
WEB-SOBA: Word Embeddings-Based
Semi-automatic Ontology Building for
Aspect-Based Sentiment Classification

Fenna ten Haaf, Christopher Claassen,
Ruben Eschauzier, Joanne Tjan, Daniël Buijs,

Flavius Frasincar[0000−0002−8031−758X](
�

), and Kim Schouten

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, the Netherlands

{450812fh,456177cc,480900re,413647jt,483065db}@student.eur.nl,
{frasincar, schouten}@ese.eur.nl

Abstract. For aspect-based sentiment analysis (ABSA), hybrid mod-
els combining ontology reasoning and machine learning approaches have
achieved state-of-the-art results. In this paper, we introduce WEB-SOBA:
a methodology to build a domain sentiment ontology in a semi-automatic
manner from a domain-specific corpus using word embeddings. We eval-
uate the performance of a resulting ontology with a state-of-the-art
hybrid ABSA framework, HAABSA, on the SemEval-2016 restaurant
dataset. The performance is compared to a manually constructed ontol-
ogy, and two other recent semi-automatically built ontologies. We show
that WEB-SOBA is able to produce an ontology that achieves higher
accuracy whilst requiring less than half of user time, compared to the
previous approaches.

Keywords: Ontology learning · Word embeddings · Sentiment analysis
· Aspect-based sentiment analysis

1 Introduction

One of the most valuable pieces of information for any business is the opinion of
their customers. One source of data that can be of great help is the growing mass
of online reviews posted on the Web and social media. The review forum Yelp,
for example, features more than 200 million reviews about restaurants and other
businesses [28]. Interpreting this massive amount of text manually would be
difficult and time consuming. This is where the field of sentiment analysis plays
an important role. It is a subfield of natural language processing (NLP), that
encompasses the study of people’s emotions and attitudes from written language
[14]. In particular, this paper focuses on aspect-based sentiment analysis (ABSA),
which aims to compute sentiments pertaining to specific features, the so-called
‘aspects’, of a product or service [22]. This results in a more in-depth sentiment
analysis, as reviews can contain varying sentiment polarities (negative, neutral,

or positive) about different aspects. This means that through ABSA, businesses
can identify which specific aspects, such as food quality or atmosphere, need to
be improved upon, allowing them to make the right adjustments in their business
model [19].

ABSA firstly requires that the aspects and their categories in sentences are
identified (aspect detection) and consequently determines the sentiment with re-
spect to these aspects (sentiment classification) [24]. The focus of this paper is
on the sentiment classification component of sentence-level ABSA, using bench-
mark data where the aspects are already given [21].

Various methods have been used for sentiment classification, many of which
rely on machine learning methods [8]. [24] proposes a knowledge-based method
using domain sentiment ontologies, which represent a formal definition of the
concepts that are related to a specific domain. [24] shows that using common
domain sentiment knowledge encoded into an ontology gives better performance
for sentiment classification, whilst requiring less training data to do so. [23]
further shows that even better performance is achieved by a Two-Step Hybrid
Model (TSHM) approach. For this approach, the first step is to use a domain
sentiment ontology to predict a sentiment and, if this is inconclusive, use a
machine learning algorithm that predicts the sentiment as a backup solution.

The ontologies needed as an input for these hybrid models can be obtained
through different methods. One approach is to manually build an ontology
[23,24], but this is time consuming and needs to be done for each domain sepa-
rately. Automatic ontology construction is also an option as [3] proposes, but this
process is less accurate because there is no human supervision in creating the
ontology. [31] shows that a semi-automatic approach, where human input is re-
quired to control for possible mistakes made by the ontology builder, comes close
to the human made ontology in accuracy whilst being more time-efficient. While
the authors of [31] made use of word co-occurrences to build their ontology, the
use of word embeddings has not been investigated until now for constructing a
domain sentiment ontology. The advantage of word embeddings is that words
are mapped to vectors, which allows for easy computation with words. Moreover,
word embeddings also capture semantic features of the words such as similarity
to other words. Previous authors have shown that word embeddings outperform
word co-occurrence based methods for various NLP tasks [1].

In this paper, we propose a semi-automatic ontology builder called Word
Embeddings-Based Semi-Automatic Ontology Builder for Aspect-Based Senti-
ment Analysis (WEB-SOBA). We aim to build a domain sentiment ontology
from a domain corpus based on word embeddings, to exploit semantic relations
between words. The source code written in Java of this project can be found at
https://github.com/RubenEschauzier/WEB-SOBA.

The rest of the paper has the following structure. In Sect. 2 we discuss related
relevant literature that forms the background of our research. In Sect. 3, an
overview of the used datasets is given. Further, we describe our methodology in
Sect. 4 and present our evaluation criteria and results in Sect. 5. Last, we give
our conclusions and make suggestions for future work in Sect. 6.

https://github.com/RubenEschauzier/WEB-SOBA

2 Related Works

In this section, we provide an overview of the relevant literature on hybrid meth-
ods, ontology building, and word embeddings.

2.1 Hybrid Methods

The authors of [7] are among the first to suggest that a combination or ‘hybrid’ of
knowledge-based and machine learning methods are promising in sentiment anal-
ysis. Following such a hybrid approach, [23] proposes a combination of knowledge
and statistics. The used machine learning approach is the bag-of-words (BoW)
model, where the authors train a multi-class Support Vector Machine (SVM)
that is able to classify an aspect into one of three sentiment values: negative,
neutral, or positive. The authors show that using a BoW model only as a backup
when making predictions using an ontology (Ont+BoW) results in an improve-
ment compared to alternative models.

Similar to the two-stage approach in [23], [27] uses a combination of methods
in a framework called HAABSA, to predict the sentiment values in sentence-
level ABSA. Instead of using the BoW model, the authors use a Left-Center-
Right separated neural network with Rotatory attention (LCR-Rot) model from
[30]. [27] finds that an alteration of the LCR-Rot model (LCR-Rot-Hop) as
the backup model, where the rotatory attention mechanism is applied multiple
times, has the highest performance measure and is even able to outperform the
Ont+BoW model of [23]. For this reason we favor using this approach to evaluate
the performance of our ontology.

2.2 Ontology Building

As described by [6], there are various subtasks associated with the development
of an ontology. The first step is to gather linguistic knowledge in order to be able
to recognize domain-specific terms as well as synonyms of those terms. All terms
with the same meaning need to be clustered together to form concepts (e.g.,
‘drinks’ and ‘beverage’ can both be a lexicalization of the concept Drinks). In
addition, hierarchical relationships need to be established (e.g., given the class
Food and the class Fries, Fries should be recognized as a subclass of Food). Next,
non-hierarchical relations between concepts are defined, as well as certain rules
in order to be able to derive facts that are not explicitly encoded by the ontology.

A manually built ontology is given in [23]. Since this ontology was made
manually, it has great performance by design. However, building the ontology
requires a lot of time. [31] shows that using a semi-automatically built ontology
substantially decreases the human time needed to create an ontology, while hav-
ing comparable results to benchmark models. The authors of [31] focus on using
word frequencies in domain corpora for ontology building. [9] further extends
this work by making use of synsets, or sets of synonyms, in term extraction,
concept formation, and concept subsumption. However, differently than [9] and
[31], we focus on using word embeddings for the automated part of the ontology

building, meaning that words are mapped to vectors that retain certain similar-
ities between words. As discussed in the previous section, [1] shows that word
embeddings outperform word co-occurrences for certain NLP tasks. We hypoth-
esize that word embeddings can be effective for ontology building based on this
previous work.

2.3 Word Embeddings

A word embedding is a method for mapping various words to a single vector
space. It creates vectors in a way that retains information about the word the
vector represents, whilst having relatively low dimensionality when compared to
the bag-of-words approach.

Some of the most well-known methods for word embedding are proposed by
[16], known as local context window methods. These methods primarily consider
a word within the local context it appears, such that the vector of the word
is determined by its sentence-level neighbours. The authors introduce the Con-
tinuous Bag-of-Words model (CBOW) and the Skip-gram model. It is shown
that these local window context methods outperform previous global matrix fac-
torization methods like Latent Semantic Analysis (LSA) and Latent Dirichlet
Allocation (LDA) [16]. CBOW and Skip-gram are not only able to represent
words, but can also detect syntactic and semantic word similarities. Relations
like Athens→Greece are established by training on large text files that contain
similar relations, e.g., Rome→Italy. Implementations of CBOW and Skip-gram
are publicly available in the ‘word2vec’ project.

A different method for embedding words was introduced in response to
CBOW and Skip-gram. [20] combines global factorization and local context win-
dow methods in a bilinear regression model called the Global Vector method,
abbreviated as GloVe. GloVe produces word embeddings by primarily consider-
ing non-zero word co-occurrences of the entire document.

A last method for word embedding, called FastText, is introduced by [4].
FastText extends the Skip-gram model by including ‘subword’ information. The
advantage of such an approach is that a vector representation of an unknown
word can be formed by concatenating words, e.g., the vector for ‘lighthouse’ is
associated with the vector for ‘light’ + the vector for ‘house’.

There is no well-defined ‘best’ word embedding amongst word2vec, GloVe,
and FastText for all NLP tasks. Some authors suggest that the difference in
performance is mainly due to differences in hyperparameter settings between
methods [13]. Other authors suggest that the word embedding methods are sim-
ilar in practice, as can be found in the results of [18] and [25], for example. There
are some exclusive features for each method, however. As an example, FastText
can generate a word embedding for a word that does not exist in the database.
On the other hand, word2vec is training time efficient and has a small memory
footprint. For these practical considerations, we opt for the word2vec algorithm
in our research.

3 Data

In sentiment analysis, there are a number of standard datasets that are widely
used. We focus on datasets for the restaurant domain, because this is also the
domain based upon which the ontologies from [9], [23], and [31] were built,
lending for easier comparison.

To create an ontology, we need a domain-specific corpus and a contrasting
corpus, in order to find how frequent certain words appear in a domain, rela-
tive to general documents. The domain-specific corpus is created using the Yelp
Open Dataset [28]. This dataset consist of consumer reviews of various types of
businesses. We filter out the reviews that are not about restaurants, resulting
in with 5,508,394 domain-specific reviews of more than 500,000 restaurants. For
the contrasting corpus, we use the pre-trained word2vec model google-news-300
[12], containing vectors for 3 million words with a dimensionality of 300.

To evaluate our ontology, we use the SemEval-2016 Task 5 restaurant data
for sentence-level analysis [21]. It is a standard dataset that contains restaurant
reviews. It is structured per review and each review is structured per sentence,
with reviews having varying amounts of sentences. There are 676 sentences in the
test set and 2000 sentences in the training set. Each sentence contains opinions
relating to specific targets in the sentence. The category of a target is also an-
notated, which is made up of an entity E (e.g., restaurant, drinks) and attribute
A (e.g., prices, quality) pairing E#A. Furthermore, each identified E#A pair is
annotated with a polarity from the set P = {negative, neutral, positive}.

When an entity is only implicitly present in a sentence, the target is labeled as
NULL. Since most machine learning methods need a target phrase to be present,
the implicit sentences are not used in the analysis. These implicit aspects make
up around 25% of the training set, leaving still 1879 explicit aspects. Figure 1
gives an overview of the aspects and polarities labeled in the dataset.

(a) (b)

Fig. 1. Percentage of occurrence for aspects per sentence (a) and polarities per aspects
(b) for the SemEval-2016 Task 5 restaurant dataset.

4 Methodology

In this section, we explain how our ontology builder works, which we refer to
as the Word Embedding-Based Semi-Automatic Ontology Builder for Aspect-
Based Sentiment Analysis (WEB-SOBA). Additionally, we discuss the user input
required at various points in the ontology building process.

4.1 Word Embeddings

The word embedding method we use for our ontology building is word2vec,
which uses a two-layer neural network [17]. There are two variations to this.
In the Continuous Bag-of-Words (CBOW) model, the embedding is learned by
predicting the current word based on its context (the surrounding words). An-
other approach is to learn by predicting the surrounding words given a current
word. This approach is called the Skip-gram model. CBOW is better for fre-
quent words, while Skip-gram does a better job for infrequent words. Moreover,
CBOW can be trained faster than Skip-gram. However, in practical applications
the performance is fairly similar. For this paper, due to the previously given ad-
vantages, we use the CBOW model to make the word embeddings. This model
is trained using the following loss function:

J =
1

T

T∑
t=1

log p(wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c), (4.1)

where [−c, c] is the word context of the word wt and T represents the number
of words in the sequence.

4.2 Ontology Framework

The first step to build our ontology is to decide upon the basic structure that will
be used. We use the same structure as the ontology presented by [23]. This ontol-
ogy contains two main classes: Mention and SentimentValue. SentimentValue
consists of the subclasses Positive and Negative. Please note that our ontol-
ogy does not model neutral sentiment. This is a deliberate choice, as neutral
sentiment has an inherent subjectivity [23]. The skeletal structure already starts
with a certain number of Mention subclasses based on the entities and attributes
that make up categories within the domain, denoted as ENTITY#ATTRIBUTE (e.g.,
FOOD#QUALITY). For the considered restaurant domain, the Mention subclasses
are: Restaurant, Location, Food, Drinks, Price, Experience, Service, Ambiance,
Quality, and Style&Options. In addition we also use the attributes General and
Miscellaneous, but we do not explicitly represent them in sub-classes. Figure 2
illustrates the Mention subclasses in our base ontology and how they are related
to each other to make ENTITY#ATTRIBUTE pairs.

Fig. 2. Entities and Attributes, as E#A pairs.

In this ontology we make a distinction between the part-of-speech of a term,
i.e., whether it is a verb (Action), noun (Entity), or adjective (Property). The
Mention classes are superclasses of classes denoting the aspect and the part-of-
speech. For example, PricesPropertyMention is a subclass of PricesMention

and PropertyMention. Each of these classes then contains classes which are
a subclass of the corresponding Mention class and the SentimentValue class.
For example, a class LocationPositiveProperty is a subclass of the classes
LocationPropertyMention and Positive.

There are three types of sentiment-carrying classes: Type-1 (generic senti-
ment), Type-2 (aspect-specific sentiment), and Type-3 (context-dependent senti-
ment). The first type always has the same sentiment value regardless in what con-
text the concept is found (e.g., the concept ‘good’ is always positive). This type
of Mention subclasses are also immediately a subclass of the GenericPositive

or GenericNegative classes, which are subclasses of the SentimentValue classes
Positive and Negative, respectively. Next, sentiment Type-2 words only ap-
ply to a specific category of aspects and with the same sentiment. For example,
the word ‘delicious’ applies to food and drinks but is never used when talking
about service. Therefore, when determining the sentiment of an aspect in the
service category, this word could be ignored. Finally, Type-3 words indicate dif-
ferent sentiments depending on the aspect category. For example, ‘cold’ beer is
positive whereas ‘cold’ pizza is negative.

All concepts in the ontology can have two types of properties. The Mention

classes can first of all have one or multiple aspect properties through which they
are linked to all the aspect categories for which they are applicable. For example,
FoodMention is linked to FOOD#PRICES, FOOD#QUALITY, and FOOD#OPTIONS. Sec-
ond, differently than the main Mention and SentimentValue classes, the classes
have lexical representations attached.

User Intervention. The user helps initialise the skeletal ontology by providing
some lexicalizations for the base classes. In particular, we add some Type-1 sen-
timent words, such as ‘enjoy’, ‘hate’, ‘great’, and ‘bad’. For each of these terms,
the 15 most similar words obtained through word embeddings are suggested to
the user. The user can then accept or reject adding these words as an extra lexi-
calization of the corresponding class. The reason to initialise the ontology in this

manner is that these generic, context-independent Type-1 words such as ‘enjoy’
and ‘hate’ do indicate a sentiment, but are used in a wide range of contexts.
Therefore, these words are less likely to be extracted when determining terms
specific to the restaurant domain, yet they are still useful if they are added to
our ontology.

4.3 Term Selection

To first gather domain-specific words, we use the Yelp dataset [28] containing
text about our domain and extract all adjectives, nouns, and, verbs from the
text using the part-of-speech tagger of the Stanford NLP Processing Group [26].
Adverbs can also be considered for sentiment information, but they sometimes
affect the intensity of the sentiment rather than the polarity [11]. Consequently,
we only use adjectives, nouns, and verbs for our analysis, as they carry the pri-
mary sentiment information of the sentence. Afterwards, we select certain terms
from the list of domain-specific words that are to be proposed to the user. We
first assign a TermScore (TS) to each word, calculated using the DomainSimi-
larity (DS) and the MentionClassSimilarity (MCS).

The DS can be computed using the cosine similarity. The function for DS of
word i is:

DS i =
vi,D · vi,G

‖vi,D‖ · ‖vi,G‖
, (4.2)

where vi,D is the vector of word i in the domain-related word embedding model
and vector vi,G is generated for word i in the general word embedding model.
If a word is domain-specific, the cosine similarity between vi,D and vi,G is low
which indicates a low value for DS as well.

The MCS calculates the maximum similarity for word i to one of the Mention
classes. The function for MCS of word i is:

MCS i = max
a∈A

(
vi · va
‖vi‖ · ‖va‖

)
, (4.3)

where A is the set of Mention classes, which are Restaurant, Location, Food,
Drinks, Price, Experience, Service, Ambiance, Quality, and Style&Options. The
more similar terms are to the lexical representation of the name of one of the
mention classes, the higher the value of MCS.

The function TS is defined as the harmonic mean of DS and MCS. Because
we want the DSi value as low as possible, we take its reciprocal value. Both DS
and MCS play an important role, because we want words to be both specific
to the domain (as represented by DS), and at the same time we want them to
be important to the base classes in our domain (as measured by MCS). The
function for the TS of each term i is:

TSi =
2

DSi + MSCi
−1 , (4.4)

A specific threshold parameter is used, one for each of the three lexical classes
(adjectives, nouns, and verbs), to determine whether to suggest terms to the user.

A term will be selected and proposed to the user if its TS exceeds the threshold
of the lexical class, which the term belongs to. A critical issue here is deciding
the value of the threshold parameter. The value of this parameter determines
the amount of terms the user is asked to review. By setting the value of the
threshold too low, a lot of terms have to be considered by the user, which is very
time consuming. When the value of the threshold parameter is too high, crucial
words will be omitted and thus absent from the ontology. The threshold value
is defined for lexical class lc (part-of-speech) as follows:

TH ∗lc = max
THlc

(
2

n
accepted + 1

accepted

)
, (4.5)

where THlc is a threshold score for lexical class lc, n is the number of suggested
terms, and accepted is the number of accepted terms. TH∗ is defined per lexical
class so that we maximize the number of accepted terms and the number of
accepted terms relative to suggested terms for each lexical class.

User Intervention. After the TermScore of a term exceeds the threshold and
the term is suggested to the user, the user can accept or reject whether to add
this term to the list of all relevant terms for the ontology. If the term is a verb
or a noun, the user decides if the term refers to an aspect, or if it refers to a
sentiment. Adjectives are always treated as denoting a sentiment. If the term is
added as a Sentiment Mention, the user has to decide if the word is a Type-1
Sentiment Mention or not, and if so, if the word is positive or negative.

Furthermore, we select all words for each accepted term that are similar to
the accepted term using word embeddings. If the cosine similarity is larger than
a certain threshold, the word is added to the ontology. We find in preliminary
research that a threshold of 0.7 ensures that the vast majority of words added
are valuable to the ontology.

4.4 Sentiment Term Clustering

After selecting the important terms for our ontology and letting the user define
whether the terms are Sentiment Mentions or Aspect Mentions, we can create
a hierarchy for the words that were deemed to be sentiment words. In this case,
we want to determine the SentimentValue of each word, as well as determine
which Mention class(es) the word belongs to if it is not a GenericPositive or
GenericNegative sentiment.

A drawback of using word2vec word embeddings for our application is that
the generated vectors do not directly account for sentiment. For example, the
vectors for ‘good’ and ‘bad’ are very similar to each other because they appear
in the same context, even though they convey a different sentiment. This com-
plicates the process of determining the sentiment for our Sentiment Mention
words. Our proposed solution to this problem is to refine our existing word2vec
model, as trained on the Yelp dataset, by making the vectors sentiment-aware.

[29] uses the Extended version of Affective Norms of English Words (E-ANEW)
as a sentiment lexicon. This sentiment lexicon is a dataset that attaches emo-
tional ratings to words. Using this sentiment lexicon, the authors find and rank
the k (e.g., k = 10) most similar words in terms of emotional ratings to the tar-
get word that needs to be refined, where the most similar word gets the highest
rank. These words are called the neighbours of our target word. The neighbours
of our target word are then also ranked in terms of their cosine similarity, where
again the word with the highest similarity gets the highest rank. After creating
these sentiment and similarity rankings, the vector of the target word is refined
so that it is: (1) closer to its neighbours that are sentimentally similar, (2) fur-
ther away from dissimilar neighbors, and (3) still relatively close to the original
vector.

Using these vectors we cluster our Sentiment Mention terms. For each term
we calculate the cosine similarity between all of our base Mention classes and
rank them in descending order. Additionally, we calculate the negative and pos-
itive score of our Sentiment Mention term in the following way:

PSi = max
p∈P

(
vi · vp

‖vi‖ · ‖vp‖

)
NSi = max

n∈N

(
vi · vn

‖vi‖ · ‖vn‖

)
(4.6)

where PSi and NSi are the positive and negative score for termi. P and N
are a collection of positive and negative words that span different intensities of
positivity and negativity, respectively. The set of negative words is as follows:
P= {‘good’, ‘decent’, ‘great’, ‘tasty’, ‘fantastic’, ‘solid’, ‘yummy’, ‘terrific’}. The
set of positive words is: N={‘bad’, ‘awful’, ‘horrible’, ‘terrible’, ‘poor’, ‘lousy’,
‘shitty’, ‘horrid’}. Finally, we have vi, vp, and vn which are the word embeddings
of word i, p, and n, respectively. We predict our termi to be positive if the PSi

is higher than NSi. If the PSi is lower than NSi, the termi is considered to be
negative.

User Intervention. The user is asked for each Sentiment Mention term if
it can refer to the base Mention class that it has the highest cosine similarity
to. If the user accepts the term into the recommended Mention class, the user
is asked then to confirm if the predicted polarity of the Sentiment Mention is
correct. Thereafter, the user is asked the same for the Mention class that has
the second highest cosine similarity to our term. This continues until either all
Mention classes are accepted or one Mention class is rejected. After the process
terminates, the Sentiment Mention term is added to the ontology in accordance
to the decisions made by the user. Each Sentiment Mention can be added to
multiple Mention classes, because a Sentiment Mention can convey sentiment
for multiple Mention classes. An example of this is the word ‘idyllic’, which can
convey sentiment about the restaurant, location, experience, and ambiance.

4.5 Aspect Term Hierarchical Clustering

The next step is clustering and building the ontology’s hierarchy for the Aspect
Mention terms. As previously stated, words can be represented in a vector space
using word embeddings, which means it is possible to cluster these terms.

Building the ontology’s hierarchy is done in two steps. First, we implement
an adjusted k-means clustering approach to cluster the accepted terms into
clusters corresponding to the base Mention classes. These clusters are Restau-
rant, Location, Food, Drinks, Price, Experience, Service, Ambiance, Quality, and
Style&Options. Since the base mention classes are known, we can just add each
data point to the base cluster with which it has the highest cosine similarity
(using the lexical representations corresponding to the names of these clusters).
After clustering the terms into the base subclasses, the next step is building a
hierarchy for each subclass using agglomerative hierarchical clustering. Terms
start in a single cluster and are slowly merged together per iteration based on
a linkage criteria. The method we choose for implementation is called Average
Linkage Clustering, abbreviated as ALC, as it is less sensitive to outliers. It is
defined as:

ALC(A,B) =
1

|A| · |B|
∑
a∈A

∑
b∈B

d(a, b) (4.7)

where d(a, b) is the Euclidean distance between vectors a and b, where a is in
cluster A and b is in cluster B. At each iteration, terms with the lowest ALC value
are clustered, creating the required hierarchy. For our ALC algorithm, we make
use of the implementation described by [2]. Based on preliminary experiments
of implementing the elbow method, the maximum depth that our dendrogram
can possibly have is set to three for each subclass.

User Intervention. For each Mention class, each term belonging to that cluster
is presented to the user and the user can accept or reject it. If the user rejects it,
the user is prompted to specify the right cluster. By doing this, all terms start
in the correct cluster before building a hierarchy.

5 Evaluation

In this section, we discuss the procedure by which we evaluate our proposed
ontology. We compare the performance of our ontology with benchmark (semi-)
manually built ontologies. In Sect. 5.1 we describe the performance measures we
use for evaluation. Next, in Sect. 5.2 and Sect. 5.3 we present our results. All
results were obtained on an Intel(R) Core(TM) i5-4690k CPU in combination
with an NVIDIA GeForce GTX 970 GPU and 16 GB RAM.

5.1 Evaluation Procedure

The output of our proposed methodology is a domain-specific sentiment ontology
based on word embeddings. This ontology is used in combination with machine

learning methods to classify the sentiment of aspects. We evaluate the quality of
our proposed method by looking at the time required to construct the ontology
and its performance for sentiment classification. To determine which configura-
tion performs better, we use the Welch t-test to compare the cross-validation
outcomes.

As we build the ontology semi-automatically, it is interesting to consider the
time required to make a WEB-SOBA ontology. The ontology building time can
be divided in human time spent and computer time spent. We try to minimize
the total time spent on building the ontology, but value time spent by humans
as more expensive than time spent by computers. Ultimately, we expect that our
ontology performs better than the ontology of [9] and [31] if the word embeddings
truly outperform word co-occurrences. However, we expect the best performance
from the ontology of [23] as this ontology was entirely made by hand to perform
best.

The experiments are executed on the HAABSA implementation [27]. The
experimental setup for testing our ontology is simple, as we can directly plug
our ontology into the HAABSA code after it has been semi-automatically con-
structed. We test the following ontologies: Manual [23], SOBA [31], SASOBUS
[9], and WEB-SOBA. These ontologies are evaluated when used by themselves
and when used in conjunction with the LRC-Rot-Hop backup model in the
HAABSA framework.

5.2 Ontology Building Results

We now evaluate the WEB-SOBA ontology. In the end, 376 classes are added
to our ontology, of which there are 15 Type-1 sentiment words, 119 Type-2
sentiment words, and 0 Type-3 sentiment words. These results are not fully
unexpected: there are few Type-1 sentiment words, because these words are
often not domain-specific and therefore less likely to be selected by the term
selection algorithm. There are also no Type-3 sentiment words selected, possibly
because there are not many of these in the dataset. To put it into perspective, the
manual ontology of [23] has only 15 Type-3 sentiment words. Table 1 presents the
distribution of classes, lexicalizations, and synonyms in our ontology, compared
to the other benchmark ontologies.

Table 1. Distribution of ontology classes and properties for the manual ontology,
SOBA, and WEB-SOBA.

Manual SASOBUS SOBA WEB-SOBA

Classes 365 558 470 376
Lexicalizations 374 1312 1087 348

It is clear from Table 1 that our ontology is not as extensive compared to the
other three ontologies. However, this does not necessarily mean that the ontology

should have a worse performance, as it is possible that the most important terms
of the domain are captured. Another important factor to consider is the building
time duration. Table 2 presents the time that is required for user input and for
computing in minutes, compared to benchmark ontologies.

Table 2. Time duration of the building process for the manual ontology, SOBA, and
WEB-SOBA.

Manual SASOBUS SOBA WEB-SOBA

User time (minutes) 420 180 90 40
Computing time (minutes) 0 300 90 30 (+300)

Table 2 shows that with respect to user time required, WEB-SOBA clearly
outperforms the other semi-automatic ontology builders, and, obviously, the
manual ontology as well. The computing time for running the code between
user inputs is only 30 minutes, which is also lower than the computing time re-
quired for the SOBA and SASOBUS ontologies. However, the word embeddings
need to be created the first time the program is used and the terms in the Yelp
dataset have to be extracted, which requires an additional 300 minutes of com-
puting time. After the vectors have been made, they can be reused in the same
domain. This substantially decreases the time needed to do a different NLP task
in the same domain. Additionally, the computation times are higher because the
dataset used for this ontology contains millions of reviews compared to the 5001
reviews used to create SOBA and SASOBUS.

5.3 Evaluation Results

We compare the results of WEB-SOBA with the results of the Manual ontology
from [23], the SOBA ontology of [31], and the SASOBUS ontology of [9]. Table 3
presents the performance of the ontologies by themselves, while Table 4 presents
the results of the Ontology+LCR-Rot-Hop approach [27]. The tables additionally
present p-values for the Welch t-test to test for equal means (under unequal
variances) for the cross-validation accuracies.

Table 3. Comparison results for different ontologies by themselves on SemEval-2016
Task 5 restaurant data.

Out-of-Sample In-Sample Cross-validation Welch t-test

Accuracy Accuracy Accuracy St. dev. Manual SASOBUS SOBA WEB-SOBA

Manual 78.31% 75.31% 74.10% 0.044 -
SASOBUS 76.62% 73.82% 70.69% 0.049 0.118 -
SOBA 77.23% 74.56% 71.71% 0.061 0.327 0.685 -
WEB-SOBA 77.08% 72.11% 70.50% 0.050 0.107 0.636 0.935 -

Table 4. Results for ontologies on SemEval-2016 Task 5 restaurant data, evaluated
with LCR-Rot-Hop model as backup.

Out-of-Sample In-Sample Cross-validation Welch t-test

Accuracy Accuracy Accuracy St. dev. Manual SASOBUS SOBA WEB-SOBA

Manual 86.65% 87.96% 82.76% 0.022 -
SASOBUS 84.76% 83.38% 80.20% 0.031 0.052 -
SOBA 86.23% 85.93% 80.15% 0.039 0.088 0.975 -
WEB-SOBA 87.16% 88.87% 84.72% 0.017 0.043 0.001 0.005 -

The tables presented above show that WEB-SOBA achieves similar perfor-
mance to other semi-automatically built ontologies when evaluated by itself, even
though it required less than half of the user time to build. When combined with
the LCR-Rot-Hop backup method, the WEB-SOBA ontology performs better
than all other ontologies including the manual one (at 5% significance level).
This shows that our ontology complements the machine learning method well.

Our approach is generalizable to other domains as well. For another domain
one only needs to provide the following items: a text corpus, the category classes,
and the positive/negative word collections. Even if the overall time is comparable
with the one of a manual approach, one major benefit for our approach is that
most of the time is spent by system computations instead of user work. As
limitations, our solution is not able to deal with polysemous words and our data
set was not able to provide for Type-3 sentiment words.

6 Conclusion

For this research paper, we used word embeddings to semi-automatically build
an ontology for the restaurant domain to be used in aspect-based sentiment
analysis. The ontology builder we propose reduces both computing and user
time required to construct the ontology, given that the word embeddings for a
specific domain are already made. Furthermore, our method requires less user
time compared to recently proposed semi-automatic ontology builders based
on word co-occurrences, whilst it achieves similar or better performance. Our
proposed ontology even reaches higher accuracy compared to the performance
of a manually built one when implemented in a hybrid method with the LCR-
Rot-Hop model as backup.

As future work we would like to analyse for which aspects the proposed ap-
proach gives the best performance. Also, we suggest that the performance of
an ontology used for ABSA can likely be improved by using a contextual word
embeddings method, such as BERT [10]. These contextual methods assign a
different vector to the same word in a different context. We expect that these
contextual word embeddings lead to more accurate sentiment classification, as
the various meanings of words are taken into account. However, these meth-
ods cannot be directly implemented into the current ontology structure, as the
same word gets a different vector in a different linguistic context. As future work

we propose to extend the ontology structure by allowing the same word to ap-
pear for multiple concepts by conditioning its presence on a certain meaning.
In addition, we plan to use domain modelling [5] that complements well our
contrastive corpus-based solution by providing domain-specific terms that are
more generic than the current ones. Furthermore, the clustering of terms can
be improved. Our proposed clustering method works for a relatively moderate
amount of domain terms, but is not feasible for a huge number of domain terms.
For an efficient hierarchical clustering method for Big Data, one could exploit
the BIRCH algorithm as in [15].

References

1. Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! a systematic compar-
ison of context-counting vs. context-predicting semantic vectors. In: 52nd Annual
Meeting of the Association for Computational Linguistics (ACL 2014). pp. 238–
247. ACL (2014)

2. Behnke, L.: https://github.com/lbehnke/hierarchical-clustering-java

(2012)
3. Blaschke, C., Valencia, A.: Automatic ontology construction from the literature.

Genome Informatics 13, 201–213 (2002)
4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with

subword information. Transactions of the Association for Computational Linguis-
tics 5, 135–146 (2017)

5. Bordea, G., Buitelaar, P., Polajnar, T.: Domain-independent term extraction
through domain modelling. In: 10th International Conference on Terminology and
Artificial Intelligence (TIA 2013) (2013)

6. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: An overview.
Ontology Learning from Text: Methods, Evaluation and Applications 123, 3–12
(2005)

7. Cambria, E.: Affective computing and sentiment analysis. IEEE Intelligent Systems
31(2), 102–107 (2016)

8. Cambria, E., Das, D., Bandyopadhyay, S., Feraco, A.: A practical guide to senti-
ment analysis. Springer (2017)

9. Dera, E., Frasincar, F., Schouten, K., Zhuang, L.: SASOBUS: Semi-automatic sen-
timent domain ontology building using synsets. In: 17th Extended Semantic Web
Conference (ESWC 2020). LNCS, vol. 11503, pp. 105–120. Springer (2020)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidi-
rectional transformers for language understanding. 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT 2019) ACL pp. 4171–4186 (2019)

11. Dragut, E., Fellbaum, C.: The role of adverbs in sentiment analysis. In: Proceedings
of Frame Semantics in NLP: A Workshop in Honor of Chuck Fillmore (1929-2014).
pp. 38–41 (2014)

12. Google: https://code.google.com/archive/p/word2vec/ (2013)
13. Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons

learned from word embeddings. Transactions of the Association for Computational
Linguistics 3, 211–225 (2015)

14. Liu, B.: Sentiment analysis and opinion mining. Synthesis Lectures on Human
Language Technologies 5(1), 1–167 (2012)

https://github.com/lbehnke/hierarchical-clustering-java
 https://code.google.com/archive/p/word2vec/

15. Mahmoud, N., Elbeh, H., Abdlkader, H.M.: Ontology learning based on word em-
beddings for text big data extraction. In: 14th International Computer Engineering
Conference (ICENCO 2018). pp. 183–188. IEEE (2018)

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represen-
tations in vector space. 1st International Conference on Learning Representations
(ICLR 2013) (2013)

17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: 27th Annual Con-
ference on Neural Information Processing Systems (NIPS 2013). pp. 3111–3119.
Curran Associates (2013)

18. Naili, M., Chaibi, A.H., Ghezala, H.H.B.: Comparative study of word embedding
methods in topic segmentation. 23rd International Conference on Knowledgde-
Based and Intelligent Information & Engineering Systems (KES 2019) 112, 340–
349 (2017)

19. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends
in Information Retrieval 2(1–2), 1–135 (2008)

20. Pennington, J., Socher, R., Manning, C.D.: GloVe: Global vectors for word rep-
resentation. In: 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP 2014). pp. 1532–1543. ACL (2014)

21. Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.,
Al-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., De Clercq, O., Hoste, V., Apidi-
anaki, M., Tannier, X., Loukachevitch, N., Kotelnikov, E., Bel, N., Jiménez-Zafra,
S.M., Eryiğit, G.: SemEval-2016 task 5: Aspect-based sentiment analysis. In: 10th
International Workshop on Semantic Evaluation (SemEval 2016). pp. 19–30. ACL
(2016)

22. Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans-
actions on Knowledge and Data Engineering 28(3), 813–830 (2016)

23. Schouten, K., Frasincar, F.: Ontology-driven sentiment analysis of product and
service aspects. In: 15th Extended Semantic Web Conference (ESWC 2018). LNCS,
vol. 10843, pp. 608–623. Springer (2018)

24. Schouten, K., Frasincar, F., de Jong, F.: Ontology-enhanced aspect-based sen-
timent analysis. In: 17th International Conference on Web Engineering (ICWE
2017). LNCS, vol. 10360, pp. 302–320. Springer (2017)

25. Shi, T., Liu, Z.: Linking GloVe with word2vec. arXiv preprint arXiv:1411.5595
(2014)

26. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a maxi-
mum entropy part-of-speech tagger. In: 2000 Joint SIGDAT Conference on Empir-
ical Methods in Natural Language Processing and Very Large Corpora (EMNLP
2010). pp. 63–70. ACL (2000)

27. Wallaart, O., Frasincar, F.: A hybrid approach for aspect-based sentiment analysis
using a lexicalized domain ontology and attentional neural models. In: 16th Ex-
tended Semantic Web Conference (ESWC 2019). LNCS, vol. 11503, pp. 363–378.
Springer (2019)

28. Yelp: https://www.yelp.com/dataset (2019)
29. Yu, L.C., Wang, J., Lai, K.R., Zhang, X.: Refining word embeddings for senti-

ment analysis. In: 2017 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2017). pp. 534–539. ACL (2017)

30. Zheng, S., Xia, R.: Left-center-right separated neural network for aspect-based
sentiment analysis with rotatory attention. arXiv preprint arXiv:1802.00892 (2018)

31. Zhuang, L., Schouten, K., Frasincar, F.: SOBA: Semi-automated ontology builder
for aspect-based sentiment analysis. Journal of Web Semantics 60, 100–544 (2020)

https://www.yelp.com/dataset

	WEB-SOBA: Word Embeddings-Based Semi-automatic Ontology Building for Aspect-Based Sentiment Classification

