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Abstract. Users of Web tag spaces, e.g., Flickr, find it difficult to get
adequate search results due to syntactic and semantic tag variations. In
most approaches that address this problem, the cosine similarity between
tags plays a major role. However, the use of this similarity introduces a
scalability problem as the number of similarities that need to be com-
puted grows quadratically with the number of tags. In this paper, we
propose a novel algorithm that filters insignificant cosine similarities in
linear time complexity with respect to the number of tags. Our approach
shows a significant reduction in the number of calculations, which makes
it possible to process larger tag data sets than ever before. To evaluate
our approach, we used a data set containing 51 million pictures and 112
million tag annotations from Flickr.

1 Introduction

Due to the ever increasing amount of data readily available on the Web, the
development of applications exploiting this data flourishes as never before. How-
ever, because of the data abundance, an increasing number of these Web ap-
plications suffers from scalability issues. These developments have caused the
focus of recent Web research to shift to scalability aspects. Social Web appli-
cations (e.g., in the area of products, photos, videos, links, etc.) also face these
scalability issues. The reason why these systems do not scale well is because
they often use pair-wise similarity measures (e.g., cosine similarity, Dice coef-
ficient, Jaccard coefficient, etc.) [9, 10]. This introduces scalability problems as
the number of pair-wise similarities that have to be computed (i.e., the number
of unique pairs) grows quadratically with the number of vectors. As a result of
this, the algorithms that use these pair-wise similarities have at least O(n2) time
complexity, where n is the number of input vectors.

The fact that an algorithm has O(n2) complexity makes it difficult to apply
it on large data sets. An area where this becomes evident are the social tagging
systems, where users can assign tags to Web resources. These Web resources can
be for example URLs (e.g., Delicious), images (e.g., Flickr), and videos (e.g.,
YouTube). Because users can use any tag they want, the number of distinct
tags is enormous. Besides the number of unique tags, the number of resources is
also growing fast. For example, let us consider Flickr, which is a Web site where
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users can upload pictures and assign tags to them. In 2011, Flickr had 6 billion
pictures in their database [11]. Now imagine that Flickr needs to compute the
similarity between all (unique) pairs of pictures. Let us assume that Flickr is
able to compute 100 billion pairs per second. Even at this speed, it would take
a little less than 6 years to compute all combinations1. From this computation,
we can see that there is a need to deal with pair-wise similarity computations
for such large amounts of high-dimensional data.

In this paper, we focus on the scalability issue that arises with the compu-
tation of pair-wise similarities in tagging spaces (e.g., Flickr). We present an
algorithm that approximately filters insignificant similarity pairs (i.e., similari-
ties that are relatively low). The proposed algorithm is not exact but it has linear
time complexity with respect to the number of input vectors and is therefore ap-
plicable to large amounts of input vectors. We report the results for the cosine
similarity applied on a large Flickr data set, but our approach is applicable to
any similarity measure that uses the dot product between two vectors.

The structure of this paper is as follows. We present the related work in
Section 2. In Section 3, we define the problem in more detail and present our
algorithm using a synthetic data set and the cosine similarity used as similarity
measure. We evaluate our approach on a real data set and present the results in
Section 4. Last, in Section 5, we draw conclusions and present future work.

2 Related work

The cosine similarity is a popular similarity measure that is widely used across
different domains. In particular, we can find many approaches in the tagging
spaces domain that are that are making use of this similarity [5, 7, 9, 10]. The
reason for this is that the cosine similarity has proven to give stable results
for tagging data sets. The drawback of using the cosine similarity is that it
introduces scalability issues, as nowadays the number of tags and resources is
growing fast. Because all similarity pairs have to be computed, the approaches
that use the cosine similarity have at least O(n2) time complexity, where n is
the number of tags of resources.

In the literature we can find several approaches that aim to address the scal-
ability issue of computing pair-wise similarities. A technique that is related to
our approach is the Locality Sensitive Hashing (LSH) technique, presented in
[6]. LSH is a well-known approximate algorithm that is used to find clusters
of similar objects. For example, it can be used to perform approximate nearest
neighbour search. LSH generates n projections of the data on randomly cho-
sen dimensions. After that, for each vector in the data set and each previously
computed projection, a hash is determined using the vector features that are
presented in that particular projection. The similarity pairs are constructed by
finding all vector pairs that have a matching hash along the same projection.

1 If C = ((6× 109)2 − (6× 109))× 0.5 ≈ 1.8× 1019 unique combinations, and we can
process 100 × 109 combinations per second, then it takes approximately C/(100 ×
109)/(60× 60× 24× 365) ≈ 5.71 years to compute all similarities.
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The key difference between LSH and our approach is that our approach has
guaranteed linear time complexity with respect to the number of input vectors,
while LSH has a polynomial pre-processing time.

The authors of [2] take a different approach to the similarity search problem.
They propose an exact technique which is able to precisely find all pairs that have
a similarity above some threshold. This approach uses an inverted index where
the inverted indices are dynamically built and a score accumulation method is
used to collect the similarity values. The difference between our approach and
this approach is that we propose an approximate algorithm that gives good
results with the focus on reducing the computational effort, while the authors of
[2] propose an exact algorithm that works with a given threshold. Furthermore,
the approach in [2] has not been evaluated on data sets obtained from tagging
spaces.

Although not directly related to our research, there are approaches from the
database community that address a similar problem, which are worth mention-
ing. For example, the authors of [3] depart from traditional database design to
more flexible database design that is more suited for parallel algorithms. These
parallel algorithms are used for the purpose of speeding up the computation of
pair-wise similarities (e.g., cosine similarity). In this paper we focus on efficient
the computation of similarities in a sequential execution.

3 Algorithm

In this section, we explain in detail the proposed algorithm, which aims at re-
ducing the number of cosine computations. The proposed algorithm has some
similar characteristics to LSH, as it also uses a hash function to cluster poten-
tially similar objects, but differs on many aspects. For example, we use only one
hash function, which results in a binary encoding of the vector that indicates
where the significant parts of the vector reside. Furthermore, we have only one
corresponding hash value for each vector.

As already mentioned, our algorithm is tailored and evaluated for tag spaces.
Algorithms and applications for tag spaces often use a so-called tag co-occurrence
matrix. A tag co-occurrence matrix is a n× n matrix C, where n is the number
of tags, and Cij denotes how often tag i and tag j have co-occurred in the data
set (e.g., on pictures). Note that co-occurrences matrices are symmetrical, i.e.,
Cij = Cji.

Let us consider the tag co-occurrence matrix shown in Table 1(a). From the
table, we can see for example that tag 0 and 3 occur together in total 3 times.
The character “-” represents 0 as we define the co-occurrence of a tag with itself
to be 0. We used the symbol “-” to differentiate from the case where two tags
(not identical) do not co-occur with each other (co-occurrence labelled with 0).
The total number of similarity pairs, given n tags, is (n2 − n)× 0.5. For the co-
occurrence matrix in Table 1(a), we have to compute (6× 6− 6)/2 = 15 cosine
similarities.
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(a)

Tag 0 1 2 3 4 5

0 - 2 1 5 2 0
1 2 - 7 1 1 0
2 1 7 - 3 0 2
3 5 1 3 - 1 0
4 2 1 0 1 - 6
5 0 0 2 0 6 -

(b)

Tag 1 2 3

0 2 1 5
1 - 7 1
2 7 - 3
3 1 3 -
4 1 0 1
5 0 2 0

(c)

Tag 0 4 5

0 - 2 0
1 2 1 0
2 1 0 2
3 5 1 0
4 2 - 6
5 0 6 -

Table 1. An example of a tag co-occurrence matrix, shown in (a). The co-occurrence
matrix is split in two equally sized parts, shown in (b) and (c).

In practice, a tag co-occurrence matrix is sparse, i.e., it contains many zero
values. This is because a tag on average only co-occurs with a small subset of the
total set of tags. We can make use of this sparsity property in order to improve
the scalability of any pair-wise similarity measure that is dependent on the dot
product between two vectors. For example, the dot product between vectors a
and b gives the cosine similarity, assuming the data is normalized to unit length
vectors. This makes the cosine similarity a candidate for our algorithm. In the
rest of this section, we explain our algorithm in the context of tag spaces, where
input vectors are tag co-occurrence vectors.

The basic idea of our algorithm is to construct clusters of tag vectors from
the original matrix, based on the position of the non-zero values. Because the
matrix is symmetrical, it does not matter whether we cluster the columns or
rows of the matrix, but for sake of clarity we assume that we cluster the columns.
Tables 1(b) and 1(c) show two possible partitions (i.e., clusters) that could be
obtained from the co-occurrence matrix that is shown in Table 1(a). For these two
smaller matrices, we calculate the similarity only for the pairs within a cluster.
For example, we do not compute the similarity between tag 3 and tag 4, as
they appear in different clusters. Using this approach, the number of similarity
computations that have to performed is ((3 × 3 − 3)/2) × 2 = 6. This is a
reduction of 60% on the total number of computations, as we have to compute
the similarity only for 6 pairs instead of 15 pairs.

In order to cluster each column (i.e., tag vector) from the co-occurrence ma-
trix, we compute a hash value for each column. This is done by first splitting each
column in a predefined number of equally sized parts. Then, for each column,
the relative weight of each part is computed. This is done by dividing the sum of
the values in a part by the sum of the values for the whole column. After that,
the columns are clustered based on the most important parts. The most impor-
tant parts are defined by the smallest set of parts for which the sum of values
in the parts is larger than some predefined percentage of the total column sum.
This process is best explained with an example. Suppose we have the tag vector
[0, 6, 4, 0, 0, 0, 1, 0]T. Now, consider we choose to split this column representation
in 4 parts. For each of these 4 parts, we compute the sum of the values in that
part, as shown in Table 2(a). The next step is to calculate the total sum of the
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(a)

Part Sum Indices

1 6 0, 1
2 4 2, 3
3 0 4, 5
4 1 6, 7

(b)

Part Score Hash

1 0.545 1
2 0.364 1
3 0 0
4 0.091 0

Table 2. Table (a) shows the part scores and (b) the part statistics for vector
[0, 6, 4, 0, 0, 0, 1, 0]T. We can see that the first and second part are the most impor-
tant parts of this vector.

vector values and represent the previously determined sums as percentages of
the total sum, which we call the relative score. In our example, the total sum
is found by taking the sum of the values in the parts 6 + 4 + 0 + 1 = 11. After
dividing the computed sum for each part by the total sum, we obtain the relative
scores, as shown in column 2 of Table 2(b).

The goal of the proposed algorithm is to cluster columns that have the same
distribution of important parts, i.e., parts that have a large relative score. The
algorithm pursues this goal because the similarity between two vectors will be
high if the two vectors have the same important parts, assuming that the sim-
ilarity measure depends on the dot product between two vectors (such as the
cosine similarity). If two vectors do not share the same important parts, i.e.,
there are not many indices for which the vectors both have non-zero values, the
similarity will be low. In order to cluster the tag columns based on this criteria,
we compute a hash value based on the distribution of the relative scores of the
parts. This is performed by creating a binary representation of each column of
relative scores, where each part in the column is represented by a bit.

We define the parameter α as the minimum sum of relative scores for each
column. We select the minimum number of parts for which the sum of the scores
is larger than α. First, we sort the relative scores of each vector parts. In the
previous example, if α = 0.75 (75%), we first add part 1 (with a score of 0.545)
to our list. As we do not reach 0.75 yet, we add the next largest part to our list,
which is part 2 in this example. Now, we have selected 0.545 + 0.364 = 0.909,
which is larger than α. We can set the bits for parts 1 and 2 to 1, Table 2(b)
shows the binary representation for our example in the third column. Again, we
can observe that for this vector the most important parts are at the top, as the
value for the top two parts is 1 and for the two bottom parts it is 0.

Algorithm 1 gives the previously described process in pseudo-code. The al-
gorithm defines the function s(t, k), which computes the relative part scores for
a tag t using k parts, and the function h(sc, α), which is used to compute the
binary hash for a vector with scores sc and using a threshold α. For the h(sc, α)
function, we currently use the quick sort algorithm to sort the k part scores after
which we select the top scores based on the α threshold. Because quick sort has
an average O (p log(p)) time complexity, with p being the size of the sorted list,
one can verify that our algorithm has time complexity O (n (k log k)), where n is
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Algorithm 1 Hash-based clustering algorithm

Require: The input: a tag co-occurrence matrix T
Require: The algorithm parameters:

– k, in how many parts the vector should be splitted,
– α, the minimum percentage of the total column sum required to compute the

binary representation.

Require: The algorithm functions:

– s(t, k), computes the relative part scores for a tag t, using k parts,
– h(sc, α), computes the hash for a vector with relative scores sc, using threshold
α.

1: for each tag column t ∈ T do
2: C = {} {C is a set of (cluster,hash) pairs}
3: scoret = s(t, k) {vector with part scores of tag t}
4: hasht = h(scoret, α) {binary encoding of tag t}
5: if ∃c s.t. (c, hash) ∈ C ∧ hasht = hash then
6: c = c ∪ {t} {add t to existing cluster}
7: else
8: c′ = {t} {otherwise, a new cluster is created}
9: C = C ∪ {(c′, hasht)} {add to set of clusters the newly created cluster}

10: end if
11: end for

the number of tags and k is the number of parts. This means that our algorithm
performs linear in time with respect to the number of tags.

There is a trade-off between the number of clusters and the accuracy of the
algorithm. If we have a low number of clusters, the number of skipped high
cosines will be relatively small but the reduction in the number of computations
would be also small. For a small data set, splitting the matrix in 2 will give
sufficient discriminant power, while a large matrix might need a split into 10 or
even 20 parts. An important aspect of the algorithm is the parameter k, i.e., the
number of parts a column is split into. For a given k, one can show that there
are 2k − 1 possible binary hash representations. Because the number of clusters
is dependant on the number of possible binary representations, the parameter
k can be used to control the trade-off between the number of clusters and the
accuracy of the algorithm.

The idea of the algorithm is to find clusters of columns such that the similar-
ity between two tags located in different clusters is minimized. In this way, the
algorithm indirectly selects column pairs for which one has to compute the simi-
larity (intra-cluster tags) and column pairs for which the similarity is set to zero,
i.e., pairs that are skipped (inter-cluster tags). The distribution of the number of
columns in the clusters is important for the number of similarity pairs that are
skipped. Ideally, one would like to have clusters that contain an equal number
of tag columns. In this way, the number of similarity pairs that are skipped is
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maximized. One can show that for n→∞, the reduction→ 1/m, assuming that
the clusters are equally sized2. The maximal number of clusters is 2k − 1, where
k is the number of parts.

In order to improve the ‘recall’ of the algorithm (i.e., not skipping high sim-
ilarity pairs), we experiment with a heuristic that identifies clusters that po-
tentially may have many high cosines and are difficult to be processed by our
algorithm. One approach would be to remove the columns from our algorithm
that have a value sum greater than some threshold. The idea behind this is that
the higher the sum, the more the tag is co-occurring with other tags. For this
group of tags that are removed from the data set, we have to compute all pair-
wise similarities with all other tags. The advantage of this approach is that less
high similarities are skipped. The downside of this approach is that the number
of computations that has to be performed increases. There is a clear trade-off be-
tween the number of computations and the number of skipped high similarities,
as will become more clear in the evaluation.

4 Evaluation

For our experiments, we used a Flickr data set that has been gathered by the
authors of [4]. The original data set contains 319,686 users, 1,607,879 tags,
28,153,045 pictures, and 112,900,000 annotations. We have selected a threshold
on the number of times a tag is used. In the end, we selected the top occurring
50,000 tags. The reason for selecting the frequently occurring tags is that we
want to eliminate the low-end outliers, which seldom co-occur with other tags
and thus pollute the clustering process. At the same time we want to keep the
data set size small enough in order to perform a brute force evaluation of all
cosines for reference purposes. To be able to evaluate the performance of our
algorithm, we needed to compute all cosines for this subset, which is in total
1,249,975,000 cosine computations. The used data set contains approximately
10 times more cosines between 0 and 0.1 than cosines between 0.1 and 0.2. This
shows that there are many tags that are not similar to each other, which is
common for data sets obtained from tagging spaces.

4.1 Experiments

In order to evaluate our algorithm, we have designed an experimental setup that
covers a broad range of parameter combinations. Table 3 shows the ranges for
different parameters that were used in the experiments. The total number of
experiments is the number of unique combinations of the parameters, as shown
in Table 3. For the parameter k, i.e., the number of parts a vector is split into,
we chose a range of 3 to 50, with a step size of 1. For α, we chose the range
0.05 to 0.95, with a step size of 0.05. For the filter type (excluding a number
of tags from the algorithm), we have experimented with two approaches. In the

2 With n being the number of input vectors and m the number of clusters, we have

reduction(n,m) =

(
(n/m)2 − (n/m)

)
× 0.5

(n2 − n)× 0.5
×m =

(n−m)

m(n− 1)
, lim
n→∞

(n−m)

m(n− 1)
=

1

m
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Parameter Range

k (parts count) min: 3, max: 50, step size: 1
α (hash threshold) min: 0.05, max: 0.95, step size: 0.05
filter type magnitude / sum
filter threshold min: 50,000, max: 200,000, step size: 10,000

Table 3. Experimental setup.

first filter type approach we left out all tags that have a magnitude larger than
a certain threshold and in the second approach we left out all tags that have a
sum larger than a certain threshold. The last row of Table 3, the filter threshold,
indicates the threshold used in the filter type. We varied the threshold for both
the magnitude filter and the sum filter, from 50,0000 to 200,000 with a step size
of 10,000.

In total, we performed 30,720 experiment runs (this is the total amount of
unique parameter combinations). For each experiment run, we execute our clus-
tering algorithm and store the resulting clusters. Using the clusters, we determine
which tag pairs should be skipped, i.e., the similarity should be assumed to be 0.
After determining which tag pair similarities are set to 0, we record the actual
similarity values of these tag pairs for reference purposes. We also compute the
average similarity of pairs of tags in the same cluster, which usually results in
high similarities.

4.2 Results

Figure 1 gives an overview of the results. The figure shows, for different skipped
cosine thresholds, the trade-off between the percentage of similarity pairs that
has to be computed and the percentage of cosines that is higher than the thresh-
old. So if a point is located on (0.4, 0.1) then this means that 40% of the original
number of computations has to be done (60% is skipped in total), but you skip
10% of the important cosines. The ‘important’ cosines are defined to be higher
than the threshold used in the evaluation (0.4, 0.5, 0.6, 0.7, 0.8, and 0.9). For the
tags that passed the magnitude/sum filter, we compute all pair-wise similarities
to the other tags, as we do not use these tags in our clustering algorithm. The
values that are reported for the x-axis include these combinations. Each point
in a sub-plot of Figure 1 represents a parameter combination obtained from the
experimental setup shown in Table 3. The ideal situation would be to have low
values for both the x-axis as the y-axis (as close as possible to the origin), because
then one has to compute relatively a small amount of the original computations
while a low amount of the important cosine similarities is skipped.

We can make the two important observations from the results presented in
Figure 1. First, it is clear that as the percentage of total similarity pairs that has
to be computed increases, the percentage of skipped high cosines decreases. This
is as expected because the probability of skipping important cosines trivially be-
comes smaller when more similarity pairs are computed. Second, we observe that
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Fig. 1. In this figure we see a scatter plot of parameter combinations for different
thresholds, with the x-axis showing the reduction of the total number of computations
and the y-axis the percentage of skipped high cosines.

for cosine similarities ranging from 0.5 and higher, the algorithm is capable of
just computing approximately 30% of the total number of computations while
skipping a relatively low number of high cosines, i.e., approximately 18%. For the
cases when ‘high’ cosines are considered to be 0.6 and higher, the results are even
better. The algorithm is able to compute the significant cosines by just comput-
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ing approximately 18% of the total number of combinations while just skipping
10% of the high ones. We find this already to be useful in computationally-
intensive Web applications based on pair-wise similarities. When we consider
higher thresholds we observe that the percentage of skipped high cosines fur-
ther decreases. For example, for the case when cosines are considered to be high
from 0.7 and onwards, the percentage of skipped high cosines is below 3% when
computing 18% of the total number of combinations.

Although it is a bit difficult to see from Figure 1, the results show that if
the user allows for less freedom in skipping high cosines (i.e., cosines higher than
0.6), the algorithm can be tuned to achieve a high cosine skipping percentage of
approximately 5%, while having to compute around 30% of the original number
of cosine similarities. As one can notice here, our algorithm can be tuned to meet
various conditions. This shows the flexibility of our algorithm and its applicabil-
ity to a wide range of Web applications (e.g., applications where a good trade-off
between speed and quality is necessary, applications where speed is more impor-
tant than quality, applications where similarity quality is more important than
speed, etc.).

In order to understand how the parameters of our clustering algorithm influ-
ence the results, we have performed parameter sensitivity analysis. Table 4 shows
information on some points (i.e., parameter combinations) from the plots given
in Figure 1. We have chosen a few points that are interesting and need further
explanation. The first part of Table 4 shows for each threshold the point that is
closest to the origin. These points are the ‘optimal’ points when one gives equal
weight to the percentage of computed cosines and to the percentage of skipped
high cosines. For the thresholds 0.5 and 0.6, we notice that the optimal value

Threshold Computations Skipped high Number k α Filter type Filtered count
to be done cosines of clusters “sum >”

0.4 27.5% 27.1% 6 5 0.2 40,000 3.87%
0.5 17.5% 22.9% 29 7 0.2 40,000 3.87%
0.6 17.5% 11.3% 29 7 0.2 40,000 3.87%
0.7 14.2% 8.8% 37 8 0.2 40,000 3.87%
0.8 11.5% 5.6% 56 10 0.2 40,000 3.87%
0.9 8.0% 1.0% 1309 14 0.3 40,000 3.87%

0.4 76.9% 9.5% 7 3 0.85 40,000 3.87%
0.5 40.8% 14.3% 4 3 0.3 40,000 3.87%
0.6 22.5% 9.3% 6 5 0.2 40,000 3.87%
0.7 17.5% 2.7% 29 7 0.2 40,000 3.87%
0.8 17.5% 0.0% 29 7 0.2 40,000 3.87%
0.9 8.2% 0.0% 2803 22 0.2 40,000 3.87%

Table 4. This table shows a few interesting parameter combinations and their perfor-
mance (e.g., the points that are closest to the origin) for each considered threshold. The
first part of the table shows for each threshold the point that is closest to the origin.
The second part of the table shows some points that might be useful in an application
context where quality is more important than speed.
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for parameter k is 7 and the optimal value for parameter α is 0.2. The number
of clusters that is obtained using these parameter values is 29. The theoretical
reduction (with the percentage of computations that have to be performed) is
therefore 1/29 ≈ 0.03 for these two cases. For both the thresholds 0.5 and 0.6,
we can also see that the observed reduction resulted in having to perform 17.5%
of the total number of computations, which is approximately 6 times higher
than the theoretical number of computations that could have been performed.
This is probably due to the fact that there is still a large number of ‘popular’
tags present in the data set. The presence of these often occurring tags results
in one or more large clusters. This makes the total reduction in the number of
computations lower, as the tags are unequally distributed among the clusters.

The second part of Table 4 shows some points that might be useful in an
application context. The reason for choosing these points is that they give a
good trade-off between the number of computations and the skipping of high
cosines, giving more weight to the latter. We can observe, for example, that for
an application where high cosines are the ones that are higher than 0.4, it is
necessary to compute approximately 76% of the cosines (and to have less than
10% skipped high cosines). The parameters for this situation are k = 3 and
α = 0.85. If we consider a different situation, where high cosines are the ones
that are higher than 0.7, the optimal parameters change. With k = 7 and α = 0.2
the algorithm is able to skip a relatively small amount (i.e., 2.7%) of the high
cosines while computing just 17.5% of the cosines. In this way we retain most of
the high cosines while performing a minimal amount of computations.

From the table we can also immediately notice that there is one filter that
seems to give the best results, as for all rows this filter is found to be the optimal
one. For this data set, this filtering is achieved by leaving out all tags of which
the sum is greater than 40,000. The other filter, a threshold on the magnitude
of a vector, seemed to give worse results. One final observation we can make
is that the k parameter is more important and influential than the α param-
eter when considering the optimal points shown in the upper part of Table 4.
The α parameter only seems to play an important role when considering a low
threshold for high cosines. For the other situations, the parameter k determines
the performance of the algorithm. A possible explanation of this is that the k
determines the number of possible binary hash representations, and thus is the
most influential parameter for the performance of the algorithm.

In order to understand in more detail how the parameters affect the perfor-
mance of our algorithm, we also visualize a part of the sensitivity results. First,
we focus on the reduction aspect of the algorithm, i.e., the factors that deter-
mine how many computations are skipped. Figure 2 shows a plot on the x-axis
the considered values for the parameter k and on the y-axis the reduction of
the number of computations as percentages. The different series in the plot each
represent a value for the α parameter, as indicated by the legend. What we can
observe from this figure is that in general the percentage of total combinations
that has to be computed exponentially decreases as the number of parts (k)
increases. We should note that an asymptotic behaviour seems to be present in
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Fig. 2. A plot that shows the relationship between the values for parameters k and α
and the reduction of the number of computations.

this plot, i.e., when k is larger than 10, the percentage of total combinations
that has to be computed in general does not increase nor decrease. This can
be explained by the fact that for k > 10 the number of possible binary hash
representations becomes so large, that the upper bound of the actual number of
unique hash representation for our data set is achieved.

We can further notice that α = 0.2 converges the slowest. In Table 4 we
already saw that 0.2 was the optimal setting for α in most cases. This stresses
again the trade-off between the computation reduction power of the algorithm
and the quality of the results. Figure 2 shows that even though the line α = 0.2 is
the slowest one converging, the overall reduction on the number of computations
is relatively large and not much different from the other settings. One can note
that for low values of k (less than 10), medium values of α (0.4 and 0.6) tend to
provide for a better reduction in the number of cosines to be computed. Figure 2
also confirms our findings that the α parameter is not the ultimate determining
factor of the performance of our algorithm.

Last, we have analysed how the parameters of the clustering algorithm influ-
ence the percentage of skipped high cosines, where we again consider different
thresholds for the definition of a ‘high’ cosine similarity. Figure 3 shows 6 plots,
one for each threshold, where the plots are similar to the plot in Figure 2, with
the exception that the y-axis is now the percentage of skipped cosines for a par-
ticular threshold. From the figure we can observe that the percentage of skipped
cosines grows with respect to the number of splits of a vector (parameter k).
This is because of the number of clusters increases with k and thus the proba-
bility of skipping a high similarity increases. As a result of this, in general it is
desirable to choose low values for k when it is more important not to skip high
similarity pairs than to reduce the computational effort. When we consider the
different α values, one can notice that a value of 0.2 gives the lowest amount
of skipped high cosines, across all k values and considered cosine threshold val-
ues, something we already noticed in Table 4. Another observation is that for
a threshold value of 0.7 or larger there are parameter combinations for which
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Sensitivity analysis for cosines larger than 0.4
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Sensitivity analysis for cosines larger than 0.5
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Sensitivity analysis for cosines larger than 0.6
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Sensitivity analysis for cosines larger than 0.7
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Sensitivity analysis for cosines larger than 0.8
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Sensitivity analysis for cosines larger than 0.9
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Fig. 3. An overview of how the parameters k (number of parts) and α (hash threshold),
for different thresholds, influence the skipped high cosines.

no high cosines are skipped. Although the number of computations is probably
high for these parameter combination, we still find it useful as it does decrease
the computation time. Last, we can also observe that the asymptotic behaviour
becomes less visible as we increase the threshold that defines what a ‘high’ cosine
similarity is.

We have chosen to implement our algorithm and the experiments in Python.
In order to efficiently deal with matrix algebra, we have made heavily use of the
NumPy library [8]. For efficiently storing and querying large amounts of data, we
have used PyTables [1]. PyTables provides an easy to use Python interface to the
HDF5 file format, which is a data model for flexible and efficient input/output
operations. The experiments were run on a cluster with nodes that had CPUs
equivalent to a 2.5-3.5 GHz 2007 Xeon with 8 GB RAM. Each node was as-
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signed to perform experiments for a set of parameter combinations. By running
our code on 120 nodes, we cut down the computing time for the experiments
and the computation of the cosine similarity for all pairs (our reference) from
approximately 40 days to 5 hours.

5 Conclusions

In this paper we focused on the scalability issue that arises with the computation
of pair-wise similarities in large tag spaces, such as Flickr. The main problem is
that the number of similarity computations grows quadratically with the number
of input vectors. Besides being large, the data sets in tagging space problems
are usually sparse.

We have presented an algorithm that intelligently makes use of the sparsity of
the data in order to cluster similar input vectors. In order to filter insignificant
similarity pairs (i.e., similarities that are relatively low) we only compute the
similarities between vectors that are located in the same cluster. The proposed
algorithm performs the clustering of the input vectors in linear time with respect
to the number of input vectors. This allows our approach to be applicable to large
and sparse data sets.

For the evaluation of our solution we report the results for the cosine sim-
ilarity on a large Flickr data set, although our approach is applicable to any
similarity measures that are based on the dot product between two vectors. We
have used an experimental setup that covers a broad range of parameter com-
binations. The results presented in this paper show that our algorithm can be
valuable for many approaches that use pair-wise similarities based on the dot
product (e.g., cosine similarity). The algorithm is, for example, capable of re-
ducing the computational effort with more than 70% while not skipping more
than 18% of the cosines that are larger than 0.5.

In order to gain more insight in how exactly the algorithm can be tuned,
we performed an in-depth sensitivity analysis. From the results of this sensitiv-
ity analysis we can conclude that our proposed clustering algorithm is tunable
and therefore applicable in many contexts. We have found that with respect to
parameter k, the percentage of similarities that have to be computed is a de-
creasing function and the percentage of skipped high similarities is an increasing
function. This means that if a high value for k is chosen, the algorithm produces
better results with respect to the percentage of total similarities that have to be
computed. When a low value for k is chosen, the algorithm skips a smaller num-
ber of high similarities. As for the parameter α, we have found that the effect
on the performance of the algorithm is smaller than that of the parameter k. In
general, there exists an optimal pair of values for k and α. The optimal values
tend to be on the lower side of the considered values scale. Also, we find that
increasing these values does not yield better results as the clustering algorithm
performance seems to saturate at some point.

As future work one can consider the use of a clustering algorithm (e.g., 1-
NN using kd-trees) for the binary hash representations of vectors as an extra
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step in our approach. We would first like to investigate whether the overall
performance of the algorithm is increased, and second, how the time complexity
of the algorithm is changed by this extra step.
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