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Introduction

® Scalability often an issue when depending
on pair-wise similarities
(e.g., cosine similarity)

® Quadratic growth is a big problem

® Algorithms can not be applied to large data
sets

® heuristics used in most approaches



Our solution

® An algorithm that approximately filters
insignificant (low) similarities

® i.e., one only computes ‘high’ similarities

® We focus on tagging spaces (e.g., Flickr) and
the cosine similarity

® Our approach can be applied to any

similarity that depends on the dot product
between two vectors
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The computed pairs are:
0-1 3-4
0-2 3-5
1-2 4-5



Overview
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2x(3x3-3)/2

6 pairs
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Algorithm (1)

® How to choose the ‘dividing’ lines!?

® i.e, how to create the clusters of vectors?
® The algorithm:

|. Compute for each vector (column) a hash

2. Cluster all vectors that have the same
hash
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Split in k parts Sum parts
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Compute score Compute hash (using (¢ threshold)

0.545 > | For O = 0.75
0.364 > |
0.000 > 0

0.091 > 0




Algorithm (3)

® linear time complexity w.r.t. number of

tags
© 0(n)=n(klogk)

® For a given value for k, there are 2 —1

possibilities for the hashes (i.e., clusters)

® The more clusters, the higher the reduction
in the number of computations



Algorithm (4)

® Not only the number of clusters is
Important

® How are the sizes of the clusters
distributed?

® When sizes are equal, the reduction is
the largest



Evaluation

® Ve used a data set from Flickr
® Originally ~ |.6 million tags

® We used top 50,000 occurring tags



Evaluation

® Brute force evaluation of all cosines:
® |.249.975,000 cosines in total

® Run algorithm and record which cosines are
skipped by the algorithm

® We performed our evaluation 30,720 times (for
each unique parameter combination)

e k->from 3 to 50
® (O(-> from 0.05 to 0.95 (step size: 0.05)



Percentage of
skipped cosines

0

Evaluation

Results for cosine larger than 0.4
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Results for cosine larger than 0.6
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Evaluation

Threshold |Computations Skipped high Number k£ «
to be done cosines of clusters

0.4 20970 27.1% 6 5 0.2
0.5 17.5% 22.9% 29 7 0.2
0.6 17.5% 11.3% 29 ¢ 0.2
0.7 14.2% 8.8% 37 8 0.2
0.8 11.5% 5.6% 56 10 0.2
0.9 8.0% 1.0% 1309 14 0.3
0.4 76.9% 9.5% ¢ 3 0.85
0.5 40.8% 14.3% 4 3 0.3
0.6 22.5% 9.3% 6 D 0.2
0.7 17.57% 2.7% 29 T 2
0.8 17.57% 0.0% 29 i 02
0.9 8.2% 0.0% 2803 22 0.2




Evaluation

Sensitivity analysis for the reduction of the computations
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Conclusions

® Focused on the scalability issue that arises
with the use of pair-wise similarities

® Our approach uses binary hashes to
cluster the vectors

® The similarities are only computed within
each cluster

® Results can be improved but are promising
and useful in real-world applications



Questions!

Damir Vandic (vandic@ese.eur.nl)
http://damirvandic.com
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