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Abstract. The Web has become the main platform where people ex-
press their opinions about entities of interest and their associated as-
pects. Aspect-Based Sentiment Analysis (ABSA) aims to automatically
compute the sentiment towards these aspects from opinionated text. In
this paper we extend the state-of-the-art Hybrid Approach for Aspect-
Based Sentiment Analysis (HAABSA) method in two directions. First
we replace the non-contextual word embeddings with deep contextual
word embeddings in order to better cope with the word semantics in
a given text. Second, we use hierarchical attention by adding an extra
attention layer to the HAABSA high-level representations in order to
increase the method flexibility in modeling the input data. Using two
standard datasets (SemEval 2015 and SemEval 2016) we show that the
proposed extensions improve the accuracy of the built model for ABSA.

Keywords: Multi-Hop LCR-ROT · Hierarchical Attention · Contextual
Word Embeddings.

1 Introduction

Since the evolution of the Social Web, people have benefited from the oppor-
tunity to actively interact with others sharing content from both sides. As a
result, the amount of opinionated texts has risen and people had to face the
problem of filtering the extra data in order to get the desired information [21].
In this context, sentiment analysis turns out to be an important tool that can
find sentiments or opinions at the level of a document, sentence, or aspect [11].
Among all levels of analysis, the most fine-grained analysis is the one orientated
to aspects [18]. The main tasks of ABSA are target extraction (TE), aspect de-
tection (AD), and target sentiment classification (SC). Whereas, the TE task is
concerned with identification of targets, i.e., attributes of the entity of interest,



the aim of the AD task is to learn aspects that have a broader meaning and
refer to the targets’ categories. However, in this paper, we focus only on the
identification of targets’ sentiments (SC task) computed at the sentence level.

Deep Neural Networks (DNNs) have recently shown a great potential for sen-
timent classification tasks and gradually replaced rule-based approaches. While
the main advantage of DNNs architectures is flexibility, rule-based classifiers
imply more manual labour that confers a higher level of domain-control. The
two approaches can be easily combined in a two-step method that utilises a
backup classifier for all inconclusive predictions of the main classifier. One of
the first two-step sentiment classification methods utilises a dictionary-based
method and a Support Vector Machine (SVM) algorithm [5]. Given that this
method is a bit naive, we try to tackle the sentiment classification of targets
using the more refined Hybrid Approach for Aspect-Based Sentiment Analysis
(HAABSA) that obtains state-of-the-art results for the SC task [24]. The first
step of this hybrid method employs a domain ontology [19] to determine the
sentiments of the given targets. All the sentences for which the ontology is in-
conclusive input a Left-Center-Right separated neural network with Rotatory
attention (LCR-Rot) [28], as the backup model.

In [24] two extensions of the neural network are proposed, namely Inversed
LCR-Rot and Multi-hop LCR-Rot, but since the second one was shown to be
the most effective, we choose it as the backup model. In this paper, we propose
two extensions for HAABSA to improve the quality of the sentiment predictions.
First, we replace the non-contextual GloVe word embeddings with deep contex-
tual word embeddings, i.e., ELMo [15] and BERT [6] in order to better consider
the semantics of words context. Second, we introduce a hierarchical attention,
by supplementing the current attention mechanism with a new attention layer
that is able to distinguish the importance of the high-level input sentence repre-
sentations. We call the new model HAABSA++. The Python source code of our
extensions can be found at https://github.com/mtrusca/HAABSA_PLUS_PLUS.

The rest of the paper is organized as follows. Section 2 briefly introduces the
related works. Section 3 presents the details of the utilised datasets. Section 4
discusses the hybrid approach together with the extensions we propose and Sect.
5 presents the experimental settings and the evaluation of our methods. Section
6 gives our conclusions and suggestions for future work.

2 Related Works

Initially, ABSA’s main tasks were addressed using knowledge-based methods
based on part-of-speech tagging models and lexicons [10,23]. Recently, machine
learning including deep learning as a subset has turned out to be a more conve-
nient solution with good rates of performance in Natural Language Processing
(NLP). Whereas machine learning methods have proven to be more flexible,
knowledge-based methods imply more manual labor, which makes them effec-
tive especially for in-domains sentiment classification. In [26] it was shown that
these two approaches are in fact complementary. The sentiment polarities of as-
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pects were learnt by applying an approach based on domain knowledge and a
bidirectional recurrent neural network with attention mechanism. The research
proves that there is not a winning option and while the neural network performs
better for the laptop reviews of the SemEval 2015 dataset [17], the approach
based on domain rules is more effective in the restaurant domain dataset of the
same SemEval workshop.

Recently, hybrid models that take advantage of both approaches in a mixed
solution have been investigated in various studies. For instance, in [20] an SVM
model was trained for target sentiment classification on an input created based
on the binary presence of features identified using a domain-specific ontology.
Another option to enrich the input of a neural network using domain knowledge
is presented in [7], where a self-defined sentiment lexicon is used to extend the
word embeddings. Similar to our work, the neural network described in [8] aims
to learn context-sensitive target embeddings. Next, the attention scores are com-
puted only for relevant words of the context indicated by a dependency parser.
While the previous methods focused on integrating rule-based approaches in ma-
chine learning, in [4] it is presented a different method where machine learning
is used for building domain knowledge. Namely, a Long Short-Term Memory
(LSTM) model with an attention mechanism is employed to create a sentiment
dictionary called SenticNet 5.

Instead of integrating the two approaches in a single model, another option is
to apply them sequentially [5]. This option has been demonstrated to be superior
to the individual approaches in [19]. Namely, in [19] an ontology developed for
restaurant domain reviews is used as the first method for sentiment classifica-
tion (positive and negative). The backup model, triggered when the ontology is
inconclusive, employs a bag-of-words approach trained with a multi-class SVM
associated with all three sentiment polarities (positive, neutral, and negative).
This work inspired [12] where the SVM model is replaced with a neural network
that assigns polarities to the aspects using multiple attention layers. The first
one captures the relation between aspects and their left and right contexts and
generates context-dependent word embeddings. The new word vectors together
with sentences and aspects embeddings created using the bag-of-words approach
feed the last layer of attention.

The previous line of research is kept in [24], where the same ontology is used
together with a Multi-Hop LCR-Rot model as backup. Knowing the effectiveness
of the two-step approach for the SC task, and considering that the method
proposed in [24] achieves the best results for the SemEval 2015 and the SemEval
2016 [16] datasets, we choose it as basis for our investigation on the benefits of
contextual word embeddings. In addition, inspired by the hierarchical attention
approach presented in [27] we add to the architecture of Multi-hop LCR-Rot a
new attention layer for high-level representations of the input sentence.



Table 1: Polarity frequencies of SemEval 2015 and SemEval 2016 datasets
(ABSA).

SemEval 2015 SemEval 2016

Positive Neutral Negative Positive Neutral Negative

Train 72.4% 24.4% 3.2% 70.2% 3.8% 26.0%
Test 53.7% 41.0% 5.3% 74.3% 4.9% 20.8%

3 Datasets Specification

collection of reviews in the restaurant domain. Each review has a variable number
of sentences and each sentence has one or more aspect categories. Each aspect
is linked to one target that has assigned a sentiment polarity (positive, neutral,
and negative). Table 1 lists the distribution of sentiment classes in the SemEval
2015 and SemEval 2016 datasets.

4 Method

HAABSA is a hybrid approach for aspect-based sentiment classification with two
steps. First, target polarities are predicted using a domain sentiment ontology.
If this rule-based method is inconclusive, a neural network is utilised as backup.
Section 4.1 introduces the ontology-based rules for sentiment classification. Sec-
tion 4.2 gives an overview of HAABSA and presents our extensions based on
various word embeddings and hierarchical attention. The new method is called
HAABSA++, as a reminiscent of the base method name.

4.1 Ontology-Based Rules

The employed ontology is a manually designed domain specification for sen-
timent polarities of aspects that utilises a hierarchical structure of concepts
grouped in three classes [19]. The SentimentValue class groups concepts in the
Positive and Negative subclasses, and the AspectMention class identifies aspects
related to sentiment expressions. The SentimentMention class represents senti-
ment expressions. To compute the sentiment of an aspect, we utilise three rules,
described below.

The first rule always assigns to an aspect the generic sentiment of its con-
nected sentiment expression. The second rule identifies the aspect-specific senti-
ment expression and the sentiment is assigned only if the aspect and the linked
expression belong to the same aspect category. The third rule finds the expres-
sion with a varying sentiment with respect to the connected aspect and the
overall sentiment is inferred based on the pair aspect-sentiment expression. All
these rules are mutually exclusive.

The rule-based approach can identify only the positive and negative senti-
ments. By design, the neutral sentiment class is not modeled due to its ambiguous
semantics. The ontology is inconclusive in two cases: (1) conflicting sentiment
(predicting both positive and negative for a target) or (2) no hits (due to the
limited coverage). In these cases a neural network is used as backup.



4.2 Multi-Hop LCR-Rot Neural Network Design

The LSTM-ATT [9, 25] model enhances the performance of the LSTM model
with attention weighting and is a standard structure integrated by numerous
sentiment classifiers. The LCR-Rot model [28] utilises this structure to detect
interchangeable information between opinionated expressions and their contexts.
In [24], the LCR-Rot model is refined with repeated attention and the new
classifier is called Multi-Hop LCR-Rot. In this paper, we explore the effect of
different word embeddings on the Multi-Hop LCR-Rot model and propose a
hierarchical attention structure to increase the model’s flexibility.

The Multi-Hop LCR-Rot neural network splits each sentence into three parts:
left context, target, and right context. Each of these three parts feeds three bi-
directional LSTMs (bi-LSTMs). Then, a two-step rotatory attention mechanism
is applied over the three hidden states associated with the bi-LSTMs (left con-
text: [hl1, ..., h

l
L], target: [ht1, ..., h

t
T ], and right context: [hr1, ..., h

r
R], where L, T ,

and R represent the length of the three input parts). At the first step, the mech-
anism generates new context representations using target information. Initially,
an attention function f is computed taking as input a parameterized product
between the hidden states of the context and the target vector rtp extracted
using an average pooling operation. Considering for example the left context,
the function f is computed by:

f( hli
1×1

, rtp) = tanh( hl
′

i
1×2d

× W l
c

2d×2d
× rtp

2d×1
+ blc

1×1
), (1)

where W l
c is a weight matrix, blc is a bias term, and d represents the dimension

of the i-th hidden state hli for i = 1, ..., L.
Then, the attention normalised scores αl

i associated with f are defined using
the softmax function as follows:

αl
i =

exp(f(hli, r
rp))∑L

j=1 exp(f(hlj , r
rp))

. (2)

In the end, context representations are computed using hidden states weighted
by attention scores. For example, the left target2context vector is defined as:

rl

2d×1
=

L∑
i=1

αl
i

1×1
× hli

2d×1
. (3)

At the second step of the rotatory attention, target representations are com-
puted similarly, following the previous three equations. The only difference is
that instead of the rtp vector that stands for target information, the left and
right contexts vectors (rl and rr) are employed to obtain a better target rep-
resentation. Taking again the left context as example, the left context2target
representation rtl is:

rtl
2d×1

=

T∑
i=1

αtl
i

1×1
× hti

2d×1
, (4)



where αtl represents the target attention scores with respect to the left context
computed as above.

The right vectors, target2context and context2target (rr and rtr ) are com-
puted in a similar way. In a multi-hop rotatory attention mechanism, the two
aforementioned steps are applied sequentially for n times. In [24] the optimal n
value is three (the trials were executed for four scenarios: n = 1, 4). One should
note that the rtp target vector computed using average pooling is used only for
the first iteration of the rotatory attention. At the next iterations the vector rtp

is replaced with one of the vectors rtl or rtr , depending on the considered con-
text. At the end of the rotatory attention, all the four vectors are concatenated
and feed an MLP layer for the final sentiment prediction.

The learning process is realised using a backpropagation algorithm by min-
imising the cross-entropy loss function with L2 regularization. All weight matri-
ces and biases are initialised by a uniform distribution and are updated using
stochastic gradient descent with a momentum term.

4.3 Word Embeddings

The first proposed extension examines the effect of deep context-dependent word
embeddings on the overall performance of the neural network. Since the Multi-
Hop LCR-Rot model already captures shallow context information for each tar-
get of a sentence, it is important to analyse how this architecture is possibly
improved when we use deep context-sensitive word representations. Hereinafter,
we give a short description of some of the most well-known contextual and non-
contextual word embeddings.

Non-contextual Word Embeddings. Non-contextual word embeddings are
unique for each word, regardless of its context. As a result, the polysemy of words
and the varying local information are ignored. GloVe, word2vec, and fastText
context-independent word embeddings are presented below.

GloVe. The GloVe model generates word embeddings using word occurrences
instead of language models (like word2vec), which means that the new word
embeddings take into account global count statistics, instead of only the local
information [14]. The idea behind the GloVe model is to determine two word
embeddings wi and wk for words i and k, respectively, whose dot product is
equal with the logarithmic value of their co-occurrence Xik. The relation is
adjusted using two biases (bi and bk) for both words i and k as follows:

wT
i wk + bi + bk = log(Xik). (5)

The optimal word embeddings are computed using a weighted least-squares
method using the cost function defined as:

J =

V∑
i=1

V∑
k=1

f(Xik)(wT
i wk + bi + bk − log(Xik))2, (6)



where V is the vocabulary size and f(Xik) is a weighting function that has
to be continuous, non-decreasing, and to generate relatively small values for
large input values. The last two conditions for f are necessary to prevent over-
weighting of either rare or frequent co-occurrences. In this paper, we choose to
use 300-dimension GloVe word embeddings trained on the Common Crawl (42
billion words) [14].

Word2vec. The word2vec word embeddings were the first widely used word rep-
resentations and since their introduction they have shown a significant improve-
ment for many NLP tasks. The word2vec model works like a language model
that facilitates generation of the more close word representations in the embed-
ding space for words with similar context [13]. The word2vec model has two
variations: Continuous-Bag-Of-Words (CBOW) and Skip-Gram (SG). CBOW
word embeddings represent the weights of a neural network that maximize the
likelihood that words are predicted from a given context of words and SG does
it the other way around. Both variations exploit the bag-of-words approach and
the sequencing of words in the given or predicted context of words is irrelevant.
The CBOW and SG models are trained using the following loss functions:

CBOW : J =
1

V

V∑
t=1

log p(wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c), (7)

SG : J =
1

V

V∑
t=1

t+c∑
i=t−c,i6=t

log p(wi|wt). (8)

where [-c, c] is the word context of the word wt.
CBOW is considered to be faster to train than SG, but SG benefits of a

better accuracy for non-frequent words [1]. Therefore, in the present word, both
variations of word2vec are examined. The pre-trained word2vec word embeddings
we use are already trained on Google News dataset (100 billion words) and their
length is 300 features.

FastText. The fastText model computes non-contextual word embeddings using
a word2vec SG approach where the word context is represented by its n-grams [3].
As a result, out-of-vocabulary words are better handled as they can benefit from
representations closer to the ones of in-vocabulary words with similar meaning
in the embedding space. Given that our employed datasets are small, we utilise
already computed fastText word embeddings trained on statmt.org news, UMBC
webbase corpus, and Wikipedia dumps ((16 billion words). The dimensionality
of word embeddings is 300.

Contextual Word Embeddings. Contextual word embeddings take into ac-
count the context of words which means that they handle better the semantics
and the polysemy. Below we focus on ELMo and BERT deep contextual word
embeddings.



ELMo. The ELMo word embeddings capture information about the entire input
sentence using multiple bidirectional LSTM (bi-LSTM) layers [15]. The main
difference between the ELMo model and other language models developed on
LSTM layers is that ELMo word embeddings integrate the hidden states of all
L bi-LSTMs layers in a linear combination instead of utilising only the hidden
states of the last layer. The ELMo model can be considered a task-specific lan-
guage model that can be adjusted to different computational linguistic tasks by
learning different weights for all LSTM layers. ELMo representation of word i
for a given task ELMotaski is computed as follows:

ELMotaski = γtask
L∑

j=0

staskj hi,j , (9)

where hi,j represents the concatenated hidden states of the j bi-LSTM layer

(hi,j = [
→
h i,j ,

←
h i,j ]), s

task
j is its weight, and γtask scales the word embeddings

accordingly to the given task.
The model we use to generate ELMo word embeddings employs two bi-LSTM

layers with 512 dimension hidden state which means the size of the final word em-
beddings is 1024. The model is pre-trained on the 1B Word Benchmark dataset.

BERT. The BERT model unlike the ELMo language model that utilises LSTM
hidden states, creates contextual word representations by averaging token vec-
tors (unique for each vocabulary word), position embeddings (vectors for word
locations in the sentence), and segment embeddings (vectors of sentence indices
that contains the given word). The new sequence of word embeddings is given as
input to a Transformer encoder [22] based on the (bidirectional) self-attention.
The Transformer encoder has L blocks and each one contains a Multi-Head At-
tention layer followed by a fully connected layer. The output of each block feeds
the input of the next one. Each Multi-Head Attention has A parallel attention
layers that compute the attention scores for each word with respect to the rest
of the words in the sentence. The word representations associated with each
Transformer block are computed by concatenating all attention-based represen-
tations. Recently, Transformers have become more common than other widely
applied neural networks like Convolutional Neural Networks (CNNs) and Recur-
rent Neural Network (RNNs) due to their capacity to apply the parallelization
(as CNNs) and to control long-term dependencies (as RNNs).

The BERT model is pre-trained simultaneously on two tasks: Masked Lan-
guage Model (MLM) and Next Sentence Prediction (NSP) using BookCorpus
(800 million words) and Wikipedia dumps (2,500 million words). The first task
employs a bidirectional Transformer to predict some masked words and the sec-
ond task tries to learn sequence dependencies between sentences. The final loss
function is computed as a sum of the task losses. In this paper, BERT word em-
beddings are generated using the pre-trained BERT Base model (L=12, A=12,
H=768), where H stands for hidden states and represents the size of the word
embeddings. The final representations of the word i is computed by summing



the word embeddings of the last four layers (as it was suggested in [6]):

BERTi =

12∑
j=9

Hi,j . (10)

4.4 Multi-Hop LCR-Rot with Hierarchical Attention

The main disadvantage of Multi-Hop LCR-Rot is that the four target2context
and context2target vectors are computed using only local information. Hierar-
chical attention alleviates this process by providing a high-level representation
of the input sentence that updates each target2context and context2target vec-
tor with a relevance score computed at the sentence level. The final sentiment
prediction considers the newly obtained vectors.

First, we have to compute an attention function f defined as:

f( vi

1×1
) = tanh( vi

′

1×2d
× W

2d×1
+ b

1×1
), (11)

Fig. 1: Multi-Hop LCR-Rot with hierarchical attention



where vi is the representation i of the input sentence (vi ∈ {rr, rl, rtr , rtl},
i = 1, 4), W is a weight matrix, and b is a bias. The attention function f is used
to compute new attention scores αi for each input vi:

αi =
exp(f(vi)∑4

j=1 exp(f(vj))
. (12)

The new scaled context2target or target2context vectors are:

vi

2d×1
= αi

1×1
× vi

2d×1
, (13)

We consider four methods to introduce hierarchical attention in the architec-
ture of the Multi-Hop LCR-Rot model:

– Method 1: attention weighting is applied on the final four vectors of the
rotatory attention (Fig. 1 (a)).

– Method 2: attention weighting is applied in each iteration of the rotatory
attention, on the intermediate four vectors (Fig. 1 (b)).

– Method 3: attention weighting is separately applied on the final two context
and target vectors pairs of the rotatory attention (Fig. 1 (c)).

– Method 4: attention weighting is separately applied in each iteration of
the rotatory attention, on the intermediate context and target vectors pairs
(Fig. 1 (d)).

To optimise the performance of the newly proposed methods based on hier-
archical attention, we have to tune again some of the model’s hyperparameters
like the learning rate, the momentum term, the L2 regularization term, and the
dropout rate (applied to all hidden layers). The algorithm we employ for tuning
is a tree-structured Parzen estimator (TPE) [2].

5 Evaluation

We compare our extensions with the baseline Multi-Hop LCR-Rot neural net-
work, a state-of-the-art model in the SC task for both SemEval 2015 and SemEval
2016 datasets. Like [24], our main classifier is a domain sentiment ontology. The
importance of the hybrid method is pointed out in [19] where all the inconclu-
sive cases of the domain sentiment ontology are assigned to the majority class of
the dataset. The accuracy reported for the reference approach on the SemEval
datasets is 63.3% and 76.1%, respectively, much lower than the accuracy of the
hybrid approach.

The evaluation is done in terms of training and testing accuracy. Since our
work is an extension of the baseline model, we re-run the Multi-Hop LCR-Rot to
assure a fair comparison. First, the embedding layer is optimised by trying dif-
ferent word embeddings; the results thereof are shown in Table 2. Given that our
base model [24] utilises the GloVe embeddings, we start presenting the results for
context-independent word representation models. CBOW and SG models lead to



Table 2: Comparison of word embeddings for the Multi-Hop LCR-Rot model using
accuracy. The best results are given in bold font.

SemEval 2015 SemEval 2016

in-sample out-of-sample in-sample out-of-sample

Context-independent word embeddings
GloVe (HAABSA) 88.0% 80.3% 89.6% 86.4%
CBOW 84.8% 74.6% 82.7% 83.5%
SG 84.7% 76.0% 85.4% 84.1%
FastText 87.4% 79.0% 87.3% 86.5%

Context-dependent word embeddings
ELMo 85.1% 80.1% 91.1% 86.7%
BERT 87.9% 81.1% 89.2% 86.7%

the worst predictions and, as it is already expected, the SG model performs bet-
ter than CBOW by 1.4%-0.6%. The difference between the performance of the
fastText and SG models is equal to three percentage points in the SemEval 2015
test dataset, which means that the fastText model is clearly an improvement of
the SG model. Even if fastText outperforms the GloVe model by 0.1% for the
SemEval 2016 test dataset, given the overall performance of the GloVe model, we
can conclude that it is the best context-independent word representation option.

As regards deep contextual word embeddings, we notice that a context-
sensitive approach not always leads to better results (the ELMo model out-
performs the GloVe model only for the SemEval 2016 dataset). However, the
BERT model seems to have the best performance, recording the same testing
accuracy as the ELMo model for the SemEval 2016 datasets and exceeding the
GloVe model by more than one percentage point for SemEval 2015 datasets.

The second extension we present is an adjustment of the rotatory attention
to a hierarchical architecture using BERT word embeddings. Table 3 shows that
adding new attention layers leads to a more accurate sentiment prediction than
the baseline model with BERT word embeddings listed in Table 2. Overall it is
fair to consider that the best approach to tackle the hierarchical attention is the
Method 4, given the small difference between the first rank and the second rank
on the SemEval 2016 test dataset.

Table 3: Comparison between the four methods proposed for HAABSA++ using
accuracy. The best results are given in bold font.

SemEval 2015 SemEval 2016

in-sample out-of-sample in-sample out-of-sample

Method 1 87.9% 81.5% 88.0% 87.1%
Method 2 87.9% 81.7% 88.7% 86.7%
Method 3 87.8% 81.3% 88.7% 86.7%
Method 4 88.0% 81.7% 88.9% 87.0%



Table 4: Comparison between HAABSA++ (Method 4) with state-of-the-art models
in SC task using accuracy. SW stands for the SemEval Winner (the most effective
result reported in the SemEval contest). The best results are given in bold font.

SemEval 2015 SemEval 2016

HAABSA++ (Method 4) 81.7% XRCE (SW) [16] 88.1%
LSTM+SynATT+TarRep [8] 81.7% HAABSA++ (Method 4) 87.0%
PRET+MULT [9] 81.3% BBLSTM-SL [7] 85.8%
BBLSTM-SL [7] 81.2% PRET+MULT [9] 85.6%
Sentiue (SW) [17] 78.7% LSTM+SynATT+TarRep [8] 84.6%

Further on, we compare the fourth method with other similar neural net-
works, state-of-the-art models in SC task. The results are listed in Table 4. We
do not replicate previous works and give the results as reported in papers. The
best results reported in the SemEval contests are mentioned as well. While for
the SemEval 2015 data, our method achieves the highest accuracy (together
with the LSTM+ SynATT+TarRep [8] model) for the SemEval 2016 data, it is
ranked on the second position.

As we already mentioned, the Multi-Hop LCR-Rot model turns the input sen-
tence into four vectors. Knowing that the length of the target expression is small
and usually void of sentiment, we can infer that target2context vectors deter-
mine the neural network’s performance to a greater extent than context2target
vectors. Taking as example two sentences from the SemEval 2016 test dataset,
we explore how the embedding layer and the hierarchical attention affects the
predicted sentiment polarity via target2context vectors.

Fig. 2: Target2Context vectors of the the Multi-Hop LCR-Rot model computed
using GloVe, ELMo, and BERT word embeddings.



Fig. 3: Target2Context vectors of the Multi-Hop LCR-Rot model with or with-
out hierarchical attention computed using BERT word embeddings.

Figure 2 graphically presents attention scores associated with target2context
vectors for GloVe, ELMo, and BERT word embeddings. The intensity of the blue
colour shows the significance of words indicated by the attention scores. The
target of the first sentence is the word “place” and the opinionated expression
(the word “gem”) indicates a positive polarity, and is located in the right context.
The left context is too short and irrelevant for the target word. Only ELMo and
BERT word embeddings assign the highest attention score to the opinionated
word which leads to a good sentiment prediction. On the contrary, the GloVe
model finds the word “n’t” to be the most relevant for the given example, leading
to a negative sentiment prediction. One should note that the BERT model has
a slightly different approach to extract tokens of a sentence. This is due to the
internal vocabulary used by the BERT model to guarantee the high recall on
out-of-sample.

The second example explores the effect of hierarchical attention (Method 4)
using BERT word embeddings. The selected sentence given in Fig. 3 has two
target expressions with different sentiment polarities. Considering the target
“atmosphere”, the left context is again irrelevant while the right context con-
tains the sentiment expression together with the second target “service” and its
opinionated expression. Even if the simple Multi-Hop LCR-Rot model without
hierarchical attention assigns the highest attention scores to the words “cozy”
and “horrible”, it finds the word “service” as relevant. As a result the senti-
ment prediction of the target “atmosphere” is wrong. Differently, the neural
network with hierarchical attention achieves a good prediction, considering the
word “cozy” to be the most relevant to the given target.

6 Conclusion

In this work we extended the backup neural network of the state-of-the-art hy-
brid approach method for ABSA introduced in [24] using deep contextual word
embeddings. Further on, the architecture of the model is integrated with a hi-
erarchical structure that enforces the rotatory attention vectors to take into



account high-level representations at the sentence level. Both extensions boost
the testing accuracy from 80.3% to 81.7% for SemEval 2015 dataset and from
86.4% to 87.0% for SemEval 2016 dataset.

As deep learning architectures have the tendency to forget useful information
from the lower layers, in future work we would like to investigate the effect of
adding word embeddings to the upper layers of the architecture. Also we would
like to have a better understanding of the model’s inner working by applying
diagnostic classification to the various layer representations.
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