
Modeling User Input and Hypermedia Dynamics in
Hera

Geert-Jan Houben, Flavius Frasincar, Peter Barna, and Richard Vdovjak

Technische Universiteit Eindhoven
PO Box 513, NL-5600 MB Eindhoven, The Netherlands�

houben, flaviusf, pbarna, rvdovjak � @win.tue.nl

Abstract. Methodologies for the engineering of Web applications typically pro-
vide models that drive the generation of the hypermedia navigation structure in
the application. Most of these methodologies and their models consider link fol-
lowing as the only materialization of the navigation structure. In this paper we see
how extended user input can dynamically influence the navigation structure. By
means of Hera it is shown how one can define this extended user input and capture
the functional aspects related to the hypermedia dynamics in the RDF(S)-based
design models. For this purpose we discuss the definition of input controls, the
representation of state information, and the embedding of both in the application
model. We also present the XML/RDF-based architecture implementing this.

1 Introduction

Under the influence of the World Wide Web we have seen the development of a new
type of (data-intensive) information systems. These so-called Web Information Systems
(WIS) [1] are characterized by the use of hypermedia navigation through the content
of the system, in combination with the traditional functions of an information system
allowing to update and query the content. As examples of WIS applications we mention
online services like real-estate sales, employee information, museum information, or
mail order catalogs.

The engineering of WIS requires different methodologies than the ones than we
have been using for information system development over the last decades. In the tradi-
tional approach, used for example in more database-oriented applications, we see that
most of the engineering activity is related to structuring the data so that the structure
matches the standard software component, i.e. relational database. The subsequent de-
sign of presenting the content to the user is considered in the query facility associated
with the software. On the other hand, with the original hypermedia approaches we see a
different pattern, since they typically assume a process of manually linking documents.
The design process centers on the design of the navigation in the presentation of the
content in terms of a hyperdocument.

In the engineering of a WIS the designer has a challenging task. On the one hand, the
designer has to provide the users with all benefits from using the hypermedia paradigm
and particularly the notion of navigation through the information offered by the system.
On the other hand, the designer has to support the users in their maintenance of the

content by allowing updates and queries to the data. Many of today’s data-intensive
Web applications show the designer’s attention for the maintenance of the data, but at
the same time they show the risk of losing those benefits of hypermedia that have been
the foundation for the success of the Web.

In the research field of WIS engineering we have seen proposals for methodologies
that extend and improve the methodologies for manual hypermedia design for appli-
cation in data-intensive information systems: we mention as representatives RMM [2],
WebML [3], OOHDM[4], OOWS [5], UWE [6], OO-H [7], and Hera [8]. Typically
these methodologies distinguish themselves from standard information system devel-
opment methodologies by their explicit attention for the navigation design. Since how-
ever the WIS applications contain content that is highly dynamic, the design has to
support the dynamics involved with the content. This support includes not just updating
the content stored in the system, but also allowing the user to affect the hypermedia
presentation of the data. Illustrative examples of this influence of the user on the hy-
permedia presentation are the history facility that allows the user to go back outside of
the presented hyperlinks, or the shopping basket concept that allows the user to store
some information temporarily during a browsing session. Such influence implies that a
certain “state” is stored by the system to allow the user to interact with the hypermedia
presentation and particularly with its navigational structure.

As we indicated earlier the available WIS engineering methodologies have a strong
focus on the generation of navigation over the content. The user’s actions consisted
of following links, and as a consequence all the system could do was based on that.
The history facility is a straightforward example. Giving the user more possibilities to
interact with the generated hypermedia presentation can help to define or limit the hy-
perspace and thus to realize personalization and adaptivity. In a museum application
asking the user to define what is interesting for him can help the system to create a
more suitable navigation structure with specific information about those items on dis-
play that interest the user/visitor. Another example of user influence would be the role
of a shopping basket in the sales communication based on a product catalog; not so
much for the registration of the sales order, but certainly for the adjustment of the pre-
sentation in accordance with the user input, for example by showing a page with the
complete contents of the shopping basket (order). As one of the consequences of this
extended user influence there is a need to deal with navigation data, i.e. data primarily
there to support the user in influencing (e. g. restricting, selecting) the navigation view
over the application domain data. In this paper we show how to model this dynamic
navigation through Hera models that allow the specification of the extended user input,
the management of navigation information, and the effect of both of them on the hyper-
media presentation. For this specification Hera uses semantic web languages that are
very suitable for modeling of semi-structured data and describing their semantics.

In Section 2 we discuss how related work supports this kind of extended user input
in relation to hypermedia dynamics. Section 3 highlights the main principles of the
Hera approach, before we discuss in Section 4 the details of extended user input and
dynamics in Hera: first we present the input controls, then the navigation data model, its
effect on the application dynamics, and finally the architecture of the implementation.

In the conclusion we name the main advantages of this approach compared to other
approaches.

2 Related Work

In this section we take a closer look at two well-known representative methodologies
WebML and OOHDM to see how they support modeling of user input and hypermedia
(navigation) dynamics.

In WebML [3] the page content and navigation structure is captured in the (ad-
vanced) hypertext model using a predefined set of modeling primitives. The infrastruc-
ture for user input consists of data entry units that have associated with them operation
units. A data entry unit contains a set of input fields that can be filled by users or can
have default values. Data entry units have one or more outgoing links that are activated
when the user fills input fields and submits the information. With a link can be associ-
ated parameters that transfer the input values to the destination unit(s), for example for
further processing by an operation unit. There are several predefined operation units,
for instance for activating external web services or content management operations like
creation, deletion, and update of entities and relations. The whole library of units is
open (new units can be defined in XML) and contains a number of data entry units for
different kinds of user inputs. All contextual information passed between the units by
link parameters is described in separate XML files.

The user input is in OOHDM [4] specified by means of interface objects that are
defined on top of the navigation structure specification. The navigation is described
using navigation classes derived from concept classes, navigation contexts representing
collections of navigation objects, and access structures like links, indices, or guided
tours. The interface objects are instances of interface classes expressed by Abstract Data
Views (ADV). Every ADV defines a set of events (triggered by users) it can handle via
methods of navigational classes, and a set of attributes that can be perceived by users.
The processing of user-triggered events is specified in ADV charts, where the events
are mapped to messages that are sent to navigation objects and can change their state.

3 Hera Methodology

The Hera methodology [8, 9] is a model-driven methodology for designing WIS. Be-
fore we concentrate on user input and hypermedia dynamics in the next section, we
will briefly describe the main aspects of Hera. In response to a user query a WIS will
gather (multimedia) data possibly coming from heterogeneous sources and will produce
a meaningful hypermedia (Web) presentation for the retrieved data. The Hera methodol-
ogy automates such a process by providing high level abstractions (in terms of models)
that will drive the (semi-)automatic presentation generation. Moreover, Hera enables
the presentation adaptation based on user preferences and device capabilities, which
means that the presentation generation takes into account issues like the platform being
used (e. g. PC, PDA, WAP phone) [10].

Based on the principle of separation of concerns and for the sake of interoperabil-
ity several models have been distinguished. Because these models are considered Web

metadata descriptions that specify different aspects of a WIS, we chose to use the Web
metadata language, i.e. RDF(S) [11, 12], to represent all models and their instances.
Our choice is also justified by the RDF(S) extensibility and flexibility properties that
enabled us to extend the language with model specific primitives to achieve the de-
sired power of expression. As RDF(S) doesn’t impose a strict data typing mechanism it
proved to be very useful in dealing with semistructured (Web) data.

The Hera toolset implements this methodology by offering software for the auto-
matic generation of hypermedia based on the different Hera models. In order to facili-
tate the building (and visualizing) of these models, several Visio solutions were imple-
mented. Such solution is composed of a stencil that will display all the model shapes, a
drawing template, and a load/export feature providing the RDF(S) serialization of Hera
models. Throughout the paper we use a running example based on the metadata associ-
ated to about 1000 objects from the Rijksmuseum. Figure 1 depicts (in the CM Builder)
a part of the CM for our example, while Figure 2 illustrates the corresponding AM.

Fig. 1. Conceptual model

The conceptual model (CM) describes the structure (schema) of the application
domain data. This structure is described using RDFS in terms of concepts and concept
relationships. A concept has attributes, i.e. properties that refer to some media instances.
For concept relationships we define their cardinalities and their inverse relationships.

The application model (AM) specifies the structure of navigational view over the
application domain data. This structure is also defined using RDFS, where the hyper-
media presentation is described in terms of slices and slice relationships (inspired by
RMM). A slice is a meaningful presentation unit that groups concept attributes (from
CM) that need to be presented together on the user display. There are two types of slice
relationships: compositional relationships (for embedding a slice into another slice) and
navigational relationships (as hyperlink abstractions).

Fig. 2. Application model

4 User Input and Hypermedia Dynamics in Hera

In most WIS design methodologies, the only kind of interaction considered is link fol-
lowing: the use of the navigation structure is equivalent to wandering through the struc-
ture by clicking on anchors and following links. In our extended approach we go a
step further and consider other forms of user input and dynamics with respect to this
hyperstructure. Therefore, in the next subsections we describe:

– information for navigation dynamics, defined in the navigation data model
– user input controls with associated processing of navigation information
– application model extended with the user input
– architecture of a Hera system

We illustrate this by an example from our museum application that allows the visitor
to buy posters of the paintings in the museum.

4.1 Navigation data model

In addition to the data in the aforementioned models CM and AM, interaction requires
a support for creating, storing, and accessing data that emerges while the user interacts
with the system. This support is provided by means of a so-called navigation data model
(NDM). The purpose of this model is to complement the CM with a number of auxiliary
concepts that do not necessarily exist in the CM (although this is the decision of the
designer in concrete applications) and which can be used in the AM when defining the
behavior of the application and its navigation structure.

The NDM of our example is depicted in Figure 3; it consists of the following con-
cepts:

– The
�����������	��
���������������

concept is a subclass of the
��������������

concept from the
CM. It represents those paintings which the user selected from the multi-selection
form.

– The ���
�� � concept models a single ordered item consisting of a selected painting
(the property

����������
�� �
) and the ! �����������" represented by an Integer.

– The #$� % �����&" concept represents a shopping cart containing a set of orders linked
by the property

� % ���	����'� .

Trolley

Integer

* * contains
quantity

includes

included_by
Order

contained_by
SelectedPainting

cm:Painting

subClassOf

Fig. 3. Navigation data model

We remark that from the system perspective the concepts in the NDM can be divided
into two groups. The first group essentially represents views over the concepts from the
CM, the second group corresponds to a locally maintained repository. A concept from
the first group can be instantiated only with a subset of instances of a concept existing
in the CM, without the possibility to change the actual content of the data. A concept
from the second group is populated with instances based on the user’s interaction, i.e.
the data is created, updated, and potentially deleted on-the-fly.

The instantiation of both groups of concepts is triggered by a certain action (an
acknowledgement such as pressing the submit button) specified in the AM. Each such
action can have an associated query which either defines the view (the first group) or
specifies what instances should be inserted in the concept’s extent (instantiation). The
data resulting from the query execution is represented in the NDM instance (NDMI)
and stored as state information till the next change (query) occurs1. The AM can refer
to the concepts from NDM as if they were representing real data concepts.

In the example the
�(�&�)�����	��
���������������

concept belongs to the group of view con-
cepts whereas both the ���
�� � and the #$� % �����&" are updatable concepts with the values
determined at runtime. This is reflected also in the NDMI depicted in Figure 4 that
results from the user’s desire to buy 3 posters of the selected painting. The instance���������������*

comes from the CM, i.e. it is not (re)created: what is created however, is
the

��"&+,�
property associating it with the

�����������	��
���������������
concept. Both instances

���
�� � * and #$� % ���)�&",* are created during the user’s interaction; they, as well as their
properties, are depicted in bold in Figure 4. Note that for presentation purposes (back-
wards link generation) we also generate for every property its inverse.

1 We can see an entire spectrum, going from updating the content to just using state data to help
change the hypermedia structure. In this paper we focus on the state data that helps specifying
the interaction with the navigation structure (since updating the content is possible but outside
presentation generation).

Integer

Trolley

* *
included_by

quantity

type type

contained_by
Order1

 3

Trolley1

*
contained_by

* contains
number

includes

included_by
Order

includes contains

SelectedPainting

Painting1

type

Fig. 4. Navigation data model instance

4.2 Input controls

In Figure 5(a) we see from the implementation a slice of a painting selected by the
user. It shows that in this slice the user is provided with a form to enter a quantity
that represents the number of posters of this painting that the user considers to buy. In
Figure 5(b) we see another example where the form is instructed to respond to the user’s
attempt to enter a non-integer value.

(a) Good input (b) Bad input

Fig. 5. Form with input in browser

In the Hera software we implemented the user input forms using the XForms [13]
standard. As an XForm processor we used formsPlayer [14], a plug-in for Internet Ex-

plorer2. In defining application forms we were inspired by XForms’ clean separation of
data from controls.

For these forms we need primitives in the AM that specify the functional embedding
of the controls in the navigation structure. Figure 6 shows three examples of how we
specify the embedding of controls in AM. In the leftmost example, the

����������� � %����
allows to make a choice for multiple items out of a list of paintings. The AM primitive
shows the concept that “owns” the form, in this case

��������������
; it shows the items that

are displayed in the form, in this case names; finally, it shows the items that are handed
over by the form to the subsequent navigation: the name of the selected painting. In the
middle example the form is similar but allows a choice of exactly one out of multiple
options. The rightmost example shows a form called � � " � %���� that allows user input,
in this case to enter the quantity of posters considering to buy. The form hands over the
tuple consisting of the entered quantity and the painting name (the painting information
is taken from the form’s context).

SelectPainterForm

s1 cname + biography

cname

Property with range
Painter

submit

Painter

Selection of one from

SelectForm

sn aname

aname

Property with range
Painting

submit

Painting

BuyForm

i quantity

quantity + aname

No input values

submit

Text input field
predefined values predefined values

Multiselection from

Fig. 6. Forms in AM

So we see that for the user input controls we specify in the diagram for the AM the
relevant parameters that make up the form. Thus we describe the relevant functional
aspects of the form, and are able to abstract in the diagram from the actual form code.
Similar to XForms we distinguish between the input controls and their state information
stored in separate models.

Figure 7 presents the models for the forms
����������� � %���� and � � " � %���� . It consists

of two form types,
� %���� *

defines the type of the
�����)�&� � � %���� and

� %������ defines the
type of the � � " � %���� . A Hera form model instance represented in RDF/XML corre-
sponds to the associated XForms model instance. The � ���	� � � � type matches the XML
Schema [15, 16] type � �&

	 �����	� � � � and the

� � � ����� type matches the XML Schema type
� �&
�	 � � � ����� . In case that the user enters a value of a different type than the one specified
in the form model, an XForms implementation (see Figure 5(b)) will immediately react
with an error message (due to its strong type enforcement capabilities).

Figure 8 describes two possible model instances for the form models given in Fig-
ure 7. In the

����������� � %���� the user selected two paintings and in the � � " � %���� the
user decided to buy one of these paintings.

2 The small logo labelled “ �� ” in Figure 5(a) is the � orms layer signature in the implementa-
tion.

String

Integer

String

aname

Form

Form1 Form2

aname

quantity

subClassOf subClassOf

Fig. 7. Form models

The Stone Bridge Portrait of Maria Trip 3

SelectForm BuyForm

type

Form1

type

Form2

The Stone Bridge

anameaname aname quantity

Fig. 8. Form model instances

4.3 Application model

With the aid of the aforementioned primitives we are able to express the user input in
our museum example in terms of an (extended) AM. Figure 9 depicts the part of the
AM which captures the user input.

The # ��� � ��� ! ��� slice contains a form that lists all paintings exemplifying that par-
ticular technique and offers the user the possibility to select some of these paintings.
For the latter we see in the # ��� � ��� ! ��� slice the input control called

�(�&�)����� � %���� with��������������
as its owning concept (meaning that this form is selecting

��������������
con-

cepts). We also see that the form lists the paintings by their
��� � �

property and pro-
duces for each selected painting the

��� � �
property to identify the selected paintings.

After selecting a painting, the outgoing slice navigational relationship denotes that
the form in the # ��� � ��� ! �,� slice results in navigation to a slice that represents the set of
selected slices, each represented by their

��� � �
, and also in a #$� % �����&" that, while ini-

tially empty, will contain the paintings that actually are going to be bought. A # ��% �)���&"
contains a set of ���
�� � s, while an ���
�� � represents the request to buy a poster of a
(selected) painting in a certain quantity.

The navigation can go further to the
�����)�&� �	�&
���������������

slice. That slice includes
not only all the properties that represent the painting, but also a form called � � " � %����
with a user input control. That control allows the user to specify the quantity (of posters
of this painting to buy). After filling this form the user can navigate via the outgoing
slice relationship to the next slice where the trolley is maintained (and where the user
can decide to select another painting for considering in more detail).

With these slices and slice navigational relationships in the AM we have specified
the entire navigation structure. In the AM diagram we exploit the fact that the func-
tionality of the controls is standard, e. g. the selection of

�
items from a list; therefore

the diagram only indicates which standard control is used. What we also do indicate
is the signature: we give the properties displayed in the form, and the identification of

aname

SelectedPainting

main

Trolley
Set

Order

BuyForm

i quantity

quantity
aname

aname

SelectedPainting

includes

Order

quantity

Trolley

contains

Set

main

Painting

mainmain

Selected

main

painted_by

description

Technique

cname

Painter

aname

year

tname picture

main

aname

ex_by
Painting

SelectForm

sn aname

Q1

Q2

Fig. 9. Extended application model

the concepts forwarded via the slice navigational relationship. Note that both slice nav-
igational relationships that emerge from the forms (

� *
and

� �) are in fact queries. In
the query definition we will use the prefix

� � 	
for concepts/properties coming from the

conceptual model, the prefix
��
 � 	

for concepts/properties specified in the navigation
data model, and ��%���� 	

for concepts/properties introduced in the form model.
The RDF model instance of

����������� � %���� is given in Figure 10. The query
� *

cre-
ates a view over painting instances from the CM instance (CMI) which were selected by
the user in

����������� � %���� . This view defines the instances of the
��
 � 	 �����)�&� �	�&
���������������

class from the NDM.

<Form1 rdf:ID="SelectForm">
<aname>The Stone Bridge</aname>
<aname>Portrait of Maria Trip</aname>

</Form1>

Fig. 10. Model instance for SelectForm

Figure 11 describes this query in the SeRQL [17] notation. The actual form is mod-
elled as an RDF resource with multiple ��%���� 	 ��� � �

properties containing the names
(values) of those paintings which were selected by the user.

The RDF model instance of � �," � %���� is given in Figure 12. The query
� � associ-

ated with the � � " � %���� creates a new instance of the NDM concept
��
 � 	 ���
�� � each

time the user decides to buy a poster of a selected painting.

CONSTRUCT
{P}<rdf:type>{<ndm:SelectedPainting>}

FROM
{P}<rdf:type>{<cm:Painting>};

<cm:aname>{Paname}
WHERE

Paname IN SELECT Faname
FROM {SF}<form:aname>{Faname},

{SF}<rdf:type>{<form:Form1>},
{SF}<rdf:ID>{Fname}

WHERE Fname = "SelectForm"

Fig. 11. User query Q1

<Form2 rdf:ID="BuyForm">
<aname>The Stone Bridge</aname>
<quantity>3</quantity>

</Form2>

Fig. 12. Model instance for BuyForm

The SeRQL translation of this query is presented in Figure 13. The form is mod-
eled similarly as before by an RDF resource with two properties ��%���� 	 ! �����������" and

��%���� 	 ��� � �
. Note that the (old) instance of the

��
 � 	 #$� % ���)� " exists outside this form
and is created beforehand during the initialization of the session.

CONSTRUCT
{O}<rdf:type>{<ndm:Order>};

<ndm:quantity>{Fquantity};
<ndm:includes>{Fpainting},

{T}<ndm:contains>{O}
FROM

{T}<rdf:type>{<ndm:Trolley>},
{Fpainting}<cm:aname>{Paname};

<rdf:type>{<ndm:SelectedPainting>},
{BF}<form:quantity>{Fquantity};

<form:aname>{Faname},
{BF}<rdf:type>{<form:Form2>},
{BF}<rdf:ID>{Fname}

WHERE
Paname = Faname AND
Fname = "BuyForm"

Fig. 13. User query Q2

4.4 Architecture

While in the previous subsections we have paid attention to the specification of user
input and hypermedia dynamics and the way in which the AM can support this extended
interaction specification, we now turn to the implementation. As we have indicated
earlier the software of the Hera toolset can generate the hypermedia structure from the
given models. In other work [8] we have sketched the (software) architecture for the

case of normal link following. In Figure 14 we see how we extended the architecture
such that it supports the handling of user input, e. g. via the forms3.

cmi2ami
(xsl)

ami2impl
(xsl)

conceptual model
instance
(rdf)

Query/user dependent

Application independent

Application dependent

has instance

navigation data
model
(rdfs)

application model
instance
(rdf) (html,wml,smil)

implementation
presentation

form processor
(java) engine

presentation

navigartion data

create/delete/update

presentation context

has instance has instance

conceptual model
(rdfs)

is used by application model
(rdfs)

is used by is used by

conceptual model
vocabulary
(rdfs) (rdfs)

application model
vocabulary

user form input

user

model instance
(rdf)

Fig. 14. Presentation generation

We see that the
+ � � �&� ���	���� % � �&��� �����

is responsible for serving the generated pre-
sentation to the user. As soon as the engine discovers user input it hands this over to the

��%���� + � % � � ��� %�� that is going to interpret the actual user input (and possibly the con-
textual information that explains with what the user input is associated). So, the ��%����+ � % � � ��� %�� can get the quantity of posters to buy and the context that explains what
the painting is for which the user wants to buy this quantity. The ��%���� + � % � � ��� %�� can
produce data that is added to the NDMI. The information from NDMI and CMI is used
together in order to generate/update the AM instance.

As we have indicated in Figure 14 the implementation fits nicely in the RDF-
based approach that we already had for the link following. By adding the additional
model information in RDF(S) we can perfectly manage the additional functionality of
explicit user input resulting in a different hypermedia presentation. We implemented
data transformations (see

� � � � � �
and

 � � � � � + �
in the figure) by means of XSLT

stylesheets [18]. This was made possible due to the XML serialization of RDF model
instances and the fact that XForms [13] is XML-based. Besides its XML interoperabil-
ity XForms offers also device independence, which enables to use the same form on
multiple platforms. X-Smiles [19] provides a good view on how the same XForms will
look like on desktop, PDA, WAP phone etc. As an XSLT processor we used Saxon [20]

3 We have focussed here on the part of the architecture for extended user interaction, and left
out the architecture description for the rest of the software.

which implements XSLT 2.0 and XPath 2.0. In the form processor we employed the
Java-based Sesame [21] implementation of the SeRQL query language [17].

5 Conclusion

By providing new primitives in Hera, e. g. for capturing the user input, it is possible
to considerably extend the class of applications that can be specified. As an example
we mention the use of primitives like the “shopping basket” or “list selection” that are
so typical for applications in the context of services provided via the Web. Another
extension is the increased support of dynamics. With the new primitives and the navi-
gation data model it has become possible to handle effectively the dynamic adaptivity
known from adaptive hypermedia [22]. For example, for such personalization purposes
the navigation data model can store the necessary user model (both its temporary and
persistent parts), while the application model can specify the necessary adaptation rules.
The construction of the navigation view over data can be further enhanced by existing
generic methods for the development of navigation structures based on user interaction
modeling, for instance [23].

Comparing these new facilities in Hera to other work, we see that the explicit sup-
port of input controls such as forms are not modelled explicitly in OOHDM for exam-
ple. It does distinguish mouse-related aspects of user input, but compared to Hera it
does have a more limited support of data-entry by the user. This aspect of user input is
a strong point of WebML, but in fact that facility is more concerned with the content
management of the information system. In Hera this is also supported, at the level of
the conceptual model, but besides of this Hera allows to combine the stored data in
the conceptual model with the auxiliary navigation data stored in the navigation data
model. WebML has, next to the link parameters, also global parameters that can model
a “state” in terms of attribute-value pairs, but Hera goes much further in the specifi-
cation of this state information allowing also complex relationships between concepts
(represented in graphs).

The fact that Hera uses RDF(S) representations of the models gives a number of ad-
vantages over other approaches. To start with, it supports the semistructured data that is
so typical for the Web. With RDF(S) Hera offers increased interoperability, e. g. for the
exchange and sharing of user models. It also allows to express complex queries (e. g.
in the design of the dynamics) that make use of the subclassing mechanism. Moreover,
the modeling in Hera of the extended user input inherits good principles from existing
standard like XForms. It chooses to separate in the user input the controls (the presen-
tation aspects) from their models (the data aspects). Opposed to other approaches, Hera
has a concrete implementation based on these standards.

In future we plan to incorporate the possibility of web service invocation within
applications designed using Hera on different levels: on the conceptual (data) level (web
services will act as virtual instances of data concepts), and on the application level (web
services will provide building blocks of slices). Furthermore, we investigate general
properties, mutual relationships, and constraints of Hera models that would help us to
build tools for the automated checking of correctness of the models.

References

1. Isakowitz, T., Bieber, M., Vitali, F.: Web information systems. Communications of the ACM
41 (1998) 78–80

2. Balasubramanian, V., Bieber, M., Isakowitz, T.: A case study in systematic hypermedia
design. Information Systems 26 (2001) 295–320

3. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kaufmann (2003)

4. Schwabe, D., Rossi, G.: An object oriented approach to web-based application design. The-
ory and Practice of Object Systems 4 (1998) 207–225

5. Pastor, O., Fons, J., Pelechano, V.: Oows: A method to develop web applications from
web-oriented conceptual models. In: International Workshop on Web Oriented Software
Technology (IWWOST). (2003) 65–70

6. Koch, N., Kraus, A., Hennicker, R.: The authoring process of the uml-based web engineering
approach. In: First International Workshop on Web-Oriented Software Technology. (2001)

7. Gomez, J., Cachero, C. In: OO-H Method: extending UML to model web interfaces. Idea
Group Publishing (2003) 144–173

8. Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering semantic web information
systems in hera. Journal of Web Engineering 2 (2003) 3–26

9. Frasincar, F., Houben, G.J., Vdovjak, R.: Specification framework for engineering adap-
tive web applications. In: The Eleventh International World Wide Web Conference, Web
Engineering Track. (2002) http://www2002.org/CDROM/alternate/682/.

10. Frasincar, F., Houben, G.J.: Hypermedia presentation adaptation on the semantic web. In:
Adaptive Hypermedia and Adaptive Web-Based Systems, Second International Conference,
AH 2002. Volume 2347 of Lecture Notes in Computer Science., Springer (2002) 133–142

11. Brickley, D., Guha, R.V.: Rdf vocabulary description language 1.0: Rdf schema. (W3C
Working Draft 10 October 2003)

12. Lassila, O., Swick, R.R.: Resource description framework (rdf) model and syntax specifica-
tion. (W3C Recommendation 22 February 1999)

13. Dubinko, M., Klotz, L.L., Merrick, R., Raman, T.V.: Xforms 1.0. (W3C Recommendation
14 October 2003)

14. x-port.net Ltd.: (formsPlayer) http://www.formsplayer.com.
15. Biron, P.V., Malhotra, A.: Xml schema part 2: Datatypes. (W3C Recommendation 02 May

2001)
16. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: Xml schema part 1: Structures.

(W3C Recommendation 02 May 2001)
17. Aidministrator Nederland b.v.: (The serql query language) http://sesame.

aidministrator.nl/publications/users/ch05.html.
18. Kay, M.: Xsl transformations (xslt) version 2.0. (W3C Working Draft 12 November 2003)
19. X-Smiles.org et.al.: (X-Smiles) http://www.x-smiles.org.
20. Kay, M.: (Saxon) http://saxon.sourceforge.net.
21. Aidministrator Nederland b.v.: (Sesame) http://sesame.aidministrator.nl.
22. Bra, P.D., Houben, G.J., Wu, H.: Aham: A dexter-based reference model for adaptive hyper-

media. In: The 10th ACM Conference on Hypertext and Hypermedia, ACM (1999) 147–156
23. Schewe, K.D., Thalheim, B.: Modeling interaction and media objects. In: Natural Language

Processing and Information Systems. Volume 1959 of Lecture Notes in Computer Science.,
Springer (2001) 313–324

