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Abstract. Due to the increasing popularity of tagging, it is important
to overcome challenges resulting from the free nature of tagging, such as
the use of synonyms, homonyms, syntactic variations, etc. The Semantic
Tag Clustering Search (STCS) framework deals with these challenges by
detecting syntactic variations of tags and by clustering semantically re-
lated tags. We evaluate our framework using Flickr data from 2009 and
compare the STCS framework to two previously introduced tag cluster-
ing techniques. We conclude that our framework performs significantly
better in terms of cluster precision compared to one method and has a
better average precision compared to the other method.

Keywords: Tagging, syntactic clustering, semantic clustering, tag dis-
ambiguation

1 Introduction

On today’s World Wide Web, it is becoming increasingly popular to use tags for
the purpose of describing resources. Tagging allows users to annotate a resource,
such as a video, photo, or Web page, with a keyword or tag of their own choice.
Because there are no restrictions on the tags that can be used, tags provide
a flexible way of describing resources. However, because of the unstructured
nature of tagging, there are some problems associated with retrieving resources
using tag-based search engines. These problems are often caused by different
tags having the same or closely related meaning. This can be the result of the
use synonyms, but it could also be caused by syntactic variations. Examples of
syntactic variations are misspellings or the use of the plural or singular form of
a specific word. Users may also use different levels of specificity while describing
a resource, which is identified as the basic level variation problem by Golder and
Huberman [9]. For example, one user might tag a picture of a cat as “animal”
(not very specific), while another user would use “persian” (very specific). The
usage of homonyms, i.e., words with multiple unrelated meanings, is another
problem associated with tagging.
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The problems described above can lead to undesirable results when searching
for resources using tags. For example if a user is looking for a picture using “cat”
as a keyword, he or she would most likely also be interested in pictures which are
tagged with “cats” (syntactic variation), “persian” (more specific, semantically
related term), “kitty” (synonym), and “kittie” (misspelling of kitty).

One way to deal with these problems is to create clusters of syntactically
and semantically related tags. Creating syntactic clusters involves the grouping
of tags that are syntactic variations of each other into separate groups or clusters.
Search algorithms can then use these clusters to improve the quality of a search
query. For example, when a user enters a tag as a search query, the search
algorithm could also add tags to the query that are in the same cluster as the
tag that was entered. Creating semantically related clusters involves grouping
tags that are semantically related, e.g., “sanfrancisco” and “goldengate”. Tags
occurring in multiple semantic clusters can be used to identify tags with multiple
meanings. If a tag occurs in multiple clusters it most likely also has multiple
meanings, e.g., “turkey” can refer to both the country and the animal.

As a solution to the previous problem, we define the Semantic Tag Cluster-
ing Search (STCS) framework, which consists of two parts. The first part deals
with syntactic variations, whereas the second part is concerned with deriving
semantic clusters. We implement and evaluate the use of the Levenshtein sim-
ilarity measure [13] and a combination of the Levenshtein similarity and the
cosine similarity measure, as similarity measures for syntactically related tags.
For identifying semantic clusters we implement and evaluate the semantic clus-
tering algorithm proposed by Specia and Motta [21] and a clustering algorithm
proposed by Lancichinetti et al. [11]. Additionally, we propose a modification to
the Specia and Motta approach to improve the results. We perform a thorough
evaluation of the used clustering methods that goes beyond previous evaluations
in extent.

The contribution of this paper stems from several aspects. First, although
several clustering techniques for clustering tags have already been proposed [3,
21, 24], the evaluation of these techniques is done using relatively small data sets
with a small number of resources. In this paper, we evaluate different syntac-
tic and semantic clustering techniques using a larger data set than previously
reported in literature. In this way we aim to analyze the performance of our algo-
rithms more accurately on high volume data, gathered from Flickr [20]. Second,
the proposed algorithm for syntactic clustering addresses the issue of identify-
ing syntactic variations among short tags. Third, for the semantic clustering we
identify the issues with currently available tag clustering algorithms and pro-
pose solutions for them. We have published previous work on STCS in [23].
Compared to this early work, in this paper we provide more details on the used
algorithms, use a significantly larger data set for the experiments, and perform
a more thorough evaluation.

The rest of this paper is organized as follows. Section 2 discusses related
work. Subsequently, in Section 3 and 4 we give an overview of the design and
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implementation of our STCS framework. Section 5 elaborates on the evaluation
of our experimental results and Section 6 concludes the paper.

2 Related Work

This section discusses related work on several key aspects of our methodology.
Firstly, Subsection 2.1 presents tag clustering methods. Then, Subsection 2.2
elaborates on similarity measures, and finally, Subsection 2.3 introduces some
related work on cluster evaluation.

2.1 Tag Clustering

Echarte et al. [7] discuss the problem of syntactic variations in folksonomies.
They propose the utilization of pattern matching techniques to identify syntac-
tic variations of tags. They evaluate the performance of the Levenshtein and
Hamming distances using the 10,000 most popular tags and 1,577,198 annota-
tions from CiteULike. Results show that the Levenshtein measure provides the
best overall performance. However, both techniques do not perform well with
tags shorter than 4 characters.

Specia and Motta [21] propose a method for building semantically related
clusters of tags using a non-hierarchical clustering technique based on the co-
occurrence of tags. They also explore the relationships between pairs of within-
cluster tags. The authors perform a statistical analysis of the tag space in order
to identify clusters of possibly related tags. Clustering is based on the cosine
similarity among tags given by their co-occurrence vectors. Before creating the
clusters, Specia and Motta merge morphologically similar tags using the normal-
ized Levenshtein distance measure. The authors manually evaluated the results
based on 49,087 distinct resources and 17,956 distinct tags from Flickr and found
that the clustering approach results in meaningful groups of tags corresponding
to concepts in ontologies.

Begelman et al. [3] propose to build a directed graph of tags with an edge
between two vertices (tags) when there is a (strong) relation. The weight of the
edge is based on the co-occurrence of the connected tags. In order to partition
the set of tags into groups of semantically-related tags, their recursive algorithm
uses spectral bisection to split the graph into two clusters. It then evaluates
the split using the modularity function, which was introduced by Newman and
Girvan [17]. The modularity function provides a measure of the quality of a par-
ticular division of a network. Begelman et al. applied their clustering algorithm
to a data set containing 200,000 resources and 30,000 tags.

Yueng et al. [24] also use a graph-based clustering algorithm, where the mod-
ularity function is used to evaluate the quality of a division. However, unlike
Begelman et al., the authors consider different network representations of tags
and documents, e.g., networks based on users, co-occurrence of tags, and context
of tags using cosine similarity, and discuss the effects of these various represen-
tations on the resulting clusters of semantically related tags. For their clustering
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experiments, a small data set is gathered from Delicious, containing 20 manually
selected tags representing two or more concepts, complemented by randomly se-
lecting 30 tags from the 100 most popular tags, with each tag having about 500
images. The authors find that networks based on tag context similarity capture
the most concepts. With these networks the cosine similarity is used to perform
a comparison of the context in which two tags are used, as reflected by the tag
co-occurrence vectors of the tags.

Lancichinetti et al. [11] present a method that uncovers the hierarchical and
overlapping community structure of complex networks. Their algorithm uses
a newly defined fitness function that determines the quality of a cover. This
function is used to discover the natural community of each node in a graph
by optimizing the fitness function using local iterative searching. The authors
evaluate their algorithm on artificial networks [2] that are known to have a built-
in community structure. Their results show that their algorithm is successful in
identifying these communities.

2.2 Similarity Measures

There are many similarity measures available for use in clustering algorithms.
Cattuto et al. [4] analyze a variety of these using a Delicious data set containing
the 10,000 most popular tags, by comparing the relations established through
the use of different similarity measures to WordNet [8] synsets. Cosine similar-
ity turns out to be the best similarity measure for detecting synonyms, while
FolkRank and co-occurrence appear to be more useful for detecting various other
semantic relations.

Markines et al. [15] evaluate the matching similarity, overlap similarity, Jac-
card similarity, Dice coefficient, cosine similarity, and mutual information mea-
sures using a more systematic approach. They investigate the performance of
these measures by generating several two-dimensional views on the tripartite
folksonomy of BibSonomy [10] using aggregated data from 128,500 resources,
1,921 users, and 58,753 tags. Unlike BibSonomy, Flickr only allows one user to
annotate a resource. Therefore, for a Flickr data set, only projection aggregation
is useful. The result of projection aggregation can be considered as a matrix with
binary elements wrt ∈ {0, 1}, where rows correspond to resources and columns
corresponds to tags. Given a resource and a tag, a 0 in this matrix element means
that no user associated that resource with that tag, whereas a 1 means that at
least one user has performed the indicated association. All similarity measures
can then be derived directly from this information. The usefulness of the various
measures as tag-tag similarity measures is evaluated using Kendall’s τ correla-
tions between the similarity vectors generated by the various measures and the
reference similarity vector provided by a WordNet grounding measure. Mutual
information proved to be the best similarity measure when using projection ag-
gregation. When compared to each other the remaining similarity measures have
the same performance. Unfortunately, mutual information is a computationally
intensive measure, which makes its use unfeasible for large data sets.



Improving the Exploration of Tag Spaces Using Automated Tag Clustering 5

2.3 Cluster Evaluation

Several measures exist to analyze clusters. Larsen and Aone [12] describe the
precision measure. Average precision is defined as

AvgPrec(Ω,C) =
1

|Ω|
∑
wk∈Ω

max
cj∈C
|ωk ∩ cj |

|wk|
, (1)

where Ω = {ω1, ω2, ...., ωk} is the set of tag clusters and C = {c1, c2, ...., cj}
is the set of tag classes. We interpret ωk and cj as a set of tags, where ωk is
denoting a tag cluster and cj a tag class.

Manning et al. [14] describe the purity measure to evaluate clusters. They
define purity as

Purity(Ω,C) =
1

N

∑
wk∈Ω

max
cj∈C
|ωk ∩ cj | , (2)

where Ω and C are the same as in the previous equation and N is the total
number of tags.

Delling et al. [6] propose the density measure, which is a trade-off between
intra-cluster density and inter-cluster sparsity to evaluate a specific clustering.
Let us assume that G is an undirected and unweighted graph with n nodes and m
edges. A partitioning of the nodes into several clusters c is called a clustering C
of a graph. The edges between nodes of the same cluster are called intra-cluster
edges and the edges between nodes of different clusters are called inter-cluster
edges. The density of clustering C is then defined as:

Density(C) =
1

2
Intra-cluster-density(C) +

1

2
Inter-cluster-sparsity(C) , (3)

where

Intra-cluster-density(C) =
1

|C|
∑
c∈C

# intra-cluster edges c(|c|
2

) , (4)

and

Inter-cluster-sparsity(C) = 1− # inter-cluster edges(
n
2

)
−
∑
c∈C

(|c|
2

) . (5)

3 Framework Design

This section introduces the Semantic Tag Clustering Search framework (STCS)
framework, which addresses the syntactic and semantic issues in tagging systems.
The framework consists of two layers. In the first layer, syntactic variations (e.g.,
misspellings, morphological variations, etc.) of tags are eliminated by clustering
the tags that are syntactic variations of each other and merging them into a single
tag. In the second layer, the framework deals with the problem of identifying
semantically related tags. This section continues with a problem definition in
Subsection 3.1, a discussion of the similarity measures used in Subsection 3.2,
and a more detailed elaboration of the framework in Subsection 3.3.
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3.1 Problem Definition

We now give a formal problem definition, for which we follow the formulation
given in [16]. The data set which is used as input for the framework is defined
as a tuple D = {U, T, P, r}, where U , T , and P are the finite sets of users, tags,
and pictures, respectively. The ternary relationship r ⊆ U × T × P defines the
initial annotations of the users.

Removing Syntactic Variations In order to effectively find semantically re-
lated tags, we first remove syntactic variations of tags from the data set. Syntac-
tic variations usually are misspellings of words but may also include translations
of tags in other languages, or morphological variations. To remove these syntac-
tic variations we create a set T ′ ⊂ P(T ) in which each element of the set T ′

is a cluster containing all tags that are syntactic variations of each other. Each
tag can only appear in one cluster. To determine the tag to be used as cluster
label, we define m′, which is the bijective function that indicates a label for each
x ∈ T ′, m′ : T ′ → L. For each l ∈ L and some x ∈ T ′, l ∈ x holds, such that
m′(x) = l, thus, l is one of the tags that labels the cluster x.

Finding Semantically Related Tags In our framework, we aim to find se-
mantically related tags by creating a set T ′′ containing semantic clusters of
elements l ∈ L. This denotes that we disregard the syntactic variations in the
semantic clusterings by only clustering tags that are labels of syntactic clusters.
An example of a semantic cluster is {“nyc”, “newyork”, “manhattan”}. A tag
should be able to be part of multiple clusters, each with a different meaning.

3.2 Similarity Measures

Based on the results of the discussed related work, we apply two similarity mea-
sures within the STCS framework. In order to determine tag similarity, we em-
ploy the Levenshtein distance measure and the cosine similarity. Related work
showed that the Levenshtein measure performed better in detecting syntactic
variations than the Hamming distance measure [7]. However for short tags the
Levenshtein measure does not perform well. In order to cope with this problem
we have combined the Levenshtein distance with the cosine similarity. The Lev-
enshtein distance is a measure for the amount of typographic difference between
two strings, also called edit distance. It is defined as the minimum number of
operations needed to transform one string into the other. An operation can be
an insertion, deletion, or substitution of a single character. We call this distance
the absolute Levenshtein distance. We denote it by alvij , which is the absolute
Levenshtein distance between tag i and j. Our framework needs to deal with dif-
ferent tag lengths so we used the normalized Levenshtein similarity, which is a
measure that is relative to the tag length. The normalized Levenshtein similarity
between tag i and j, denoted by lvij , is defined as follows:

lvij = 1− alvij
max(length(ti), length(tj))

. (6)
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Fig. 1. Overview of the STCS framework.

In order to measure the semantic relatedness between tags and the syntactic
similarity of short tags, we use the cosine similarity based on co-occurrence
vectors. In essence, this measure describes the similarity of the context in which
the tags appear. The context here is how often tags are used together with other
tags (i.e., the co-occurrence).

3.3 STCS Framework

This section describes the two layers of the STCS framework in detail. An
overview of the framework is presented in Fig. 1.

Removing Syntactic Variations In order to remove syntactic variations, we
employ an adapted Levenshtein distance measure. The algorithm requires an
initial list of tag pairs with a normalized Levenshtein distance above a certain
threshold α as input. The α threshold represents the minimum normalized Lev-
enshtein distance for which we consider two tags to be syntactic variations. The
initial list is then used to create sets T and E as input for constructing an undi-
rected graph. The set T contains each unique tag on the list. The set E is a set
of weighted edges between the nodes in T , where the weight represent the sim-
ilarities between tags. The weight wij of an edge in the tag graph is calculated
as

wij = zij × lvij + (1− zij)× cos (vector (i) , vector (j)) , (7)

where lvij is the normalized Levenshtein similarity between tag i and j and

zij =
max(length(ti),length(tj))

max(length(tk))
∈ (0, 1] ,with ti, tj , tk ∈ T . (8)
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Fig. 2. An example of graph containing three clusters

Using the normalized Levenshtein distances for short tags may result in false
positives, i.e., two tags being incorrectly identified as syntactic variations of each
other. Therefore, the weight of the cosine similarity between two tags increases
as the tags become shorter.

In order to build the tag graph, all the elements from set T are added as nodes
to the graph. Subsequently, all the edges in set E for which the weight is above a
certain threshold β are added to the graph, connecting the nodes from set T . The
β threshold indicates the level of the combined weight measure (wij) for which
we consider two tags to be syntactic variations of each other. Subsequently, the
syntactic clusters can be determined by retrieving the connected components in
the graph as sets of vertices. A connected component is defined as a maximal
subgraph in which all pairs of vertices in the subgraph are reachable from one
another. Each subgraph then contains all the nodes (tags) that form a cluster
of syntactically related tags. An example of the resulting subgraphs is presented
in Fig. 2 with each node containing the id of a unique tag. The resulting graph
contains clusters of tags that are syntactic variations of each other. An example
of a syntactic cluster is {venetie, venezia, venzia, veneza, venesia, venizia}, which
is assigned the label ‘venice’. We process this data by creating a new data set
in which the tags in the clusters are aggregated and presented as a single tag,
which we call the label for the cluster. The label of a cluster is the tag which is
used most frequently in the data set. The resulting data set is used as input for
the semantic clustering layer.

Clustering Semantically Related Tags After removing the syntactic vari-
ations and misspellings from the data set, the new data set can be used to
create semantic clusters. For this we use a partitional clustering algorithm, i.e.,
a clustering-by-committee-based algorithm [19] used by Specia and Motta [21],
both with and without some modifications. The choice for this algorithm is
motivated by the fact that it uses all tags instead of the cluster centroid to
calculate the similarity between two clusters. This allows us to better capture
the semantics associated with the tag space. Also, unlike many other clustering
algorithms, it allows for multiple classification of tags, which enables us to deal
with tag polysemy.

The algorithm starts with creating the initial clusters, where each tag is a
separate cluster. Then, all the tags for which the average cosine similarity with
respect to all the tags in the clusters is above a certain threshold (χ) are added
to the cluster. This could result in many identical or nearly identical clusters.
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To avoid a high number of these very similar clusters, Specia and Motta use
two smoothing heuristics. For every two clusters, the authors check whether one
cluster contains the other, i.e., whether all the elements in the smaller cluster
are also present in the larger cluster. If this is the case, the smaller cluster is
removed. For each pair of clusters they also evaluate whether the clusters differ
within a small margin by checking whether the number of different tags in the
smaller cluster with respect to the larger cluster represents less than a percentage
of the number of tags in the smaller cluster. If this is the case, the distinct tags
in the smaller cluster are added to the larger cluster and the smaller cluster is
removed.

A problem with the second heuristic is that the percentage used for merging
two similar clusters is constant. This implies that the maximum allowed number
of different elements increases with the size of the smaller cluster. Choosing a
suitable threshold value is problematic, as we do not want the larger clusters to
merge too easily and the smaller clusters too difficultly. The maximum number
of different elements for two clusters to be merged, is given by f(|c|) = bε · |c|c,
where ε is the threshold and |c| is the number of elements in the smaller cluster.
So for ε = 0.20 and |c| = 30, the maximum number of different elements is given
by f(30) = 6. This means that cluster c will be merged into a larger cluster C,
if |D| ≤ 6, where D = c − C. Furthermore, as f(4) = 0, a cluster with a size
below 4 is never merged.

Because of these limitations, we define two new heuristics that replace the
original second heuristic. The first new heuristic considers the semantic relat-
edness of the difference between two clusters. We merge two clusters C and c,
where |C| ≥ |c|, when the average cosine of all elements in D with elements in
the larger cluster is above a certain threshold δ. This average cosine is defined
as

AvgCos =
∑
d∈D

Avgd
|D|

, with Avgd =
∑
x∈C

cos(x, d)

|C|
. (9)

The second new heuristic considers the size of the difference between two clusters
in combination with a dynamic threshold. We merge two clusters in case the
normalized difference between the clusters is smaller than a dynamic threshold
ε. The normalized difference η is defined as

η =
|D|
|c|

. (10)

Threshold ε is defined as

ε =
φ√
|c|

, (11)

and thus
f(|c|) = bε · |c|c = bφ ·

√
|c|c . (12)

The distribution of the maximum allowed difference for which two clusters are
merged can then be adjusted by changing φ. An example of a semantic clus-
ter is {london, tatemodernart, towerbridge, milleniumwheel, buckinghampalace,
thames}.
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As a comparison we also use the algorithm proposed by Lancichinetti et
al. [11]. We choose this algorithm because as Specia and Motta’s method [21] it
allows a tag to be part of multiple clusters. The algorithm uses a graph as an
input and attempts to determine the natural community for each node in the
graph. In this graph, tags are represented by nodes and weighted edges connect
the nodes. The weight of an edge is the cosine similarity of the co-occurrence
vectors of the two tags the edge connects. A community is a subgraphG identified
by the maximization of the fitness of its nodes. If we consider each tag as a node
in the graph, the community of a node forms a cluster of semantically related
tags. The fitness of a subgraph G is defined as:

fG =
kGin

(kGin + kGout)
θ

(13)

where kGin is the strength of the internal links, which in our case is given by two
times the sum of the weights of all edges in G and kGout is the strength of the
external links, which in our case is the sum of the weights of all edges linking
nodes in G with nodes not belonging G. The parameter θ is used to adjust the
size of the resulting communities. Large values of θ yield very small clusters,
while small values result in large clusters. The fitness of node A with respect to
graph G is defined as fAG = fG+{A}− fG−{A}, where G+ {A} / G−{A} are the
graphs obtained from G by adding/deleting node A.

The natural community of a node A is detected as follows. We start with a
covered subgraph G including only node A. Each iteration then consists of the
following steps:

1. Visit all neighboring nodes of G not included in G;

2. Add the neighbor with the largest fitness to G, yielding G′;

3. Recalculate the fitness of each node in G′;

4. Delete a node that has a negative fitness, yielding G′′;

5. If a node is deleted in 4, repeat from 3, else repeat from 1 with G being G′′.

This procedure stops when all neighboring nodes considered in step 1 have a
negative fitness. However, it is too computationally intensive to perform this
procedure for every node. Therefore, the authors describe the following heuristic.
First pick a node A at random and detect the community of node A. Next pick
a node B not yet assigned to any group and detect the community of this node.
This process is repeated until each node is assigned to at least one group.

4 Framework Implementation

This section discusses the implementation of the STCS framework. The im-
plementation of the framework is done in Java in combination with a MySQL
database. For data collection and processing we used PHP scripts. This section
continues with discussing data collection and processing in Subsection 4.1, and
the implementation details for the cosine computation and clustering in Subsec-
tion 4.2.
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4.1 Data Processing

For our experiments, we gather data from Flickr related to all the pictures up-
loaded in 2009, together with their associated tags and users. To speed up the
data collection process, we distribute this task over four separate machines. The
initial data set contains 38,788,518 pictures, 196,344 users, and 1,017,168 tags.
After data cleaning, there are 147,064,188 associations, 31,951,884 co-occurrence
pairs, and 97,569 tags left.

The data cleaning process consists of several steps that aim to cope with noise
encountered in the data due to the lack of restrictions imposed on users assigning
tags to pictures. First of all, we remove tags with a tag length larger than 32
characters, to avoid tags that are entire sentences. The number 32 is based on
an extensive manual tag analysis. Furthermore, we remove non-Latin characters
(e.g., Arabic, Cyrillic, etc.) as well as numeric characters. Subsequently, we re-
move images from the same user that share identical tag strings. This filter is
motivated by the fact that in our data set, we sometimes encounter hundreds of
pictures uploaded by the same user with identical tags. These are sets of holiday
pictures tagged with identical tags, often unrelated to the picture. To prevent
these sets from influencing the co-occurrence measure, we only keep one image
of each of these sets and remove the others. Finally, we remove tags which occur
in less than 133 different pictures, as they are statistical outliers in our analysis,
i.e., AverageTagOccurence− 1.5× IQR ≈ 133.

4.2 Implementation Details

In order to be able to calculate the cosine similarity, one needs the co-occurrence
vector for each tag. To obtain this, we construct a matrix with both a row and a
column for each tag, with the cells containing the co-occurrence for that partic-
ular combination of tags. We aimed to employ the Colt library [5] to store this
matrix in memory because of its small memory footprint. However, the size of
our matrix is too large to be handled by Colt, and thus we implement our own
high performance matrix library which uses a Colt vector to store each column
of the co-occurrence matrix. Using the resulting matrix, we calculate the cosine
similarity for each unique combination of two tags. Because the co-occurrence
matrix is very large and the number of cosine computations increases very fast
with the matrix size, we use a distributed system. For this purpose, we utilize
Amazon EC2 [1], a service which provides cloud computing resources. We im-
plement the algorithms in a distributed fashion and run them in parallel on
multiple high memory instances, each having 17,1 GB of RAM to fit the entire
matrix in memory. In our experiments, the total amount of instances running in
parallel fluctuate between 3 and 52 instances. In total, these experiments took
up 8 computing hours on 2,914,700 cosine similarity calculations for the syn-
tactic clustering, which completed in 2.5 hours of actual time. For the semantic
clustering, we use 64 computing hours to perform 50,000,000 cosine similarity
calculations within 11 hours of actual time. Each instance loads the full matrix
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in memory and connects to a central job server which coordinates each instance
to perform a distinct portion of the calculations.

In our framework, we implement the syntactic clustering algorithm by means
of the Java Universal Network/Graph Framework (JUNG) [18] graph library.
This library provides a good method for retrieving the set of connected compo-
nents in a graph, which are clusters of tags in our case. The semantic clustering
algorithms is also written in Java. In order to reduce the time required for the
semantic clustering, we only consider the 10,000 most popular tags.

5 Evaluation

This section presents results of experiments conducted on our cleaned Flickr
data set. Subsection 5.1 discusses the results related to the first layer of our
STCS framework, i.e., removing syntactic variations. Subsection 5.2 elaborates
on experimental results related to finding semantically related tags.

5.1 Removing Syntactic Variations

We chose α = 0.5 as a threshold for the normalized Levenshtein similarity to
identify potential syntactic variations. We chose this constant using a sample
of 100 tag pairs that were known to be syntactic variations. We found that the
normalized Levenshtein similarity between these tag pairs was never smaller than
0.5. The goal of this threshold was to reduce the number of potential syntactic
variations for which the calculation of the cosine similarity was required. A value
of 0.5 effectively reduced this number without losing syntactic variations.

For the β threshold we chose a value of 0.7. We have chosen this value be-
cause it resulted in the best performance on random samples of 100 clusters.
For this threshold we tried all values between 0 and 1 with a step of 0.05. For
the evaluation of each value we drew a separate random sample of 100 clusters
(our training set). After filtering the cleaned data set discussed in Section 4.1 on
syntactic variations, there are 147,064,188 associations, 28,603,077 co-occurrence
pairs, and 91,916 tags left.

We evaluate the performance of the clustering technique using the combined
measure and the Levenshtein distance using precision and purity. We do not use
the density, because in our case it proved to be too computationally intensive.
For each clustering technique, we draw a random sample of 100 syntactic clusters
and evaluate these manually. For this evaluation we used majority voting with
a group of three people. Each person in the group chooses the correct tags in
each cluster and majority voting is then used to determine the final number of
correct tags that is used in the precision and purity calculations. The average
precision of the algorithm used in our framework on the random sample set
is 0.89. The average precision of the clustering algorithm using the normalized
Levenshtein distance is 0.70. By performing a one-tailed unpaired two sample
t-test with a significance level of 0.01, we conclude that the combined measure
does perform significantly better than the Levenshtein distance alone in terms
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of precision per cluster. The purity of the STCS framework is 0.88, while the
purity of the technique using only the Levenshtein distance to identify syntactic
variations is 0.67. Because we only use one data set and each data set has a
single average precision and purity, it was not possible to perform t-tests for the
average precision and purity.

5.2 Finding Semantically Related Tags

We choose χ = 0.8, δ = 0.7, and φ = 0.9 as thresholds for our framework. For the
clustering algorithm that uses a constant percentage to identify similar clusters,
we set ε = 0.3. For the θ threshold used in the method proposed by Lancichinetti
et al. [11], we choose θ = 1.5. We used these values because they proved to give
the best performance on random samples of 50 clusters (our training set). It is a
non-trivial task to evaluate the results of the semantic clustering quantitatively
due to the lack of external grounding. Semantic lexicons such as WordNet [8]
only contain a small portion of the tags in our data set. We considered all
values ranging from 0.1 to 0.9 with an increment of 0.1 for the χ, δ, φ and
ε thresholds and values ranging from 0.5 to 3 with an increment of 0.25 for
the θ threshold. We chose this range for θ because smaller values resulted in
extremely large clusters and larger values resulted in extremely small clusters.
For each threshold we evaluated a separate random sample of 50 clusters for
each value. All semantic clustering algorithms utilize the syntactic clustering
algorithm using the combined measure to filter out syntactic variations.

For the chosen thresholds we used majority voting and a different random
sample of 100 clusters (our test set) for each method to compute the average
precision and purity. We perform these computations for the clustering method
using the original heuristic for merging two similar clusters, the method using
the two new heuristics, and the method introduced by Lancichinetti et al. [11].
For the evaluation we again use majority voting with a group of three people.
The average precision when using the two new heuristics is 0.86. The average
precision when using the constant percentage as a threshold for merging two
clusters is 0.80, and the average precision when using the method introduced
by Lancichinetti et al. is 0.81. By performing a one-tailed unpaired two sample
t-test with a significance level of 0.05, we conclude that the two new heuristics
significantly improve the precision per cluster when compared to the heuristic
that uses only the constant percentage. However, with a significance level of
0.05, the method using the new heuristic does not perform significantly better
than Lancichinetti’s method (w.r.t. precision). The purity of the technique us-
ing the two new heuristics is 0.89, while the purity of the technique using the
original heuristic for merging two similar clusters is 0.87. The purity of Lanci-
chinetti’s method is 0.77. We observe that the purity of the technique with the
two new heuristics is the highest, but we cannot test for significance as in our
measurements we have purity as a single number (based on only one data set).
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6 Conclusion

In this paper, we proposed the STCS framework, which performs syntactic and
semantic tag clustering. For the syntactic clustering, we make use of a combined
measure of the Levenshtein distance and the cosine similarity. We compared the
results of clustering on the combined measure to clustering on the Levenshtein
distance. Our conclusion is that the combined measure performed significantly
better in terms on precision. The clustering method as proposed in our frame-
work was able to effectively filter out syntactic variations from the data set.

For semantic clustering, the framework uses an adaptation of the approach
proposed by Specia and Motta [21]. We are capable of identifying numerous
and useful clusters. Optimizing the parameters is difficult, as it is a non-trivial
task to evaluate the results of the semantic clustering quantitatively due to the
lack of external grounding, since existing semantic lexicons only contain a small
portion of the tags in our data set. Nevertheless, our experiments show that
the proposed method significantly outperforms the original method by Specia
and Motta and outperforms on average the method of Lancichinetti in terms
of precision. Finally, we have shown that our results are valid on a significantly
larger data set than was used before in the existing body of literature.

As future work, it could be interesting to investigate how the cluster informa-
tion can be used to enhance search results and especially how users experience
and value this improvement. This would provide crucial insight into which clus-
tering method in the end provides the best results in terms of user experience.
We would also like to experiment with the use of the Wikipedia redirects as a
tool to help identify syntactic variations of tags. Additionally, the services pro-
vided by the TAGora repository [22] might prove useful for identifying syntactic
variations.
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