture
Notes in Computer Science, pages 133–142. Springer,
2002.

3. N. Gibbins, S. Harris, and m. schraefel. Applying
mspace interfaces to the semantic web. Technical Report
EPrint 8639, University of Southampton Electronics and
Computer Science, 2003.

4. G. J. Houben, F. Frasincar, P. Barna, and R. Vdov-
jak. Modeling user input and hypermedia dynamics in
hera. In International Conference on Web Engineer-
ing, ICWE 2004, Lecture Notes in Computer Science.
Springer, 2004.

5. L. Rutledge, M. Alberink, R. Brussee, S. Pokraev,
W. van Dieten, and M. Veenstra. Finding the story:
Broader applicability of semantics and discourse for hy-
permedia generation. In ACM Conference on Hypertext
and Hypermedia, pages 67–76. ACM, 2003.

6. L. Rutledge, J. Davis, J. van Ossenbruggen, and L. Hard-
man. Inter-dimensional Hypermedia Communicative
Devices for Rhetorical Structure. In Proceedings of the
International Conference on Multimedia Modeling 2000
(MMM00), pages 89–105, 2000.

7. J. van Ossenbruggen, J. Geurts, F. Cornelissen, L. Hard-
man, and L. Rutledge. Towards second and third gener-
ation web-based multimedia. In The Tenth International
World Wide Web Conference, pages 479–488. ACM,
2001.

8. R. Vdovjak, F. Frasincar, G. J. Houben, and P. Barna.
Engineering semantic web information systems in hera.
Journal of Web Engineering, 2(1-2):3–26, 2003.


