
A Hybrid Approach for Aspect-Based Sentiment
Analysis Using a Lexicalized Domain Ontology

and Attentional Neural Models

Olaf Wallaart
olafwallaart@student.eur.nl

Flavius Frasincar
frasincar@ese.eur.nl

Erasmus University Rotterdam
the Netherlands

mailto:olafwallaart@student.eur.nl
mailto:frasincar@ese.eur.nl

Contents

Motivation

Methodology

Data

Evaluation

Concluding Remarks

References

Motivation

I Explosion of opinionated text on the Web (e.g., reviews)

I Difficult to manually determine opinions with respect to an
entity of interest

I Sentiment Analysis (SA): automatic computation of the
sentiment (e.g., positive, neutral, or negative) expressed in a
piece of text (related to the entity of interest)

I Aspect-Based Sentiment Analysis (ABSA): automatic
computation of the sentiment expressed for an aspect in a
piece of text (related to the entity of interest)
I Review-level
I Sentence-level [our focus here]

Motivation

ABSA Tasks

1. Target Extraction: extracting the target word or set of words
present in text

2. Aspect Detection: detecting the aspects from text (aspects
can be broader than targets)
I Explicit Aspect Detection: aspects have associated targets in

text
I Implicit Aspect Detection: aspects do not have associated

targets in text (they are implied from text)

3. Sentiment Classification: computing the sentiment
associated to an (implicit or explicit) aspect [our focus here]

Related Work

ABSA Solutions
I Knowledge-Based Reasoning: using lexicalized sentiment

domain ontologies one can infer the sentiment attached to an
aspect in context, e.g., Ont (Schouten and Frasincar, 2018)

I Machine Learning: using machine learning approaches based
on feature vectors, e.g., Bag-of-Words (BoW), which includes
aspect and sentence sentiment score (Schouten and Frasincar,
2018)
I Deep Learning: learn feature representations and consider word

order, e.g., CABASC (Liu et al., 2018), LCR-Rot (Zheng and
Xia, 2018)

I Hybrid: mix knowledge-based reasoning with machine
learning, e.g., BoW+Ont (Schouten and Frasincar, 2018)
I Two-Step Hybrid: first knowledge-based reasoning and then

machine learning as backup, e.g., Ont+BoW (Schouten and
Frasincar, 2018), which uses an SVM classifier as backup

Main Ideas

I We propose a two-step hybrid approach that performs first
Knowledge-Based Reasoning and then Deep Learning as
backup dubbed A Hybrid Approach for Aspect-Based
Sentiment Analysis (HAABSA)

I We reuse Knowledge-Based Reasoning from Ont+BoW, but
extend LCR-Rot for Deep Learning:
I Inverting the attention order in the rotary attention mechanism
I Performing multiple hops in the rotary attention mechanism

Methodology

The methodology is based on two main steps:

1. Knowledge-Based Reasoning

2. Deep Learning

More precisely:

1.1 Compute the sentiment of each word in a sentence that is
related to the current aspect based on a lexicalized domain
sentiment ontology

1.2 If only positive sentiment found then classify the aspect as
positive

1.3 If only negative sentiment found then classify the aspect as
negative

2 If both positive and negative sentiment found or no sentiment
found then apply the Neural Attention Model to classify the
aspect as positive, negative, or neutral

Ontology
The onology has three main classes:

I SentimentMention: specifies the mentions of sentiment

I SentimentValue: specifies the polarity which can be Positive
or Negative

I AspectMention: specifies the mentions of aspects

and two main (annotation) properties:

I lex : relates a mention to a lexical representation

I aspect: relates a sentiment mention to an aspect

In addition:

I The Neutral sentiment is not specified due to its ambiguous
semantics

I We consider negation in two cases:
I Using the dependency relation the current word is related to a

Negator
I One of the preceding three words with respect to the current

word is a Negator

Sentiment Mention Types

There are three sentiment mention types:
I Type 1 : generic sentiment mention, which has the same

sentiment value for all aspects
I e.g., ”awesome” is always Positive (unless sarcasm present,

which we do not consider here)

I Type 2 : aspect-dependent sentiment, which has the same
sentiment value for some aspects (extra check for matching
the current aspect needed)
I e.g., ”delicious” is Positive for SustenanceMention (food and

drinks) but does not apply to ServiceMention

I Type 3 : context-dependent sentiment, which has different
sentiment values for different aspects (extra check for
matching the current aspect needed)
I New axioms built based on a sentiment mention linked by a

dependency relation to the current aspect
I e.g., ”cold” + ”beer” is Positive but ”cold” + ”pizza” is

Negative

Neural Attention Model

The Neural Attention Model dubbed Left-Center-Right
Separated Neural Network with Rotatory Attention
(LCR-Rot) has five main parts:

1. Word Embeddings: represents the sentence a sequence of
word embeddings

2. Context-Based Word Embeddings: represents the sentence as
a sequence of context-based word embeddings

3. Target2Context Attention Mechanism: computes the
target-aware left/right context representation

4. Context2Target Attention Mechanism: computes the
left/target context-aware target representation

5. Classification Module: classifies an aspect for sentiment
(positive, neutral, or negative)

Word Embeddings

I S = {s1, s2, ..., sN} be an input sentence of length N
containing words si

I We split the sentence into three disjoint and consecutive
parts, and get:
I Left context: S l = [s l1, s

l
2, . . . , s

l
L], where L is the length of the

left context
I Target phrase: S t = [st1, s

t
2, . . . , s

t
M], where M is the length of

the target phrase (the relevant aspect)
I Right context: S r = [s r1 , s

r
2 , . . . , s

r
R], where R is the length of

the right context

I The corresponding word embeddings are:
I Left context: E l = [e l1, e

l
2, . . . , e

l
L]

I Target phrase: E t = [et1, e
t
2, . . . , e

t
M]

I Right context: E r = [er1, e
r
2, . . . , e

r
R]

where en ∈ Rd and d is the dimension of the word embedding
(usually d = 300)

Context-Based Word Embeddings

We apply three bi-directional long-short-term-memory (Bi-LSTM)
modules (with 300 hidden units each) on the previous word
embeddings:

I Left Bi-LSTM: computes the left context hidden values
H l = [hl1, h

l
2, . . . , h

l
L]

I Target Bi-LSTM: computes the target phrase hidden values
Ht = [ht1, h

t
2, . . . , h

l
M] for target phrase

I Right Bi-LSTM: computes the right context hidden values
H r = [hr1, h

r
2, . . . , h

r
R]

where hn ∈ R2xd obtained by concatenating hidden values in
each direction

Bi-LSTM Advantages

I Remember relevant information for a long period of time

I Keep contextual information in both directions

Target2Context Attention Mechanism

Computes the target-aware left context representation as
follows:

I Determine a target representation using an average pooling
layer:

r tp
2d×1

= avg pooling([ht1
2d×1

, ht2
2d×1

, . . . , htM
2d×1

]) (1)

I Determine the left context word attention values using a
bilinear form involving hidden values hli , for i = 1, . . . , L, and
r tp :

f (hli , r
tp)

1×1

= tanh(hli
′

1×2d

× W l
c

2d×2d

× r tp
2d×1

+ blc
1×1

) (2)

where W l
c is a weight matrix and blc is a bias

Target2Context Attention Mechanism

I Squash the attention values to values between 0 and 1 using
the softmax function:

αl
i =

exp(f (hli , r
tp))∑L

j=1 exp(f (hlj , r
tp))

(3)

I Determine the target-aware left context representation as an
attention weighted average of word hidden values:

r l
2d×1

=
L∑

i=1

αl
i

1×1

× hli
2d×1

(4)

By following Equations (2)-(4) in a similar way we can obtain r r

for the target-aware right context representation

Context2Target Attention Mechanism

Computes an improved target representation as follows:

I Determine the target word attention values using a bilinear
form involving hidden values hti , for i = 1, . . . ,M, and r l :

f (hti , r
l)

1×1

= tanh(hti
′

1×2d

× W l
t

2d×2d

× r l
2d×1

+ blt
1×1

), (5)

where W l
t is a weight matrix and blt is a bias

I Squash the attention values to values between 0 and 1 using
the softmax function:

αtl
i =

exp(f (hti , r
l))∑M

j=1 exp(f (htj , r
l))
. (6)

Context2Target Attention Mechanism

I Determine the left context-aware target representation as
an attention weighted average of word hidden values:

r tl
2d×1

=
M∑
i=1

αtl
i

1×1

× hti
2d×1

, (7)

By following Equations (5)-(7) in a similar way we can obtain
the right context-aware target representation, r tr

Classification Module

I The sentence representation is obtained by concatenating
the target-aware left context representation r l , target-aware
right context representation r r , and the two sides
context-aware target representations, r tl and r tr :

v
8d×1

= [r l
2d×1

; r tl
2d×1

; r tr
2d×1

; r r
2d×1

] (8)

I The sentence representation vector is converted by a linear
layer to a vector of size C , where C is the number of different
sentiment categories, and the obtained vector is then fed into
a softmax layer to predict the sentiment polarity of the target
phrase:

p
|C |×1

= softmax(Wc
|C |×8d

× v
8d×1

+ bc
|C |×1

) (9)

where p is a conditional probability distribution, Wc is a
weight matrix, and bc is a bias

Model Training

I We minimize the cross-entropy loss function defined as:

L
1×1

= −
∑
j

yj
′

1×|C |
× log(pj)

|C |×1

+ λ‖Θ‖2 (10)

where
I yj

′ is a vector that contains the true sentiment value for the
j-th training opinion

I pj is a vector containing the predicted sentiment for the j-th
training opinion

I λ is the weight of the L2-regularization term
I Θ is the parameter set which contains {W l

c , blc , W r
c , brc , W l

t ,
blt , W

r
t , brt , Wc , bc} and the three Bi-LSTMs parameters

Model Training

I For loss minimization we use backward error propagation

I We intialize weight matrices by a uniform distribution
U(−0.1, 0.1) and all bias are set to zero, as is done by Zheng
and Xia (2018)

I To update the weights and biases we use stochastic gradient
descent with momentum

I The dropout technique is applied to all hidden layers to avoid
overfitting

I The following hyperparameters are tuned on 20% of the
training data (80% of the training data is used for model
building) using a Tree-structured Parzen Estimator (TPE)
algorithm:
I the learning rate
I the L2-regularization term (λ)
I the dropout rate
I the momentum term

LCR-Rot Architecture

LCR-Rot-inv Architecture

I Inverting the attention order in the rotary attention
mechanism:

1. Apply context2target attention mechanism
2. Apply target2context attention mechanism

I We start with two context pooling layers:
I Left context pooling
I Right context pooling

LCR-Rot-inv Architecture

LCR-Rot-hop Architecture

I Performing multiple hops in the rotary attention mechanism

I Improve the interaction between aspects and contexts
I Alternate between two steps:

1. LCR-Rot (start with the pooling of target words)
2. LCR-Rot-inv (no need for pooling contexts, as context

representations have been previously computed)

LCR-Rot-hop Architecture

Data
I Data made available by the International Workshop on

Semantic Evaluation (SemEval)
I SemEval 2015 Task 12 (Slot 3) and SemEval 2016 Task 5

(Subtask 1) each have:
I Restaurant Domain English Training Data
I Restaurant Domain English Gold Annotations Data

I Web restaurant reviews

I Example:

<s e n t e n c e i d=” 1154550:1 ”>
<t e x t>The p l a c e i s s m a l l and cramped but t h e food i s

f a n t a s t i c .</ t e x t>
<O p i n i o n s>
<Opin ion t a r g e t=” p l a c e ” c a t e g o r y=”AMBIENCE#GENERAL”

p o l a r i t y=” n e g a t i v e ” from=”4” to=”9”/>
<Opin ion t a r g e t=” food ” c a t e g o r y=”FOOD#QUALITY”

p o l a r i t y=” p o s i t i v e ” from=”39” to=”43”/>
</ O p i n i o n s>
</ s e n t e n c e>

Data
I Polarity distributions in train and test data sets:

Negative Neutral Positive Total

Freq. % Freq. % Freq. % Freq. %

SemEval-2016 train data 488 26.0 72 3.8 1319 70.2 1879 100
SemEval-2016 test data 135 20.8 32 4.9 483 74.3 650 100

I Data is skewed towards positive sentiment (around 70%)
I Category counts and frequencies in the data set:

Categories
Train data Test data

Freq. % Freq. %

AMBIENCE#GENERAL 226 12.03 59 9.08
DRINKS#PRICES 20 1.06 4 0.62
DRINKS#QUALITY 44 2.34 22 3.38
DRINKS#STYLE OPTIONS 32 1.7 11 1.69
FOOD#PRICES 70 3.73 22 3.38
FOOD#QUALITY 766 40.77 283 43.54
FOOD#STYLE OPTIONS 115 6.12 51 7.85
LOCATION#GENERAL 22 1.17 10 1.54
RESTAURANT#GENERAL 185 9.85 58 8.92
RESTAURANT#MISCELLANEOUS 49 2.61 18 2.77
RESTAURANT#PRICES 26 1.38 5 0.77
SERVICE#GENERAL 324 17.24 107 16.46

I The most dominant aspect is ”FOOD#QUALITY” (around
40%)

Data

Data Cleaning:

I All words are converted to lowercase and lemmatized

I Sentences containing implicit aspects (target=“NULL”) are
not considered (as we need the targets)

I Sentences without Opinions are also excluded (no use)

Word Emebeddings:

I GloVe word embedding vectors: 1.9 million vocabulary size
with 300-dimensional vectors

I Words that do not appear in the GloVe vocabulary are
randomly initialized by a normal distribution N(0, 0.052) as by
Zheng and Xia (2018) (only 3.6% of the words are not in the
GloVe vocabulary, these words are often names of restaurants,
jargon, or slang)

Evaluation

I Training is performed on the training data and testing is done
on the official test data

I The evaluation metric is classification accuracy (same as used
in the SemEval competition)

I Reference models:
I Ont: knowledge-based reasoning with backup majority

polarity (Schouten and Frasincar, 2018)
I BoW : bag-of-words method combined with an SVM classifier

to determine sentiment (Schouten and Frasincar, 2018)
I CABASC : neural network that contains a context

attention-based memory module (Liu et al., 2018)
I Ont+BoW : two-step approach where an ontology method is

first used and as backup the bag-of-words method is
used (Schouten and Frasincar, 2018)

I Ont+CABASC : two-step approach where an ontology method
is first used and as backup the CABASC method is used (new
baseline)

Evaluation
SemEval-2015 SemEval-2016

out-of-sample in-sample cross-validation out-of-sample in-sample cross-validation

acc. acc. acc. st. dev. acc. acc. acc. st. dev.

Ont 65.8% 79.7% 79.7% 0.0183 78.3% 75.3% 75.3% 0.0152
BoW 76.2% 91.0% 87.9% 0.0311 83.2% 89.3% 84.5% 0.0254
CABASC 76.6% 85.8% 87.1% 0.0138 84.6% 79.2% 84.0% 0.0218
LCR-Rot 78.4% 86.2% 88.0% 0.0144 86.9% 92.9% 85.8% 0.0214
LCR-Rot-inv 77.1% 85.2% 88.1% 0.0146 86.5% 93.9% 85.5% 0.0161
LCR-Rot-hop 78.4% 88.6% 87.6% 0.0181 87.7% 86.3% 85.6% 0.0169

Ont+BoW 79.5% 86.9% 83.5% 0.0308 85.6% 86.7% 85.7% 0.0329
Ont+CABASC 79.6% 84.3% 83.2% 0.0138 85.9% 82.3% 85.5% 0.0298
Ont+LCR-Rot 80.6% 84.5% 83.7% 0.0144 87.0% 88.3% 86.3% 0.0323
Ont+LCR-Rot-inv 79.9% 89.0% 83.7% 0.0146 86.6% 88.7% 86.2% 0.0296
Ont+LCR-Rot-hop 80.6% 85.7% 83.5% 0.0298 88.0% 86.7% 86.2% 0.0308

I Ont does not perform well (the ontology predicts in 60% of the cases, the
majority classifier [poor predictor] predicts in 40% of the cases)

I LCR-Rot outperforms CABASC by 1.8%-2.3%

I LCR-Rot-inv is not better than LCR-Rot

I LCR-Rot-hop (3 hops) outperforms LCR-Rot by 0.0%-0.8%

I Hybrid methods are better than original methods (ontology provides
additional information)

I Ont-LCR-Rot-hop outperforms LCR-Rot-hop (3 hops) by 2.2%-0.3%

Evaluation
Attention visualizations of the LCR-Rot, LCR-Rot-hop, and CABASC models

for the phrase ‘Great pizza, poor service’ for aspect ‘service’:

I Red color indicates word attention (dark color means high attention)

I CABASC wrongfully pays attention to the word ‘great’ (which belongs to
aspect ‘pizza’) [incorrect classification]

I LCR-Rot and LCR-Rot-hop rightfully give more attention to ‘poor’
[correct classification]

Evaluation
Attention visualizations of the LCR-Rot, LCR-Rot-hop, and CABASC models for the phrase ‘The food in here is

incredible, though the quality is inconsistent during lunch’ for aspect ‘lunch’:

I Red color indicates word attention (dark color means high attention)

I CABASC and LCR-Rot wrongfully pays attention to the word ‘incredible’ (which belongs to aspect ‘food’)
[incorrect classification]

I LCR-Rot-hop rightfully gives more attention to ‘inconsistent’ [correct classification]

Evaluation

The software was implemented in Python 3 using:

I NLTK for tokenization

I WordNet for lemmatization

I GloVe word embeddings

I TensorFlow for deep learning (using the GPU)

I VADER for sentence sentiment score

I OWLready2 for ontology manipulation and reasoning

Software available at https://github.com/ofwallaart/HAABSA

https://github.com/ofwallaart/HAABSA

Concluding Remarks

Conclusion
I We have proposed HAABSA, a two-step hybrid approach for

sentence-level aspect-based sentiment analysis:

1. Knowledge-Based Reasoning
2. Deep Learning:

I LCR-Rot (Left-Center-Right Separated Neural Network with
Rotatory Attention)

I LCR-Rot-inv (Inverted LCR-Rot)
I LCR-Rot-hop (Multi-hop LCR-Rot)

I Obtained better results than the state-of-the-art CABASC and
LCR-Rot methods
I Best results for Ont-LCR-Rot-hop (3 hops)

Future Work
I Develop a learning algorithm for the lexicalized domain

sentiment ontology (reuse work on ontology learning)

I Propose a solution to deal with implicit aspects (finding target
proxies based on word similarity)

References

Qiao Liu, Haibin Zhang, Yifu Zeng, Ziqi Huang, and Zufeng Wu.
Content Attention Model for Aspect Based Sentiment Analysis.
In Proceedings of the 2018 World Wide Web Conference
(WWW 2018), pages 1023–1032. IW3C2, 2018.

Kim Schouten and Flavius Frasincar. Ontology-Driven Sentiment
Analysis of Product and Service Aspects. In Proceedings of the
15th Extended Semantic Web Conference (ESWC 2018), volume
10360 of LNCS, pages 608–623. Springer International
Publishing, 2018.

Shiliang Zheng and Rui Xia. Left-Center-Right Separated Neural
Network for Aspect-based Sentiment Analysis with Rotatory
Attention, 2018. arXiv preprint arXiv:1802.00892.

	Motivation
	Methodology
	Data
	Evaluation
	Concluding Remarks
	References
	References

