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Abstract

The emergence of Web 2.0 and the Semantic Web as
established technologies is fostering a whole new breed
of Web applications and systems. These are often cen-
tered around knowledge engineering and context aware-
ness. However, adequate temporal formalisms underlying
context awareness are currently scarce. Our focus in this
paper is two-fold. We first introduce a new OWL-based tem-
poral formalism - TOWL - for the representation of time,
change, and state transitions. Based hereon we present a fi-
nancial Web-based application centered around the aggre-
gation of stock recommendations and financial data.

1. Introduction

Information on the Web is mostly textual in nature. Its
character is descriptive and meaningless without its most
skilled interpreter: the human brain. If the goal of automat-
ing the aggregation of vast amounts of information is to
be achieved, then this information should be described in a
machine-readable way enabling applications to at least sim-
ulate some understanding of the data being processed. The
emergence of Web 2.0 [12] and the Semantic Web [2] as
established technologies is fuelling a transition from a web
of data to a web of knowledge. In turn, this knowledge rich
environment is fostering a whole new breed of Web applica-
tions and systems, centered around knowledge aggregation
and context awareness. Focussing on the latter, it can right-
fully be stated that enabling context awareness involves the
existence of adequate temporal formalisms - currently very
scarce in a Semantic Web context. This results in adhoc
(and often not reusable) solutions for dealing with temporal
aspects on the Web.

One of the domains with a prominent temporal aspect,
which forms the focus of our current research, is the fi-
nancial one. More specifically, we seek to explore the area
of engineering Web applications for automated trading, an
area far too little investigated in such a context. One of the

motivations behind this choice finds its origins in the fact
that, in 2006, automated trading accounted for no less than
a third of all share trades in America. By 2010, according
to consultancy firm Aite Group, it will make up more than
half the share volumes and a fifth of options trades [3].

The main drive of this increased demand for automated
support in financial markets can be accounted to different
factors. One of the most obvious reasons underlying this
trend is the tight correlation between the timing of a trade
and the generated return. A number of aspects play a part
herein, such as the time required for the aggregation of the
relevant information on the human side; this period intro-
duces an unavoidable lower bound on the time of the trade
relative to the moment when it becomes profitable based on
the available signals. Another factor that fuels the involve-
ment of automated systems on the decision-side of finan-
cial markets consists of the discovery of arbitrage oppor-
tunities. The increased efficiency of mature financial mar-
kets, as well as the large number of assets and derivatives
available, make the identification of market inefficiencies
highly challenging. Automating at least parts of this pro-
cess should result in an increased coverage of the market,
as well as in an increased quantitative expectation from this
type of speculative returns. Finally, we underline the hu-
man aspect as one of the main drives behind the migration
from trader-driven investments to computer(-aided) trades.
We refer here mostly to error proneness, especially in con-
ditions of stress or extreme situations.

Although seemingly not directly related to automated
trading, the Semantic Web may come to meet the increased
technological demands emerging in the world of trading
[10, 15]. In achieving this purpose, we deem it necessary
to provide extensions to current Semantic Web languages,
thus making the latter more suitable for the knowledge we
seek to represent. One such extension is presented in this
paper and concerns a temporal ontology language based on
OWL-DL - the TOWL language. This language stands at
the basis of the financial application we present in this pa-
per, and forms one of the key ingredients allowing the ag-
gregation of historical stock recommendations and financial



data.
This paper is organized as follows. In Section 2 we

present an overview of known approaches towards tempo-
ral representations on the Semantic Web. In Section 3 we
introduce our temporal extension of OWL-DL: the TOWL
language. Section 4 presents the TOWL-based financial ap-
plication developed in the context of the current research
both in terms of its key features as well as the results gen-
erated. We wrap up in Section 5 with some conclusions re-
garding the main ideas presented in this paper and possible
future work.

2. Related Work

The focus of this section is on previous approaches re-
garding temporal Semantic Web extensions. The first ap-
proach we present, in Section 2.1 regards the extension of
RDF with temporal labeling of triples. In Section 2.2 we
give an overview of an OWL ontology of time, while in
Section 2.3 we report a previous effort of integrating a per-
durantist approach towards change in OWL, again in the
form of an ontology.

2.1. Temporal RDF

A rather extensive approach towards extending ontol-
ogy languages with a temporal dimension is reported in [4].
This work is similar to our current goal as it concerns the
ability to represent temporal information in ontologies, but
differs in that the language considered is the Resource De-
scription Framework (RDF). The concrete result of this ap-
proach consists of temporal RDF graphs with underlying
temporal semantics allowing for temporal entailment.

The extension presented in [4] with regard to RDF con-
sists of a vocabulary extension focused on temporal la-
beling. This vocabulary extension enables the labeling of
triples with intervals, thus allowing for the representation
of the time period during which the triple is true. Building
further upon this idea, the authors introduce the concepts of
graph slices and graph snapshots. Given a time t, graph
slices can be seen as subgraphs consisting of all triples with
temporal label t, while graph snapshots consist of all triples
holding true at t.

This labeling approach is suitable for the representation
of both transaction and valid time, as known from temporal
databases. Additionally, it preserves the spirit of the dis-
tributed and extensible nature of RDF, while keeping ob-
ject proliferation limited in scenarios where changes are
frequent [4]. The time used is a discrete and linearly or-
dered domain, again presenting resemblance with temporal
databases.

However, the approach presented in [4] is mainly fo-
cused on representing different versions of RDF graphs, as

they hold at different moments in time. In other words,
temporal RDF is centered around representing and track-
ing change. For our current purpose, although relevant, we
deem this to be insufficient, as we seek represent state tran-
sitions next to the ephemeral traits of entities.

2.2. OWL-Time

The initial purpose behind the design of a time ontology
was to represent the temporal content of Web Pages and
the temporal properties of Web Services (DAML-Time) [5].
The latest version of this ontology is represented in OWL,
and is currently a W3C working draft, as of September 27th,
2006.

The time ontology is built around the TemporalEntity
class and the relations describing its individuals. Temporal
entities may be of two types: Instant (point-like moments
in time) and Interval (time descriptions having a duration,
represented as ordered pairs of Instant individuals). Ad-
ditionally, the ontology contains classes meant to describe
different other temporal concepts, such as duration (Dura-
tionDescription), dates and times (DateTimeDescription),
temporal units (TemporalUnit) and alternative representa-
tions for the days of the week (DayOfWeek).

The main relations describing individuals of type Instant
are the functional properties begins (the beginning, same as
the end in case of an instant) and ends (the end, same as the
beginning in case of an instant). The range of the properties
are objects of type InstantThing. The actual time belong-
ing to these individuals can be expressed as of the inter-
nal type CalendarClockDescription or as xsd:dateTime of
XML Schema. Intervals exhibit, amongst others, the same
properties as instants, with the same flexibility in the rep-
resentation of the actual date and/or time. Additionally, the
property inside may be defined in the case of individuals of
type Interval, and describing a relation between an Instant
and an Interval, equivalent to asserting that some individual
of type Instant is within the bounds of the individual of type
Interval.

In the context of designing a temporal language, the ex-
pressiveness offered by OWL-Time addresses mainly the
issue of the representation of time in its qualitative nature.
However, the main building block of this approach is OWL-
DL, resulting in a limited representational power even at
this level. A very simple example relates to the seman-
tics of an interval - the left bound of the interval should
always be smaller than the right bound of that same interval
- which cannot be represented in OWL-DL. Despite this,
the approach also exhibits a number of interesting features,
such as the reference to XML Schema for the representa-
tion of dates and times, and the use of intervals as the main
building block for more complex constructions.



2.3. An OWL Ontology for Fluents

Perdurantism, or four-dimensionalism, relates to the
view of entities as having more than only their spatial parts:
they also have a temporal part. For the current purpose
we focus on perdurantism and the corresponding view on
the temporal parts of an object: “... something persists iff,
somehow or other, it exists at various times; something per-
dures iff it persists by having different temporal parts, or
stages, at different times, though no part of it is wholly
present at more than one time” [6].

An approach related to incorporating perdurants through
the use of timeslices and fluents in OWL-DL is presented in
[14], where the authors develop a reusable ontology for flu-
ents in OWL-DL. The fundamental building blocks of this
representation are timeslices and fluents. Timeslices repre-
sent the temporal parts of a specific entity at clear moments
in time and the concept itself is then defined as all of its
timeslices. Fluents are nothing more than properties that
hold at a specific moment in time, may this time be an in-
stant (point-like representation of time) or an interval. The
ontology for fluents as defined in [14] is reproduced in Fig-
ure 1.

Ontology(4dFluents
Class(TimeSlice)
DisjointClasses(TimeSlice TimeInterval)
Property(fluentProperty Symmetric

domain(TimeSlice)
range(TimeSlice))

Property(tsTimeSliceOf Functional
domain(TimeSlice)
range(complementOf(TimeInterval))

Property(tsTimeInterval Functional
domain(TimeSlice)
range(TimeInterval)))

Figure 1. The original fluents ontology as pre-
sented in [14].

The approach in [14] comes to address a relevant issue,
namely the representation of change in OWL ontologies.
However, as in the case of OWL-Time, relying solely on
OWL-DL for such a goal limits in several ways the power of
the approach. The semantic limitation regarding temporal
aspect translates to little to no reasoning support in such
contexts.

3. The TOWL Language

In this section we formally introduce the TOWL lan-
guage [11]. The concepts discussed are introduced both in
abstract as well as description logics (DL) syntax. A further
differentiation is made between syntax and semantics of the
concrete domain and the syntax and semantics of fluents

Figure 2. The TOWL layer cake.

and timeslices. Finally, we differentiate between TBox and
ABox syntax and semantics, and present these separately.

An overview of the layers introduced by TOWL as an
extension to OWL-DL is given in Figure 2. In what follows
we present the different layers in more detail, introducing
the syntax and semantics belonging to each. It should be
noted that some of the layers do not necessarily introduce
a semantic extension, as in the case of timeslices and flu-
ents where it can be argued that this layer concerns syntactic
sugaring.

3.1. Concrete Domains

The first step towards increasing the expressiveness of
OWL-DL in a temporal fashion consists of extending the
capabilities of the language regarding concrete domains.
OWL-DL does offer a certain level of support for concrete
domains. It is thus possible to represent concrete traits of
entities based on quantifiable attribute values and datatype
properties. The datatype properties can be created at the de-
sign stage and linked to XML Schema Datatypes. In this
fashion, simple concepts such as age, height, and even tem-
poral durations may be represented.

However, for the current purpose, we deem this to be
insufficient. Truly meaningful representations in a tempo-
ral context relate, for a a large part, to complex temporal
restrictions enabled by the language. Such constructions
are usually built using function compositions, equivalent
to functional role chains in OWL-DL. Complex class def-
initions involving a temporal aspect are represented based
on such chains, with the important characteristic that this
definition involves the concrete domain. Translating this to
OWL-DL involves the representation of restrictions through
concrete domain predicates imposing some restriction of
functional role chains. This type of representations are not
only relevant in a temporal context. Even in a static envi-
ronment one can envision some concrete relation restricting
a class definition based on concrete feature chains. The gen-
eral form of a functional role chain in DL is:

f1 ◦ f2 ◦ ... ◦ fn ◦ g



In TOWL we make this type of constructs available by
means of syntactic sugaring. The representation of a con-
crete feature chain in TOWL abstract syntax is as follows:

ConcreteFeatureChain(f1 f2 ... fn g)

where f1,...,fn are abstract features and g is a concrete
feature pointing to some value in the concrete domain.

In what follows, we denote by ui concrete feature chains
of the form introduced above. Developing hereon, we ad-
ditionally introduce restrictions imposed through the use of
concrete domain predicates over such chains. The general
form of such restrictions in DL is:

∃u1, u2.pd,

where pd is a concrete domain predicate and u1, u2 are
concrete feature chains. In TOWL, such restrictions are rep-
resented as:

dataSomeValuesFrom (u1 u2 pd),

where u1, u2, pd preserve their meaning as previously
presented. Additionally, we can also represent universal
quantification over such restrictions, what in DL would be
represented as:

∀u1, u2.pd,

which translates, in TOWL abstract syntax, to:

dataAllValuesFrom (u1 u2 pd),

For example, if we base our approach on a concrete do-
main describing dates and times (which in turn is based on
the set Q of rational numbers with < and = as its two bi-
nary predicates), we can express restrictions of the follow-
ing form in DL syntax:

∃u1, u2. <
∀u1, u2. =

which are completely equivalent to the following repre-
sentations in TOWL abstract syntax:

dataSomeValuesFrom (u1 u2 numeric-smaller-than)
dataAllValuesFrom (u1 u2 numeric-equal)

To summarize, the concrete domains layer in TOWL
builds upon the expressiveness offered by concrete domains
added to OWL-DL. This increased expressiveness comes
from allowing complex class definitions where a concrete
domain predicate that is used to restrict paths in the form of
concrete feature chains.

A special type of concrete domain is represented by con-
straint systems [7]. The main discriminating characteristic

of such systems is the type of predicates they are based on.
Unlike traditional concrete domains, constraint systems are
based on a set of jointly-exhaustive and pairwise disjoint
binary relations. This makes constraint systems suitable for
temporal representations based on intervals and Allen’s in-
terval relations [1], as we discuss in the next section. Ad-
ditionally, such an extensions maintains the decidability of
the language, as shown in [7].

3.2. Time Representation

The concrete domain in the TOWL context, as presented
in the previous section, enables the representation of time
in the language. Under this TOWL layer we include basic
representations of time in the form of temporal intervals, as
well as a number of temporal relations between these inter-
vals in the form of Allen’s 13 interval relations. This forms
the basis for our approach, as it allows the definition of com-
plex restrictions, such as the one described in the previous
section, but this time having a temporal character. The type
of concrete domain considered is a constraint system based
on intervals and Allen’s relations that may hold between in-
tervals [8].

By employing this particular concrete domain, we can
express Allen’s 13 [1] interval relations in the language
and enable the representation of temporal dependencies be-
tween events. It should be noted that all relations between
intervals can be translated to formulas in terms of the inter-
vals’ endpoints.

3.3. Timeslices & Fluents

The concrete domain approach towards representing
quantitative time in ontologies as presented in the previous
sections forms the basis for our approach. Building further
upon these blocks, we seek to represent temporal aspects of
entities other than timespan. In this context, the final level
of expressiveness that we enable in TOWL regards change
and state transitions. The perdurantist approach outlined
in Section 2.3 forms the foundation of this type of features.
The current approach builds upon the concrete domain layer
for the representation of time as described in this document.
Up to a certain level, it can be argued that the fluents and
timeslices employed for the representation of temporal in-
formation do not go beyond the expressiveness of OWL-
DL. Rather, fluents and timeslices represent a kind of vo-
cabulary employed for the representation of temporal parts
of individuals that change some property in time. However,
the semantics of fluents as envisioned for TOWL enforces
a number of restrictions on TOWL specific concepts, and
most importantly on fluents and timeslices. Some inter-
esting features fuel the interdependence between the con-
crete domain and the timeslices/fluents approach and relate



Figure 3. Temporal restrictions on timeslices
connected by fluents.

mostly to the restrictions this approach imposes on the very
concepts it introduces. A concrete example of this interde-
pendence consists of employing the definition of the interval
as introduced in the previous sections in defining the time
associated with timeslices (the period over which timeslices
hold true).

One such restriction relates to the fact that fluents only
relate timeslices that hold over the same time interval. Rep-
resenting such a restriction involves the concept of equal-
ity of (feature chains ending with) intervals, a representa-
tion that is enabled through the use of the constraint system
based on intervals and Allen’s relations. We illustrate this
idea through an example that we graphically depict in Fig-
ure 3.

For illustrating this point, we represent a buy advice is-
sued by the company Credit Suisse for Philips. We assume
the existence of a Company class in the ontology. Two in-
stances of this class are created, iCreditSuisse and iPhilips,
denoting the two companies involved. For each of these
static individuals we create a timeslice, resulting in iCred-
itSuisse TS1 and iPhilips TS1, respectively. The times-
lices are associated to the concept they describe through
the towl:timeSliceOf property. The towl:time property is
employed to associate a time interval to each of the times-
lices, in this case iIntervalCS and iIntervalPh, respectively.
Both intervals are described in terms of their starting and
ending points through the towl:start and towl:end proper-
ties. Finally, we connect the two timeslices through the
advice:buyAdvice fluent, thus representing the buy advice
issued by Credit Suisse for Philips.

Returning to the point of restrictions enabled by the
TOWL language - fluents may only connect timeslices that
hold over the same interval - through the use of the con-

straint system we enforce the towl:equal Allen relation to
hold between the intervals that describe the two timeslices.
In the context of TOWL, the Allen relations are defined as
binary predicates over the concrete domain, and are em-
ployed to specify such restrictions as follows (in DL no-
tation):

∃(time, fluentObjectProperty ◦ time).equal

Enforcing such an axiom may have two consequences:

• If the intervals do not satisfy the equal relation, an in-
consistency is discovered;

• If one of the intervals is not defined, its endpoints may
be inferred from the other interval.

However, as argued later in this section, the second point
does not apply, as we enforce timeslices to always be as-
sociated with a timeinterval for which both endpoints are
defined.

At this point, is should be mentioned that, building upon
the approach in [14], TOWL enables differentiations be-
tween fluents that take values from the TimeSlice class and
fluents that indicate changing values (datatypes). This is
achieved through the use of the FluentObjectProperty and
FluentDatatypeProperty properties, and comes to reduce
the proliferation of objects in TOWL ontologies due to the
fact that, in the case of datatypes, the number of timeslices
that need to be created is reduced to half.

A final issue that needs to be addressed relates to the
Frame Problem. In the current case, this resumes to be-
ing able to determine, at any point in time, what holds true
and what not. What we are trying to cope with also relates
to being able to determine what has not been affected by
an action. In Figure 4 we present two concepts, Concept1
and Concept2, each with timeslices across different time in-
tervals. If timepoint T is chosen, it becomes obvious that
determining what holds true at that time is a simple mat-
ter. This is however only possible if we enforce timeslices
to always be associated with a time interval that indicates
the period across which these timeslices hold true. The def-
inition of a TOWL timeslice, as formalized in the TOWL
semantics, satisfies this condition.

4. Stock Recommendations Aggregation Sys-
tem

Stock recommendations, although taking on different de-
nominations, can always be reduced to advices of the form
buy/hold/sell. They are issued by large brokerage firms,
and mirror the expectations regarding the development of
the stock price of the envisioned company. The collection
of such recommendations that are true at a given point in



Figure 4. Determining what holds true at a
certain point in time.

time is denoted as market consensus, and can often be a
good indicator of the average expectation regarding the fu-
ture (within 1 year) value of a company. Roughly, a stock
recommendation thus consists of the issuer (the brokerage
firm), the targeted company and the type of the advice
(buy/hold/sell). Although other characteristics may be in-
cluded in such a recommendation, such as 12-months price
target, 12-months earnings per share, etc., they fall out of
scope for the current purpose.

Going beyond pure market consensus, an interesting re-
search question is whether these recommendations can be
aggregated into a single advice such that the aggregated ad-
vice is a better indicator of how the price of a certain stock
is likely to develop. The most intuitive variable to consider
in this context is the historical performance of the individ-
ual brokerage firms present in the market consensus. This
is exactly the goal of the Stock Recommendations Aggre-
gation System (SRAS). This section focuses on outlining
the system and, additionally, presenting preliminary results
obtained through the aggregation of advices.

4.1. System Architecture

In this section we provide an overview of SRAS in terms
of the system’s architecture. The individual components are
described in more detail in the following sections. A graph-
ical depiction of SRAS is presented in Figure 5. Here, the
different modules are grouped according to the system com-
ponent they belong to.

A distinction may be made between the following com-
ponents:

• HTML wrappers;

• Information extraction;

• Knowledge base update;

• Advice generation.

A walkthrough the system, at a general level, involves
fetching data from the HTML data sources, extracting the

Figure 5. System architecture.

relevant knowledge and updating the TOWL knowledge
base. Based hereon, the SRAS advice generation compo-
nent aggregates the available information and presents a sin-
gle advice to the end-user (i.e., trader).

4.2. HTML Wrappers

One of the main features of the system consists of the
various raw data sources employed for the generation of ad-
vices. Additionally, different types of data are employed for
the purpose of the system. In this section we describe both
the sources as well as the type of data we extract for the
current purpose.

The main data ingredient consists of the raw ad-
vices, in the form of buy/hold/sell recommendations.
Emerging advices are grabbed from the http://www.
analist.nl, http://www.iex.nl and http://
www.briefing.com websites, which are updated on a
daily basis. We focus on a total of 8 markets: Euronext
Amsterdam, Euronext Brussels, Euronext Paris, DAX 30,
DowJones 30, FTSE 100, NASDAQ 100 and SMI. His-



torical advices are fetched for the purpose of determining
the past performance of brokerage companies. A compre-
hensive resource for this type of data is the Wharton Re-
search Data Center (WRDS), available at http://wrds.
wharton.upenn.edu/.

Next to data that directly concerns stock recommenda-
tions, we collect different characteristics of companies, such
as the company codes, and the markets and sectors in which
they are active. Thomson One Banker (T1B) provides ex-
tensive information for this purpose, together with historical
daily closing stock price data for the companies considered
by SRAS. The set of company features that we consider
consists of attributes such as company name and quote sym-
bol, but also a series of different codes that uniquely iden-
tify companies: such as ISIN, SEDOL, CUSIPa and IBES.
Additionally, we include the GICS code, the is used to iden-
tify the industry classification to which a certain company
belongs.

The need for being able to identify companies by differ-
ent codes (ISIN, SEDOL, etc.) emerges from the fact that,
in different contexts, the company may be identified by any
of these codes (think of the data extracted from HTML ad-
vices). Additionally, as all these codes are generally used
just as often, we provide different means of identifying a
company at application level.

The data described in this section is grabbed from the
different data sources through the use of individual HTML
wrappers, and fed to the Information Extraction component,
which we describe next.

4.3. Information Extraction

The first module of the Information Extraction com-
ponent is the Stanford Part-of-Speech (POS) tagger [13].
Some of the commonly used tags that we found in the de-
scription of stock recommendations include: /NNP (proper
noun, singular), /IN (preposition or subordinating conjunc-
tion), /CD (cardinal number), /NN (noun, singular or mass),
/DT (determiner), /JJ (adjective) and/VBZ (verb, 3rd person
singular present). The individual recommendations, as pro-
vided by the HTML wrapper, are annotated word by word
based on the part of speech they represent.

After having annotated the textual data by means of the
Stanford POS tagger, the tagged information is further pro-
cessed. The relevant knowledge is extracted by means of
pattern-based extraction. In the case of stock recommen-
dations, the goal of this phase is to identify the following
features:

• Issuer: the brokerage firm that issued the recommen-
dation;

• Company: the company for which the recommenda-
tion was issued;

• Advice type: the type of the advice, one of
buy/hold/sell;

• Identifier: unique code of the company for which the
advice was issued;

• Issue date: the date when the advice was issued.

Regarding the time associated with the validity of the ad-
vice, a sidenote is in place. At the time an advice is issued,
it is not known for how long this recommendation will hold
true. In other words, the recommendation might expire with
no special events occurring, or a new recommendation may
be issued. For this goals, at the time the advice is created by
SRAS, a default validity period of 12 months is assumed. In
the case that during this period a new advice is issued by the
same brokerage firm for the same company the length of the
old advice is adjusted so that it ends right before the new one
was issued. This temporal feature of the system will further
be detailed when discussing the Knowledge Base Update
component.

After having tagged and extracted the relevant knowl-
edge from the raw input, this data is passed on to the Knowl-
edge Base Update module. The main purpose of this mod-
ule is the creation of TOWL instances that reflect the rel-
evant knowledge extracted from the various data sources.
In the case of recommendations, timeslices of the broker-
age firm and the company are created with the correspond-
ing time intervals. The timeslices are connected with the
appropriate fluent (e.g., buyAdvice in the case of a buy ad-
vice). The thus created data is passed on to the information
to the Knowledge Base Update component.

4.4. Knowledge Base Update

The knowledge base (KB) employed by SRAS is pop-
ulated with static information once before the fetching of
advices is initiated. All static information regarding compa-
nies, codes and exchanges is present, although the process
of populating the KB with this knowledge may be repeated
on user demand. The high quantity and very low rate of
change of this data make it unfeasible to initiate this pro-
cess each time new advices are grabbed.

The main task of the component discussed in this sec-
tion thus consists of updating the KB with the newly issued
stock recommendations, as received from the Information
Extraction component. This task is achieved by employ-
ing Jena [9] - a Semantic Web framework designed for the
manipulation of ontologies. In combination with the rule-
based inference engine provided by Jena, it becomes pos-
sible to check for temporal constraints and inconsistencies,
in addition to the static ones. This can be achieved through
customizing the Jena engine by an extension that includes
temporal rules.



Figure 6 shows an example of a TOWL Jena rule, i.e., the
rule used to check if an instance is inside a certain interval.
This rule uses the before predicate to verify whether the
starting point of an interval is before a given instance and
whether the instance is before the ending point of the in-
terval. The before predicate is defined in another TOWL
Jena rule which uses the lessThan function (available in
Jena for comparing xsd:dateTime expressions).

# inside
[inside:
(?ins rdf:type time:InstantThing)
(?int rdf:type time:IntervalThing)
(?int time:start ?intstart)
(?int time:end ?intend)
(?ins time:before ?intend)
(?intstart time:before ?ins)
->
(?ins time:inside ?int)]

Figure 6. TOWL Jena rule example.

An interesting feature at this stage is the adjustment of
the length of the advices based on the current context. As
already mentioned, the duration of advices is not known at
the time the advice is issued. However, TOWL enforces all
timeslices to be described by a defined interval, and thus an
ending point for the interval (i.e., the recommendation) is
necessary. The temporal rule we employ for this purpose is
initially based on adding a default duration of 12 months to
each newly issued advice. If, during the update of the KB,
an advice is discovered that is identical to the advice that
is being added in terms of issuer and target company, the
endpoint of the old advice is adjusted. We assume of course
that the advice, though old, is not older than 12 months.
The new ending date of the interval associated with the old
advice is set to one day before the new advice was issued,
and the new advice may now be added to the KB without
affecting the consistency of the old advice.

After each update of the KB, the system generates new
aggregated advices for the company where changes are de-
tected following the process described in this section. More
light is shed on the generation of aggregated advices in the
next section.

4.5. Aggregated Advice Generation

The focus of this section is on the core module of the
Stock Recommendations Aggregation System, namely the
Advice Aggregator. The computation of the actual aggre-
gated advices is based, as previously mentioned, on the in-
dividual performance of the brokerage firms present in the
market consensus for which the system generates a recom-
mendation, at the time this recommendation is calculated.
We base this calculation on the Performance Index (PI) of
each broker, in turn based on the profitability (generated re-

turn) of the broker. This is calculated based on the perfor-
mance of the individual advices issued by the latter. How-
ever, due to the varying duration of advices, absolute return
proves to be a subjective measure of performance. For this
reason, we rely on the average daily return.

We first introduce the daily return of an advice, calcu-
lated according to the following formula:

Rdaily
t =

pricet − pricet−1

pricet−1

Based on the daily return, the average return of an advice
is calculated according to the following formula, where n is
the total number of days across which the advice was true:

Radvice =
∑n

t=1 Rdaily
t

n

Finally, the performance index of a brokerage firm is cal-
culated as the average return that all its advices generated:

PIbroker =
∑m

advice=1 Radvice

m
,

where m is the total number of advices issued by a single
broker.

It should be noted that the range of advices considered
when calculating the performance index may vary, accord-
ing to user preferences. One obvious option is selecting all
recommendations that the brokerage firm issued. Another
option however, is to narrow the set of considered advices
to those issued for companies active in the same industry as
the company for which an advice is generated by SRAS. By
relying on the GICS code for this task, the field of advices
may be varied based on the selected length of this code.

The next step in the generation of an advice is determin-
ing the confidence factors for each type of possible recom-
mendations (buy/hold/sell), based on the performance in-
dexes. For each of type of recommendation, the confidence
factor CF [buy,hold,sell] is calculated as follows, provided at
least one performance index is positive:

∑p
i=1 PI

[buy,hold,sell]
i∑q

j=1 PIbuy
j +

∑r
k=1 PIhold

k +
∑s

l=1 PIsell
l

where PI [buy,hold,sell] represents the performance index
of the broker that issued a [buy, hold, sell] advice, p rep-
resents the total number of brokerage firms in the market
consensus, and q, r, s the number of brokerage firms in the
market consensus that issue a buy, hold or sell advice, re-
spectively, such that p = q + r + s.



Figure 7. The standard tab.

In case all advices are negative, the confidence factors
are calculated as follows:

1 −
|
∑p

i=1 PI
[buy,hold,sell]
i |

|
∑q

j=1 PIbuy
j +

∑r
k=1 PIhold

k +
∑s

l=1 PIsell
l |

This is done so that, despite the negative values, a proper
scaling may still be achieved. In this fashion, confidence
factors may be determined regardless of the nature (posi-
tive/negative) of the performance indexes, while maintain-
ing the ability to compare results.

Having calculated a confidence factor for each type of
recommendation based on market consensus and historical
information, the type of advice issued by the application is
the one with the highest confidence factor after performing
the calculations presented in this section.

Additionally, we calculate a strength, Sadv , for the ad-
vice issued by the application, based on the individual con-
fidence factors. This is calculated as:

Sadv = (max(CF buy, CFhold, CF sell)-
−min(CF buy, CFhold, CF sell) +
+max(CF buy, CFhold, CF sell)-
−median(CF buy, CFhold, CF sell))/2

The intuition behind this formula relates to regarding the
strength of advices in terms of whether there is a clear dis-
crimination between the confidence factors of the different
advice types. Additionally, this ‘distance’ is quantified, thus
providing the strength of the advice.

4.6. User Interface & Preliminary Results

The user interface is divided into 4 tabs, as presented in
Figure 7, where the default tab - Standard - is selected.

In this tab the user can select a company by typing
anything from the company name to one of the available

Figure 8. The advanced tab.

Figure 9. The GICS tab.

company identifiers (codes). Once selected, a period to
be considered when calculating the aggregated advice may
be selected. Finally, upon clicking the Gather New Ad-
vice button, an aggregated advice is generated following the
methodology as outlined in the previous section.

The second tab, Portfolio, is identical to the Standard
tab, with the exception that here the user may select a whole
range of companies rather than just one, and receive advices
for each selected company.

The Advanced tab allows the user to select what length
of the GICS code of the selected company is going to be
used when calculating the aggregated recommendation. As
shown in Figure 8, the GICS code of the selected company
is already shown, and can be edited by the user. Addition-
ally, information on the GICS code is available, at different
lengths of this code.

Finally, the GICS tab presents the average performance
of brokerage firms within a specific GICS industry. As
shown in Figure 9, the GICS code is editable, and any length
(maximum 8) may be entered when performing this bench-
mark.

The preliminary results present a number of interesting
features. Perhaps the most striking one relates to the fact
that the aggregated recommendation generated by SRAS



does not always follow the market consensus. In other
words, a recommendations distribution (across buy, hold
and sell) that has a unique maximum (say buy), does not
always agree with the advice generated by the application.
This occurs especially when taking into account the perfor-
mance of the brokerage firms within the specific industry
where the company for which the advice is generated is ac-
tive. This could be an indicator that taking into account his-
torical performance of brokerage firms leads to the creation
of new knowledge regarding the most likely development of
a company’s share price.

5. Conclusion and Future Work

The TOWL language is an extension of OWL-DL that
enables the representation of time and temporal aspects
such as change. It comes to meet shortcomings of previous
approaches, such as [5, 14] that only address this issue to a
limited extent and don’t seek to enable automated reasoning
in a temporal context.

The approach presented in [5] for example only deals
with the representation of time in the form of intervals and
instants. However, ensuring that intervals are properly de-
fined (starting point is always strictly smaller than the end-
ing point) is not possible in this approach. The approach
taken in [14] builds upon [5] by addressing one of its limi-
tations, namely: the representation of temporal aspects such
as change. However, the semantics underlying this ap-
proach are still OWL-DL semantics, and thus no reasoning
support is provided for representations based on timeslices
and fluents other than the standard (and insufficient) OWL-
DL reasoning.

The TOWL language has been developed as an extension
of OWL-DL to address a need that initiated at a practical
(application) level. Developing financial applications in a
Semantic Web context requires an increased level of context
awareness and thus support for the representation of highly
dynamic data. One such application is the Stock Recom-
mendations Aggregation System that we present in this pa-
per. Here, the temporal data consists of emerging advices
that must be represented consistently in the knowledge base.
Enabling the aggregation of recommendation data and other
financial information results in a powerful application able
to issue single advices, of different strengths. The prelimi-
nary results show that the informational content of this ag-
gregated knowledge is increased when compared to the in-
dividual advices.
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