
Automated Product Taxonomy Mapping in an E-commerce Environment

Steven S. Aanen, Damir Vandic, Flavius Frasincar

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, The Netherlands

Abstract

Over the last few years, we have experienced a steady growth in e-commerce. This growth introduces many problems for

services that want to aggregate product information and offerings. One of the problems that aggregation services face

is the matching of product categories from different Web shops. This paper proposes an algorithm to perform this task

automatically, making it possible to aggregate product information from multiple Web sites, in order to deploy it for

search, comparison, or recommender systems applications. The algorithm uses word sense disambiguation techniques to

address varying denominations between different taxonomies. Path similarity is assessed between source and candidate

target categories, based on lexical relatedness and structural information. The main focus of the proposed solution

is to improve the disambiguation procedure in comparison to an existing state-of-the-art approach, while coping with

product taxonomy-specific characteristics, like composite categories, and re-examining lexical similarity and similarity

aggregation in this context. The performance evaluation based on data from three real-world Web shops demonstrates

that the proposed algorithm improves the benchmarked approach by 62% on average F1-measure.

Keywords: products, semantic web, schema, ontology, matching, mapping, merging, e-commerce, web shop

1. Introduction

Recently, the Web has experienced a rapid growth,

playing an increasingly important role in our society. The

expectations are that the amount of information available

on the Web will continue to grow exponentially; doubling

in size roughly every five years [1]. This expresses the

need to keep all this information structured. The vision

of the Semantic Web from Berners-Lee et al. [2] addresses

this need, with the goal to make the Web more structured,

interactive, useful, and containing meaningful data, under-

standable for both human and computer. This has lead to

the usage of ontologies [3]: standardized representations

Email addresses: aanen@appophetweb.nl (Steven S. Aanen),

vandic@ese.eur.nl (Damir Vandic), frasincar@ese.eur.nl

(Flavius Frasincar)

of knowledge, in which concept relationships are explic-

itly defined. As a result, various research in the fields

of ontology management and data annotation has been

performed: the matching, construction and integration of

ontologies [4, 5], annotation of (Web) data [6, 7], as well

as different applications of the Semantic Web [8, 9]. Un-

fortunately, the current Web has not yet evolved to the

Semantic Web, since there is a lot of information that is

not semantically annotated. Consequently, data has to be

interpreted by humans, since machines do not understand

them. Because machines do not understand the infor-

mation embedded on Web pages, search engines are not

always capable of finding the information that suits the

user’s needs the best.

Because machines currently do not understand true

meaning of data, in the field of e-commerce, keyword-

Preprint submitted to Expert Systems with Applications August 28, 2014

based search is often used. This type of search leads to

a large fraction of customers that fail to find the product

that fits their needs optimally [10]. One of the reasons

for this is that Web-wide parametric product search is not

possible. Therefore, current product comparison tools are

primarily based on pricing, instead of on product charac-

teristics. The result is that customers will be forced to

compare mostly on prices, as they can not scan thousands

of products themselves. Although the price competition is

— economically seen — not unwanted, it can well be that

customers are prepared to buy more expensive products

if those would fit their needs better. Selling more expen-

sive products will increase revenue of online retailers, and

thereby contribute to the economy. Thus for both online

retailers and for customers, better product search, com-

parison and recommendation applications on the Web are

desired.

To build product search, recommendation, or compar-

ison tools, it is needed to deal with product categoriza-

tion. In general, Web sites that deal with products, such

as manufacturer pages or Web stores, have a hierarchy in

which products are categorized. In this way, users are

able to efficiently filter the kind of products that are de-

sired, even though possibly many thousands of products

are offered. These hierarchical categorizations are called

taxonomies: tree-like structures in which concepts have

supertype-subtype relationships. Taxonomies are related

to schemas, in which richer concept relations, with also for

example cardinality constraints, lead to a graph-like struc-

ture. To be able to aggregate information from multiple

Web sites dealing with products, it is needed to merge

their corresponding taxonomies in order to determine to

which class the collected products belong to.

In e-commerce, taxonomies are often very heteroge-

neous, since no standardizations are being used, and hi-

erarchies are often manually created. In the fields of on-

tology and taxonomy/schema matching, many different al-

gorithms have been proposed to deal with the heterogene-

ity of information structures [11, 12, 13, 14, 15]. How-

ever, since product taxonomies have some unique charac-

teristics, such as composite categories (e.g., ‘Electronics

& Computers) and loose relationships (e.g., subcategory

‘Hardware’ under category ‘PC Games’, which is not a true

subtype relation), specialized approaches are required.

Based on the algorithm from Park and Kim [16], which

has been designed specifically for taxonomy matching in e-

commerce, this paper will propose an improved approach,

as there are several aspects in the Park & Kim algorithm

that can be made better. More specifically, the focus of

this paper will be on one of the major drawbacks of the ex-

isting algorithm: the word sense disambiguation process.

The disambiguation is needed to find synonyms of the cor-

rect sense for category names. This is to account for the

fact that different taxonomies make use of different words

to characterize their classes, while having the same mean-

ing. For example, ‘Tools’ can have completely different

meaning depending on the parent category (e.g., ‘garden-

ing’ vs. ‘electronics’). Some Web shops might explicitly

use ‘Electronic Tools’ or ‘Gardening Tools’ while others

might just use ‘Tools’ and exploit the hierarchy to con-

vey the intended meaning. The assumption is that when

this process is improved, the overall recall and precision

of the algorithm will rise as well. Apart from focusing on

improving particularly this part of the algorithm, the goal

is to also re-examine concepts such as composite category

handling (neglected by Park & Kim), cope with depth vari-

ance between taxonomies, and propose new lexical similar-

ity and similarity aggregation functions that better fit the

e-commerce setting.

This paper is organized as following. First, we dis-

cuss in Section 2 related approaches for taxonomy/schema

and ontology matching, as well as word sense disambigua-

tion techniques and different lexical and semantic simi-

larity measures. Similarity measures are needed to score

candidate target categories for a given source category.

Section 3 explains the implementation of the proposed al-

2

gorithm, as well as the underlying ideas. In Section 4

the proposed algorithm will be evaluated against similar

approaches using real-world data. Last, conclusions and

possible future work are discussed in Section 5.

2. Related Work

Product taxonomy mapping is part of the research fields

of ontology and taxonomy/schema matching. Conceptual

matching in general is used in various domains of infor-

mation technology, like Semantic Web applications, on-

tology management, e-commerce, data warehousing, and

database integration. Therefore, quite a lot of research has

been done on the topic in the past decades [13, 14]. The

main difference between ontology and taxonomy/schema

matching can be found in the semantics.

Ontologies have the meaning of concepts and relations

between them explicitly encoded in their data represen-

tation. Therefore, matching algorithms can choose to pri-

marily use knowledge from within the ontology. Ontologies

are logical systems, and can be seen as a logical set of ax-

ioms according to which data is annotated, as Shvaiko and

Euzenat [14] explain.

In taxonomy/schema matching however, data is often

not annotated for meaning, besides the basic is-a relation-

ships (and sometimes additional constraints as in database

schemas), making it less structured than working with on-

tologies. Matching algorithms have to find out the mean-

ing using external data or using the context of the data

concepts within the schema. In other words, in ontology

matching, computers work with data which they can un-

derstand. In schema matching, only hierarchical data is

available of which a computer must first determine most

relations and the meaning on its own.

Although there are some signs of initial research ef-

fort [8], in the field of e-commerce, the ideas of the Se-

mantic Web are at their infancy in practice. Since no good

applications exist at this moment, few Web stores have an-

notated their product pages with semantics, as specified by

a product ontology like GoodRelations [17]. These seman-

tics describe for example the relations between different

products. Some exceptions do exist, but widely seen, the

information on the Web — especially in product environ-

ments — is still not understood by computers.

For the above reason, taxonomy matching is more ap-

plicable than ontology matching in this field. However,

both in ontology and in taxonomy/schema matching, the

goal is to find relatedness between concepts, often using

word sense disambiguation techniques and lexical or se-

mantic similarity measures. Therefore, some ideas from

the ontology matching domain can be applicable to tax-

onomy/schema matching as well. For this reason, we will

discuss projects from both ontology matching and taxon-

omy/schema matching fields. In addition, since many of

the approaches rely on relatedness of concepts and words,

some measures for these will be discussed as well. As this

research focuses on enhancing the word sense disambigua-

tion process within the matching algorithm, we will also

discuss some approaches for dealing with polysemy. Last,

this section will give a brief overview of WordNet [18],

which is a semantic lexicon used by many matching algo-

rithms and disambiguation techniques, including the pro-

posed solution.

2.1. Ontology Matching

This section discusses some approaches that deal with

matching of ontologies. While this research focuses on tax-

onomy mapping, ontology alignment is a strongly related

field of research which can give further insight in possible

approaches of product taxonomy mapping.

As part of the Protégé environment for knowledge-

based systems [19], PROMPT was developed by Noy and

Musen [20]. PROMPT is a framework for multiple on-

tology management, including various tools to deal with

tasks that often occur in management of ontologies. One

of these tools, iPROMPT, is an interactive approach for

ontology merging. It guides the user through the merging

3

process, by making suggestions on what should be merged,

and identifying problems and inconsistencies. This infor-

mation is based on the structure of the concepts, and rela-

tions between them within the ontology, as well as previous

user actions. iPROMPT however only looks at the local

context within the ontology, which is seen as a graph, for

its decisions. In other words, it only takes direct relations

of concepts into account. iPROMPT is very much user-

dependent, and therefore not very suitable in the domain

of automated product taxonomy matching. For this pur-

pose, often large amounts of data have to be processed

within a small amount of time, which is very hard when

depending on humans.

The PROMPT-suite [21] provides yet another tool for

ontology merging, which is meant to deal with the deficien-

cies of iPROMPT: AnchorPROMPT. AnchorPROMPT uses

a larger context within the graph for its suggestions, and is

meant for larger scale comparisons. It starts with pairs of

related terms as initial mappings; ‘anchors’, either deter-

mined by the user, or using a string or linguistics-based

technique (like edit- distance tests). By analyzing the

frequency of terms that occur in similar positions in the

source paths, new pairs are given by the algorithm as final

result. These new pairs can for example be fed back into

iPROMPT to make new suggestions to the user, or they

can be used as mapping themselves. Although Anchor-

PROMPT require less manual input than iPROMPT, it

is still not a fully automatic matcher. Apart from that,

AnchorPROMPT can be used for (automated) taxonomy

mapping as it does not deploy the richer relations in an

ontology, and it performs quite well in that respect [16].

For that reason the proposed algorithm from this paper

will be evaluated against AnchorPROMPT in Section 4.

H-MATCH [22] is another ontology alignment algo-

rithm, which uses the HELIOS [23] framework for ontol-

ogy sharing and evolution in a peer-to-peer network. H-

MATCH captures the relations between concepts using a

linguistic and a context interpretation. For the linguistic

part, it uses WordNet to capture terminological relations

between terms. For the context interpretation it scores

the affinity between the context of two concepts within

the ontology, to measure the relatedness of the concepts

themselves. Unfortunately, the context interpretation part

is only usable when working with formally annotated data

like in an ontology. Therefore, the algorithm can not be

used for e-commerce applications which are often based on

taxonomies. The linguistic part uses the same WordNet

relations as the proposed algorithm in this paper: syn-

onymy, hypernymy, meronymy, and their inverses.

OBSERVER [24] was built to deal with the seman-

tic integration problems that occur in domain-specific on-

tology matching. The system uses query-expansion using

two ontologies: when a user tries to query the first on-

tology using terms from that dataset, OBSERVER will

try to expand the query results to the second ontology

as well. For this purpose it uses concept term relation-

ships such as synonyms, hypernyms, and hyponyms. The

idea of using a query-based approach might be useful in

certain e-commerce applications like price comparison or

recommender systems. However, to reach maximum per-

formance and reliability, which is very important for Web

purposes, it seems a better idea to create a match be-

tween two taxonomies beforehand, instead of during run-

time. The semantic relationships used in OBSERVER,

synonymy, hypernymy and hyponymy, are also used in

their proposed algorithm.

LOM [25] is a semi-automatic mapping algorithm that

uses lexical similarities between concepts, and requires a

‘human mapping engineer’. LOM is based on four match-

ing procedures: whole term matching, word constituent

matching, synset matching, and type matching. Whole

term matching is trivial as it refers to exact string match-

ing. Word constituent matching is somewhat more ad-

vanced and separates each word and handles it individu-

ally. Using WordNet, synonym sets are matched, which

makes sure that the meaning of two terms is the same,

4

since all words in a WordNet synonym set represent the

same meaning. The last process uses the type relations

that are defined within the ontology, reflected against a

standardized upper ontology: SUMO [26]. This last part

is not applicable in taxonomy matching, since the rela-

tional data is not available. For the whole term matching,

word constituent matching, and synset matching, we can

identify parts from the proposed algorithm in this paper

that work towards the same goals. Apart from that, the

requirement of a mapping engineer and the use of type-

relational data makes LOM not useful for the e-commerce

domain.

HCONE [27] is an ontology matching tool that uses

WordNet together with Latent Semantic Indexing (LSI) [28]

to map concepts to a WordNet representation before link-

ing it to a target data set concept. LSI is an algorithm

for automated retrieval and indexing of documents, which

uses vectors of factor weights for the individual entities.

HCONE uses LSI for word sense disambiguation, by re-

placing ‘documents’ with ontologies, and ‘entities’ with

the stem of terms that form the concept labels. Further-

more, it uses descriptive logics, which can be employed for

ontology matching, but not for taxonomy matching. The

authors claim that fully automatic matching is impossible,

hence a certain degree of human involvement will always

be required.

2.2. Taxonomy/Schema Matching

Park and Kim [16] suggest an algorithm for schema

matching specifically designed for product taxonomies. They

start by aiming to disambiguate the name meaning of a

category from the source taxonomy. This is done by com-

paring ancestors of that category to the hypernym hierar-

chy of the category’s name in WordNet. The hypernym

structure of which most matches with the ancestors can

be found, is labeled as the correct sense. The associated

synonym set is used to find candidate categories in the

target taxonomy. The best of the candidates is then found

using two measures: co-occurrence and order-consistency.

Co-occurrence measures the similarity between the paths

from source and candidate taxonomy, based on the num-

ber of co-occurring nodes. The order-consistency measures

to which extent the co-occurring nodes also appear in the

right order for each path.

The algorithm of Park & Kim is very applicable to the

e-commerce domain, and works better than general on-

tology or schema matchers as reported experiments have

shown [16]. However, it has some drawbacks that make

it perform less good in practice. One of those is the fact

that the algorithm does not handle composite categories

(such as ‘Electronics & Computers’), which often occur in

product taxonomies, separately. The algorithm has also

difficulty with mapping shorter paths, or higher level cate-

gories, due to the implementation of the word sense disam-

biguation process which needs more information content

than is actually present for shorter paths. In addition, the

algorithm prefers to map to more general categories, which

is not always desirable. For example, it can map ‘Garden’

to ‘Home, Garden & Tools’ while the last category may

also have a ‘Garden’ subcategory beneath. Besides the

downsides, the algorithm of Park & Kim has shown supe-

rior results for the domain of product taxonomy matching.

The proposed algorithm in this paper is based on the ap-

proach from Park & Kim, and will be evaluated against

it.

COMA [35] is another approach to schema mapping,

where multiple matchers for automatic or semi- automatic

schema matching are employed. It has been designed for

database and XML schemes. The COMA library con-

tains approaches that use string-based techniques, but also

language-based ones. The different approaches are aggre-

gated to get a hybrid matcher with very promising results

in comparison to stand-alone algorithms. Aumueller et al.

[36] have improved the original version of COMA to make

it perform even better, and to be compatible with ontol-

ogy languages like XML Schema and OWL. However, both

5

versions use some information that is not always available

in e-commerce environments, such as element properties.

This makes it less usable for our domain.

Melnik et al. propose a graph-based database schema

matcher [37]. It starts with an initial mapping provided by

a simple string matcher. The mappings are then refined by

checking the similarity between adjacent elements of the

entities in the schema: directly related concepts. Since

this can deliver multiple possible mappings, a threshold

is computed to pick the ones most likely to be correct,

and filter the rest out. Unlike many other approaches,

SimilarityFlooding does not take terminological variations

into account. Since this is often desired in e-commerce, due

to the varying terminology, and since SimilarityFlooding is

more applicable to database schemes because of the graph-

like approach, this algorithm is not very useful for map-

ping product taxonomies, which only have a hierarchical

structure. The idea of using similarity between adjacent

concepts, like the similarity between a parent of a source

class and a parent of a candidate target class, may how-

ever be applied. However, that would also make an algo-

rithm slower, which is generally undesired in e-commerce

domain.

There are some schema matching approaches that rely

on more data then may be available for product taxonomies,

such as class properties. For example, a category for films

might have attributes like actors, which other categories

do not necessarily have. While it is a valid assumption to

use this data, it is not always available in practice. Cu-

pid [38], a hybrid matcher, uses linguistic measures but

also takes cardinality relations from database schemes and

data-types into account. S-Match [39] also uses parame-

ters of classes and their data types, next to the use of

disambiguation techniques. The focus, however, is on the

last one: semantic variations between concept terms.

Solutions that take a totally different approach have

been proposed by Li and Clifton [40], mainly focusing on

neural networks. DCM [41] uses correlation mining and co-

occurrence patterns for matching. CTX- Match [42] com-

bines a lot of linguistic approaches such as sense disam-

biguation, part-of-speech tagging, and multi-word recog-

nition. Other work and ideas on schema matching can

be found in surveys such as by Rahm and Bernstein [11],

which discuss different applications and approaches for

schema matching and categorize different algorithms ac-

cording to the used techniques. Shvaiko and Euzenat [14]

explain the differences between ontology and schema match-

ing, and the underlying principles of matching these struc-

tures. Some different techniques are discussed, and differ-

ent algorithms are summarized. Do et al. [13] evaluate

approaches meant for different application domains, us-

ing different data sets according to those domains, mea-

suring their recall, precision and F1-measure. Noy [12]

explains different approaches that can be used for tax-

onomy/schema matching. Avesani et al. [43] propose a

dataset for the evaluation of schema matchers, and exper-

iment with it using three different algorithms.

To summarize, there are no previous studies related

to our work that cover all aspects that are import in e-

commerce taxonomy mapping: (1) using only the cate-

gories in the taxonomy as input, (2) scalability and effi-

ciency (i.e., algorithms must be able to handle thousands

of categories with no exponential growth in computational

time), and (3) account for inconsistencies in the taxonomy

(e.g., categories that appear on multiple paths in the tax-

onomy). With our approach we aim to handle all three

cases. Furthermore, because the primary focus for im-

provement in this paper is the word sense disambiguation

process, the insights gained from this study will contribute

to the theoretical understanding of word sense disambigua-

tion both in general sense, as well as specifically applied

to e-commerce taxonomies.

2.3. Similarity Measures

As became clear from the previous sections, many match-

ing algorithms make use of one or more measures of lexical

6

or semantic similarity. There are many of these measures

available, but we will only highlight some of them which

seem to be most usable in the domain of this paper. The

Jaccard index [44] is a statistic that measures the similar-

ity between two sets. The index (or coefficient) is given

by:

jaccard(A,B) =
|A ∩B|
|A ∪B|

(1)

This produces an index in the range [0, 1], where 1 would

mean that the two sets are identical. The Jaccard coeffi-

cient can be used for lexical string matching by employing

each individual word as an element from a string A or

B. This is one way in which the proposed algorithm in

this paper uses Jaccard. Another way, which is also being

used in the algorithm, is by using each individual charac-

ter from both strings as elements. In both cases, however,

Jaccard only measures the co-occurrence of the elements,

while ignoring any order information. However, in prac-

tice, Jaccard is useful in the taxonomy mapping domain

since it provides a good measure of relatedness with an

easy and fast computation.

The Dice [45] coefficient is another similarity measure,

related to the Jaccard index. It is also based on set theory.

The coefficient is given by:

dice(A,B) =
2 |A ∩B|
|A|+ |B|

(2)

When used for strings, bi-grams are often used as elements:

groups of two characters or words. It is also possible to

use individual characters or words as elements.

The Levenshtein distance [46] is a metric that expresses

the amount of difference between two strings. It is de-

fined as the minimum number of edit operations needed to

transform one string into the other (often called the edit

distance). The operations that are possible are: insert,

delete or substitute an individual character. For exam-

ple, the Levenshtein distance between ‘lamp’ and ‘ramp’

is 1, since the only edit that is needed is to substitute the

first character. The distance metric theoretically does not

have a limit, since individual strings can be infinitely long,

which is why a normalized version of the Levenshtein dis-

tance is often used. When the absolute distance is given

by levabs(A,B), the normalized distance is given by

levnorm(A,B) =
levabs(|A|, |B|)
max(|A|, |B|)

(3)

which corrects the metric for length of the largest string,

and makes it an index with a value between 0 and 1. Just

as with Jaccard and Dice, the Levenshtein distance can

also be used with whole words as elements instead of char-

acters. Implementation of Levenshtein is however a bit

more difficult and its computation is slower than Jaccard.

Resnik [47] proposes a measure of semantic relatedness

based on the amount of ‘information content’. The infor-

mation content is a value that is assigned to each concept

in a hierarchy based on evidence that can be found in a

corpus. The idea is that concepts with a high information

content are very domain-specific, while a low information

content would indicate a very general concept. By count-

ing the frequency at which a concept occurs in a corpus,

the probability p of encountering this concept is estimated.

When sense-tagged data is used, the frequency count is

quite simple. The information content of a concept c is

given by:

IC(c) = − log p(c) (4)

The Resknik measure can be applied using WordNet

as corpus. The similarity between two concepts, is then

given by the information content of the lowest common

subsumer of both concepts; the lowest concept in WordNet

that subsumes both concepts. The function is given by:

resnik(c1, c2) = IC(lcs(c1, c2)) (5)

where lcs() gives the lowest common subsumer of con-

cepts c1 and c2. While the Resnik measure works quite

well when used within a word sense disambiguation al-

gorithm [48], the computation is quite time-consuming,

making it less desirable for the e-commerce domain.

For the Resnik measure some variants have also been

developed. Jiang and Conrath [49] augment the informa-

7

tion content measure with a measure for path length be-

tween concepts. The function is given by:

jc(c1, c2) = IC(c1) + IC(c2)− 2 · IC(lcs(c1, c2)) (6)

which uses the same functions as described previously.

Lin [50] doubles the information content of the lowest

common subsumer and divides that by the information

content of both concepts themselves. This is known as the

Dice-coefficient. The formula is given by:

lin(c1, c2) =
2 · IC(lcs(c1, c2))

IC(c1) + IC(c2)
(7)

A more simple approach for semantic relatedness is

that from Leacock and Chodorow [51], which uses the nor-

malized path lengths of noun concepts in a hierarchy like

that of WordNet. The more related two concepts are, the

lower the number of nodes that have to be traversed to go

from one to the other. The function is given by:

lc(c1, c2) = − ln

(
minPathLength(c1, c2)

2 · d

)
(8)

where minPathLength() computes the shortest path be-

tween two synonym sets c1 and c2, and d is the depth of

the tree.

These and other measures for semantic relatedness are

evaluated for usage in an adapted version of Lesk for word

sense disambiguation [48]. Lin [52] discusses what ‘simi-

larity’ actually means in different contexts, and explains

some approaches that can be used in a specific context.

2.4. Word Sense Disambiguation

Word Sense Disambiguation (WSD) has been applied

in numerous other studies (e.g., news classification [53],

sentiment analysis [54], etc.) but not in taxonomy map-

ping. Most approaches are meant to disambiguate individ-

ual words in a text. For product taxonomy mapping, there

is usually not a plain piece of text available to use. Instead,

the context consists of for example ancestors and children

of category nodes. In addition, speed and recall perfor-

mance is very important in e-commerce. Recall is very

important, as it is important to include as many products

as possible. Precision on the other hand, whether the prod-

ucts are classified correctly, is of less importance. Speed

is a relevant factor, since querying on the Web must be

as fast as possible. Since many disambiguation algorithms

do not qualify for these conditions, only a few interesting

approaches will be discussed in this section.

Lesk [55] proposed an algorithm that disambiguates a

term based on the overlap of words from its gloss with

glosses of surrounding words. The idea is that words that

appear in one sentence should be semantically related to

each other. A target word is assigned the sense with the

most gloss word overlaps with the context. The original

Lesk algorithm uses glosses found in traditional dictionar-

ies. This can however be a limitation of the method since

glosses are often very compact and may not include suffi-

cient vocabulary to find overlaps.

Banerjee and Pedersen [56] adapted the original Lesk

algorithm to work with the rich semantic data relations

that WordNet offers. This approach uses a general ‘win-

dow’ of words which is used as the context, instead of

words from a sentence. This window also contains the tar-

get word to disambiguate. Each of the words from the

window can be present in one or more possible synonym

sets, which reflect a sense in WordNet. Each of these words

can thus have multiple glosses associated as well. A com-

bination of synonym sets (a synset has one sense of a word

in WordNet) is seen as a candidate combination, and will

be scored. The total number of candidate combinations

is equal to the product of the number of senses for each

word from the window:
∏n

i=1 |Wi| where Wi is a word

from the window and |Wi| is the number of possible senses

for that word. For every candidate combination (so ev-

ery combination of senses for each word in the window),

the gloss overlaps are computed between every word in the

window. This is not only done for glosses of the synonym

sets themselves, but also for related synonym sets such

as hyponyms, hypernyms, meronyms, and holonyms. The

8

overlap between glosses is measured as the squared num-

ber of words in the longest sequence of consecutive words

that appear in both glosses. While this approach works

well, it is clear that the enormous amount of combinations

and therefore gloss overlaps that have to be computed puts

a lot of pressure on the performance.

In an evaluation of similarity measures in combination

with the adapted Lesk algorithm just discussed [48] the au-

thors explain the computation for gloss overlap as ‘just an-

other similarity measure’. They state that other measures

can be used as well. This is actually what the proposed al-

gorithm in this paper does. It uses the WordNet-adapted

version of Lesk, with Jaccard as similarity measure, be-

cause of its speed performance. While other measures

have been tried as well during our research, the enormous

amount of needed computations made it necessary to use

an extremely fast computation, and on top of that, a very

small window of context words.

Simplified Lesk [57] uses heuristics to make Lesk faster

and simpler. The different meanings of context words, or

their glosses, are not taken into account, and are matched

purely on exact lexical base to the glosses of the target

word. The approach works good, even in comparison to

original Lesk [58], but is a lot faster. Since it does not use

richer semantic relations, such as the approach from Baner-

jee and Pedersen [56], it is seen as less useful for the pro-

posed algorithm in this paper.

While Lesk is one of the most recognized algorithms

for word sense disambiguation, many others exist. One

of these algorithms uses the conceptual distance in the

WordNet graph [59]. Yarowsky [60] uses statistical mod-

els and weights to classify words to the Roget thesaurus’

categories. It uses a context of 100 words which would

be very large for product taxonomy purposes. Leacock

et al. [61] use a statistical classifier to combine cues like

related words from the context with terms from the con-

cept to disambiguate a term using WordNet. Navigli and

Velardi [62] developed an approach using pattern recog-

nition and digraphs. [63] presents a survey on word sense

disambiguation which describes many different approaches

and applications of disambiguation. For the evaluation of

word sense disambiguation approaches, sense-tagged cor-

pora exist [64], and even a conference is organized on a

regular base [65].

2.5. WordNet

WordNet [18, 66] is a semantic lexicon; it is basically

a dictionary, in which relations between words are known.

The lexical database contains English nouns, verbs, ad-

jectives, and adverbs, organized into synonym sets (or

synsets); sets of words sharing the same meaning. Word-

Net contains over 118,000 words forms in about 90,000

synsets. Between these synsets, the following semantic re-

lations are described: synonymy (symmetric, word with

same meaning), antonymy (opposing-name), hyponymy

(sub-name) and hypernymy (super-name), meronymy (part-

name) and holonymy (whole-name), troponymy (manner-

name) and entailment relations between verbs. Examples

of these relations are given in Figure 1. WordNet is used

by many of the ontology and schema matching, and word

sense disambiguation algorithms. The proposed matcher

in this paper also uses WordNet for sense disambiguation,

collection of synonyms and word morphological processing

into lemmas.

WordNet versions for different, sometimes multiple lan-

guages have also been made, such as MultiWordNet [67],

EuroWordNet [68], the BalkaNet [69] project and FinnWord-

Net. Universal WordNet (UWN) [70] is an automatically

constructed WordNet variant covering many different lan-

guages with over a million words in total. Next to this,

different projects have linked WordNet to other datasets,

such as ontologies. This has also been done for the upper

ontologies of SUMO [26] and DOLCE [33] which have been

previously mentioned.

9

Semantic Relation Identifying
Relationship Syntactic Category Examples

Synonymy Similar-to Nouns, verbs,
adjectives, adverbs

pipe, tube, rise, ascend
sad, unhappy, rapidly, speedily

Antonymy Opposite-of Adjectives, adverbs,
(nouns, verbs)

wet, dry, powerful, powerless
friendly, unfriendly, rapidly, slowly

Hyponymy (opposite of hypernymy) Subordinate/type-of Nouns sugar maple, maple, maple, tree, plant

Meronymy (opposite of holonymy) Part-of Nouns brim, hat, gin, martini, ship, fleet

Troponomy Manner-to Verbs march, walk, whisper, speak

Entailment Involves Verbs drive, ride, divorce, marry

Figure 1: Examples of semantic relations in WordNet as presented by Miller [66]

3. Framework

In this section, we discuss the proposed algorithm for

taxonomy mapping. As mentioned earlier, it is based on

the approach from Park and Kim [16]. The reason why we

took this approach as a base is that this algorithm has been

specifically designed for matching product taxonomies and

works very good for that domain in comparison to a gen-

eral schema or ontology matcher. In addition, the con-

cepts that the Park & Kim algorithm uses are both quite

responsive and well-performing, combining word sense dis-

ambiguation with path similarity and lexical similarity to

find the best possible mapping from one taxonomy path to

the other. The reason why path similarity works well when

combined with lexical similarity is that they complement

each other. Lexical similarity addresses the issue that cat-

egories are represented differently across Web shops. Path

similarity, on the other hand, takes a more high- level ap-

proach and analyzes which of the candidates is the best

fit with respect to the context (surrounding categories in

the taxonomy). The section is organized in the order of

the algorithm itself, as can be seen in Figure 2. First, the

category name from the source taxonomy is disambiguated

so synonyms of the correct sense can be used for the next

step: candidate selection. A set of candidate paths in the

target taxonomy is selected based on the synonyms just

found. Last, the candidates are scored based on the co-

occurrence and order-consistency metrics with respect to

the source taxonomy path. These measures are combined

to select the best mapping. The procedure as shown in

the figure is executed for every path from the source tax-

onomy. First however, we will explain the general assump-

tions that were used for the development of the proposed

(improved) algorithm.

3.1. General Assumptions

Composite Categories. One phenomenon that can

be found regularly in product taxonomies is that of com-

posite categories. Composite categories are multiple —

usually related — classes of products that are categorized

as one. An example: the ‘Movies, Music & Games’ cat-

egory from the product taxonomy of Amazon.com [71].

Each of the three parts could have been a separate cate-

gory, and therefore the assumption is that they should be

treated like that in the algorithm. The problem with the

Park & Kim algorithm, which neglects this phenomenon,

is that it is not able to disambiguate composite category

names as a whole. Furthermore, the target taxonomy may

not use the same conjunction of classes, which can make

10

Word sense
disambiguation

Extended
term set

Candidate path
selection

Check order-
consistancy

Check co-
occurrence

Candidate
path set

Best path
found

Figure 2: Framework overview of the proposed algorithm in this paper and the algorithm from Park and Kim [16]

it hard to find candidate categories. Therefore, the pro-

posed algorithm in this paper splits the composite cate-

gory names on ampersands, commas, and the word ‘and’.

The result, the set of classes that makes the composite

category, is referred to as the split term set.

Root Categories. Product category hierarchies use

tree-structured relations, and should therefore always have

a root category, although that is not always visible on Web

sites. The root categories, however, have no meaning with

respect to the products that fall beneath them. Examples

of root categories are ‘Products’, ‘Shopping’, and ‘Online

Shopping’, as in the datasets that were used in this re-

search. Since the root categories have no meaning, they

are not used in the matching processes in our proposed

algorithm, in contrast to the approach from Park & Kim.

Furthermore, in the proposed algorithm, the root from the

source taxonomy, which is on itself a category and should

therefore be handled, is always mapped to the root from

the target taxonomy. As an example, Figure 3 makes clear

that the root categories on the top in dark blue (dark gray

in black & white printing) are matched, even though the

category names are not matching syntactically.

Parent Mapping. Product taxonomies differ also in

terms of the category hierarchy depth. Some might have

split products into very specific sub-categories while other

taxonomies have a more general classification. Whenever

it occurs that a specific category exists in the source tax-

onomy, but not in the target taxonomy, the algorithm

proposed in this paper assumes that the source category

should be mapped to a more general category from the

target taxonomy. As an example, Figure 3 shows that

the category ‘Books’ from Overstock is mapped to ‘Books’

from Amazon, as it should. ‘Humor Books’ is however a

more specific category which Amazon does not have. But

in the end, a humor book is still a book, so it is assumed

that all humor books from Overstock fit into the more

general ‘Books’ category from Amazon. This assumption

is not used by Park & Kim. The more general category

is found by looking at the target category to which the

parent of a source category is mapped to.

Case Sensitivity. A general assumption for the pro-

posed algorithm is that the usage of capitals in category

names does not affect the meaning. Therefore, all match-

ing within the algorithm ignores case sensitivity. This

also solves the problem that many category names in tax-

onomies start with a capital, while WordNet uses lower-

case characters for words. The algorithm of Park & Kim

does not address this issue.

3.2. Word Sense Disambiguation

The first step in the mapping algorithm is to disam-

biguate the name of the category that is currently being

processed, which is necessary in order to obtain the syn-

onyms from the correct sense of the category. This im-

proves the ability to match categories that are synonyms

of each other. For example, when searching for ‘notebooks’

in the sense of a portable computer, it is desired that also

‘laptops’ will be found. However, when all synonyms of

the word ‘notebook’ would be used, synonyms with a dif-

ferent meaning; like that of a book to write notes in, would

11

Table 1: Ratio of senses found per source taxonomy for each algo-

rithm

Data set Park & Kim Aanen–Park Aanen–Lesk

Amazon 0.048 0.026 0.430

ODP 0.104 0.099 0.563

O.co 0.020 0.018 0.241

Average 0.057 0.048 0.411

also be included in the search results. For acquiring the

synonym sets, we use WordNet [66].

Park & Kim suggest a word sense disambiguation pro-

cedure based on matching the names of ancestors of the

current category to the hypernym hierarchies of the cur-

rent category name. This procedure is relatively fast, but

not very good, as is shown in the evaluation section (in

Table 1). The method fails very often to find any match,

and therefore can often not assign a sense to the category

name. The problem is that higher level categories (shorter

paths) have less information content that can be used to

match to the hypernym hierarchies.

To illustrate the effect of using different techniques for

word sense disambiguation, this section will describe two

different approaches. Both approaches can be used with

our proposed algorithm. In the evaluation we also consider

how our algorithm performs with these two approaches for

Books & Media

Humor Books

Online Shopping

Books

Books

Products

Figure 3: Mapping example from Overstock (left) to Amazon (right)

categories. Normal lines indicate a parent- child relationship; dotted

lines indicate a match between source and target category made by

the algorithm.

word sense disambiguation. The first approach is that of

Park & Kim, adapted according to the first general as-

sumption from Section 3.1: the need to split composite

categories.

The second approach is a new process, partly based

on the adapted algorithm from Lesk [55], by Banerjee and

Pedersen [56]. Note that in either versions, including the

original process described by Park & Kim, the target tax-

onomy does not play a role in the word sense disambigua-

tion procedures. The goal is to disambiguate the category

name from the source taxonomy. Section 3.1 states that

classes in composite categories should be handled sepa-

rately. Therefore, each category that is disambiguated, is

first split into the composing classes. For each of the in-

dividual classes that are acquired, the word sense disam-

biguation processes described in this section are executed

accordingly.

3.2.1. Adapted Park & Kim Disambiguation

This section explains the word sense disambiguation

procedure based on the algorithm of Park & Kim. To

disambiguate a (split) category name, it is first needed

to know all possible senses. Using WordNet, the different

meanings are gathered in the form of hypernym structures.

For each possible sense, there is a hierarchy of hypernyms,

like in Figure 5, which can be retrieved from WordNet,

referred to as the hypernym hierarchy. In the figure, two

possible senses for ‘piano’ are shown, each belonging to a

synonym set which is shown at the bottom of its hyper-

nym hierarchy in light blue (light gray in black & white

printing).

In order to find the best sense, the ancestors of the cur-

rent category (referred to as upper categories) are matched

to the hypernym hierarchies. An example of upper cate-

gories can be found in Figure 4 as the gold-colored (gray

in black & white printing) nodes in the middle: from ‘En-

tertainment’ to ‘Keyboard’. The function that measures

the overlap between an upper category and one hypernym

12

Entertainment

Piano

Shopping

Music

Instruments

Keyboard

Figure 4: Category

path of ‘Piano’ in the

ODP product taxon-

omy

entity

instrumentality,
instrumentation

device

musical instrument,
instrument

keyboard instrument

piano, pianoforte,
forte-piano

...

attribute

property

sound property

softness

piano, pianissimo

Figure 5: Two hypernym hierarchies for

‘piano’ in WordNet

hierarchy is given by:

match(t, S) = {x|x ∈ H,H ∈ S and base(t) ∈ H} (9)

where t is an upper category to match, H is the set of

synonyms of one hypernym, S is a hypernym hierarchy

(representing one WordNet sense), and base() is a func-

tion which looks up the lemma of a term using WordNet.

The result of matches() is a set of matching nodes be-

tween an upper category and a hypernym hierarchy. In

the example of Figures 4 and 5, matches() would return

one match for upper category ‘Instruments’ and the left

hypernym hierarchy which contains ‘instrument’.

The result of Equation (9) can be used to define a met-

ric that measures the amount of similarity between an up-

per category and a hypernym hierarchy. In hypernym hi-

erarchies like those in Figure 5, nodes closer to the base

term (leaf) in light blue (light gray in black & white print-

ing) are more specific, and have more information content

for that reason. Nodes closer to the root in dark blue (dark

gray in black & white printing) however, are very general

and do not have a lot of meaning. Therefore, nodes closer

to the leaf are seen as most important. This idea is used

in the function that computes the similarity between an

upper category and a hypernym hierarchy given by:

hyperProximity(t, S) =

1

min
x∈C

(dist(x,b)) if C 6= ∅

0 if C = ∅
(10)

where t is an upper category to match, S is a hypernym hi-

erarchy (representing one WordNet sense), C is the result

of match(t, S), b is the base term (leaf) of hypernym hier-

archy S, and where function min() returns the minimum

of a set of values, and dist() computes the distances be-

tween two nodes in the hypernym hierarchy. The distance

is defined as the number of arcs that are being traversed

when navigating from node to node.

For upper category ‘Instruments’ and the left hyper-

nym hierarchy in Figures 4 and 5 respectively, there is

only one match that can be found by Equation (9): ‘in-

strument’. Therefore, the distance between that node and

the base, 2, results in a hyper-proximity of 1
2 .

Using Equations (9) and (10), the similarity between

one ancestor of the current category and one sense (hyper-

nym hierarchy) can be measured. However, to measure the

final score per sense (denoted by S), it is needed to mea-

sure the similarity with all the ancestors (upper categories)

from the category path (denoted by P). This similarity is

given by:

pathProximity(P, S) =
∑
x∈P,
x6=Sb

hyperProximity(x, S)

|P | − 1
(11)

where P is the list of nodes from the source category path

(without the root), S is a hypernym hierarchy (represent-

ing one WordNet sense), and Sb is the base term (leaf) of S.

The path-proximity is the average hyper-proximity over all

upper categories for one hypernym hierarchy (representing

a sense). Park & Kim divide by the total number of nodes

instead of the ancestor count, including root (which they

do use in the source path) and base term. However, this is

a minor mistake since that would not lead to an average,

which is why it is changed in our algorithm.

13

In the example of the left sense in Figure 5, there is only

one matching upper category: ‘Instrument’. The hyper-

proximity
(
1
2

)
is divided by the total number of ancestors:

4, resulting in a path-proximity of 0.125. The denominator

is 4 because the root node is not used, as explained in

Section 3.1. The other hypernym hierarchy on the right

in the figure has a path-proximity of 0, since there are no

overlaps between the hierarchy and the upper categories.

Selecting the Proper Sense. The function in Equa-

tion (11) measures the fit of the source category path to

one possible sense of the category term. Therefore, it is

used to score all possible senses, so all hypernym hierar-

chies that were found earlier. The sense with the highest

score is then marked as correct. In the example of Fig-

ure 5 this would be the left sense: ‘piano’ as a musical

instrument.

From the best hypernym hierarchy that is found, only

the synonym set of the leaf is used: the light blue (light

gray in black & white printing) node at the bottom in the

figure of the example. This is from now on being referred

to as the extended term set. More specifically, when deal-

ing with a composite category, the disambiguation process

would be used multiple times, resulting in multiple ex-

tended term sets. For example, disambiguating category

‘Movies, Music & Games’ would result in three extended

term sets: one for each of the classes. These synonym sets

must be stored separately, so for each part of the compos-

ite category name, there is an individual synonym set.

It is possible that a (split) category name is unknown

to WordNet, or that no best sense can be found. In that

case, the original term is used as the ‘extended term set’.

According to Park & Kim, in such a scenario the whole

procedure should be canceled from this point, resulting

in no mapping for the current category. However, while

evaluating that approach for this research, it appeared that

that would yield an extremely poor recall. That is why

the algorithm of Park & Kim is evaluated in the same

way for this paper, i.e., by using the term itself when the

disambiguation fails (for a fair comparison).

3.2.2. Adapted Lesk Disambiguation

This section explains the word sense disambiguation

procedure partly based on the adapted version of the al-

gorithm from Lesk [55], by Banerjee and Pedersen [56].

This approach is not used in the algorithm from Park and

Kim [16]. The idea is quite simple: to each sense of a

word, a gloss is associated providing a brief notation of

the meaning. By measuring the overlap between the glos-

sary of the category name and those of related categories,

it should be possible to find the best sense. Parents and

children of category nodes are usually strongly related with

each other. Therefore, the assumption is that the glosses

of the senses that represent those relations, have overlaps.

However, since glosses are often very compact, they might

not provide sufficient vocabulary to measure the overlap.

Therefore Banerjee and Pedersen [56] suggest to use the

richer semantic relations provided by WordNet. This in-

creases the number of glosses that have to be compared,

but it also enhances the chance of finding enough overlaps

to assign the right sense to a category name. The same

authors [48] also suggest that different measures of simi-

larity can be used, instead of the strict lexical matching of

glosses that Lesk uses. Because of the good accuracy and

speed, this paper uses the Jaccard measure [44] to score

the overlap between glosses, with the words as elements.

Just as with the word sense disambiguation process de-

scribed in Section 3.2.1, the procedure explained in this

section disambiguates every part of a composite category,

if that is the case. The word sense disambiguation process

is completely described in Algorithm 1. This procedure

applies the approach of Banerjee and Pedersen [56], de-

scribed in Algorithm 2, which has been customized for the

domain of this paper.

As becomes clear in Algorithm 1, only two words are

being used as context: one part of a parent category and

14

Algorithm 1 Gather Extended Term Set for a Category

Require: category to disambiguate: wcategory

Require: category parent: wparent

Require: set of category children: Wchild

Require: function splitComposite(w) which splits com-

posite category names into individual classes based on

ampersands, commas, and conjunctions

Require: function disambiguate(wtarget,Wcontext) disam-

biguates a word using a set of context words, as de-

scribed by Algorithm 2

1: Scategory ← splitComposite(wcategory)

2: Sparent ← splitComposite(wparent)

3: Schild ← ∅

4: for all wcurrent ∈Wchild do

5: Schild ← Schild ∪ splitComposite(wcurrent)

6: end for

7: extendedTermSet← ∅

8: for all wsplit ∈ Scategory do

9: found← false

10: {Pick a combination of one (split part of a) parent

and child to use as context}

11: for all (wp, wc) ∈ Sparent × Schild do

12: if found = false then

13: synset← disambiguate(wsplit, {wp, wc})

14: if synset 6= null then

15: extendedTermSet ← extendedTermSet ∪

{synset}

16: found← true

17: end if

18: end if

19: end for

20: if found = false then

21: extendedTermSet ← extendedTermSet ∪

{wsplit}

22: end if

23: end for

24: return extendedTermSet

Algorithm 2 Target Word Disambiguation using Context

Require: target word to disambiguate: wtarget

Require: set of context words to use: Wcontext

Require: synsets(w) gives all synonym sets (representing

a sense) for word w

Require: related(s) gives (directly) related synonym

sets of synset s (based on hypernymy, hyponymy,

meronymy and holonymy)

Require: gJaccard(sa, sb) computes the Jaccard similar-

ity between the glosses of two synsets (sa, sb)

1: {For each word Wi ∈ W , fill window W with synsets

of the target word and its context words.}

2: W ← {synsets(wtarget)}

3: for all wcurrent ∈Wcontext do

4: W ←W ∪ {synsets(wcurrent)}

5: end for

6: bestScore← 0

7: bestTargetSynset← null

8: {Each candidate C is a combination of choosing one

synset for each word Wi ∈ W (i.e., a n-ary Cartesian

product of all synsets from W)}

9: for all C ∈
∏

Wi do

10: cScore← 0

11: {Iterate over all unique pairs from C}

12: for all (sa, sb) ∈ C2 do

13: Ra ← related(sa), Rb ← related(sb)

14: for all (ra, rb) ∈ Ra ×Rb do

15: cScore← cScore + gJaccard(ra, rb)

16: end for

17: end for

18: if cScore > bestScore then

19: bestScore← cScore

20: bestTargetSynset ← wtarget {current synset for

wtarget is selected from C}

21: end if

22: end for

23: return bestTargetSynset

15

one part of a child category. When no parent is avail-

able, namely when dealing with top categories, two child

parts are used instead. The reason not to use more con-

text words is the larger computation time; adding an extra

word to the context increases the computation time expo-

nentially. This is due to the enormous amount of combina-

tions that have to be evaluated. However, the procedure

also makes clear that when no synonym set (sense) is found

using two specific context words, two other context words

are tried. When none of the combinations of context words

result in a successful disambiguation, only the (split part

of the) category name is used as ‘extended term’. One

final remark must be made: theoretically it could happen

that even with only two context words the computation

time would be very large, for example when many syn-

onym sets are found. To prevent the total computation

time of the mapping procedure from exploding, one indi-

vidual extended term set procedure is aborted when taking

longer than 2000 ms to compute. Although we did not en-

counter this situation in our evaluation, we did implement

it to make sure that the processing time is bounded.

3.3. Candidate Target Category Selection

When the used word sense disambiguation procedure

has finished, an extended term is produced. The extended

term set contains synonyms of the correct sense for all

class parts within one category, or at least the original

class names. Using this data, the target taxonomy can be

searched for categories that possibly match the source cat-

egory. We refer to such categories in the target taxonomy

as candidate categories. The procedure for the candidate

selection is not complicated. Basically, the complete tar-

get taxonomy is scanned for categories that match the ex-

tended term set in the following way: for each split term

from the source category that is contained in the extended

term set, it is checked whether one of its synonyms is part

of the name (a substring) of a category from the target

taxonomy.

When at least half of the number of split terms has

a match, the target taxonomy’s category is marked as a

candidate. For example, for source category ‘Films’, target

category ‘Movies, Music & Games’ would be a match, since

one of the synonyms of ‘Films’, i.e., ‘movies’, is part of

the target category. However, if it would be the other

way around (‘Movies, Music & Games’ as source category),

there would be no match, since only a third of the words

are included in the target category.

Ideally, the classes from the source category would be

a subset of those of the target category. However, in prac-

tice, that would be a too strict procedure to use. Some-

times matches can not be found, due to the used word

sense disambiguation process which can not be perfect.

Though according to a human, there maybe would be

a match. Therefore, it is better to scan more loose (at

least half a subset), and let the co-occurrence and order-

consistency measures filter out the faulty candidates.

The Park & Kim algorithm uses a different method to

find candidate categories, as they ignore the phenomenon

of composite categories. Their procedure is simply to check

whether the source category term, or a synonym from the

extended term set, is contained in a target category name.

Furthermore, the Park & Kim algorithm operates under

the assumption that more general target categories are

better than more specific ones. Therefore, only the highest

categories from the taxonomy are used as candidates, and

more specific ones are deleted. However, this is a weak

assumption. For example: source category ‘Games’ would

fit better to target category ‘Movies, Music & Games →

Games’ (more specific, child) than to ‘Movies, Music &

Games’ (more general, parent). The procedure of Park &

Kim however would choose the last option: map to parent

‘Movies, Music & Games’. The proposed algorithm in this

paper gives every candidate category the same chance of

winning.

When the candidate categories are collected, the best

one has to be chosen. This is done by scoring them ac-

16

cording to two measures, described in the next sections.

The extended term set, the result from the disambigua-

tion procedure, is only used for candidate selection. It will

not be used from this point on in the algorithm.

3.4. Co-occurrence Measure

One possibility to evaluate how well a candidate target

category fits to the source category, is to measure their

path similarity. Co-occurrence is a measure that grades

the overlap between paths. The order in which the nodes

occur is however not taken into account.

The procedure to compute the co-occurrence measure

starts with a function called maxSim(), which computes

the similarity between a category name, and another cat-

egory’s path. Both can be from either source or target

taxonomy. First, the base form (lemma) of the category

name is retrieved using WordNet. Then, the character-

based Jaccard similarities are computed for the lemma and

each node from the other category’s path. From these simi-

larity indexes, maxSim() returns the highest one: the best

match between the category name and a node from the

other category’s path. In other words, it measures how

well a given category would fit into the path of another

category. The function is given by:

maxSim(t, P) = max
w∈P

(jaccard(base(t), w)) (12)

where t is a a category name, P is the list of nodes from

a taxonomy path, w is one category name from the the

taxonomy path, and base() gives the lemma of a word,

and jaccard() gives the character- based Jaccard index

of two terms, as described by Equation (1).

Instead of the Jaccard index, the Park & Kim algo-

rithm employs exact lexical matching. Their function re-

turns the value of the length of the larger string divided

by the length of the smaller string, if one of either is con-

tained in the other. Since no matches would be found

when words occur in a different form, for example with

‘clothing’ and ‘clothes’, exact lexical matching is seen as

an inferior method in this research.

Using maxSim() the co-occurrence measure can be com-

puted. It measures the level of similarity between two cat-

egory paths. This is used in the proposed algorithm in

this paper to measure the overlap between the source tax-

onomy path and a candidate target path. The function is

given by:

coOcc(Psrc, Ptarg) =

 ∑
t∈Ptarg

maxSim(t, Psrc)

|Ptarg|

 (13)

·

(∑
t∈Psrc

maxSim(t, Ptarg)

|Psrc|

)

where Psrc is the list of nodes from the source taxonomy

path, Ptarg is the list of nodes from a candidate target

taxonomy path, and t is a category name. This function

measures both the amount of nodes from the source cat-

egory that occur in the candidate category, and the other

way around.

3.5. Order-Consistency Measure

Using the co-occurrence measure described in Section 3.4,

the similarity of the source category path and a candidate

target path can be computed. Unfortunately this is not

sufficient, since the order of the nodes as they appear in

a path is also important for distinguishing the meaning.

Therefore, the order- consistency measure is introduced in

this section. The order-consistency is a ratio of the degree

in which co- occurring nodes from two paths occur in the

same order.

To compute the order-consistency, it is first needed to

know which nodes exist in both paths. This is computed

by the function common(). It scans all nodes from the

candidate path, and retrieves their synonyms from Word-

Net. When a candidate path node name, or one of its

synonyms, is contained in the node name of the source

category path, or the other way around, there is a match.

common() returns a set of all matching pairs.

The next function, precedenceRelations(), creates

pairs of nodes that were found by common(). Of each pair,

17

the first node always hierarchically comes before the sec-

ond node in the source path. In this way, the order of all

common nodes becomes clear though binary node associ-

ations. The order in which the binary pairs occur in the

set of precedence relations is however unimportant.

The function const() uses a precedence relation pair.

It checks whether the precedence relation of one node ap-

pearing before the other in the source path is also appli-

cable to the candidate target path. When the candidate

path has the nodes in the same order, const() returns 1,

and otherwise it returns 0.

Using the preceding functions, the order-consistency

can be computed using:

orderConst(Psrc, Ptarg) =
∑
r∈R

const(r, Ptarg)(
length(C)

2

) (14)

where Psrc is the list of nodes from the source taxonomy

path, Ptarg is the list of nodes from a candidate target

taxonomy path, C equals common(Psrc, Ptarg), R equals

precedenceRelations(C,Psrc), and r is a precedence re-

lation. The denominator in this function, is the number

of possible combinations of chosing two out of the com-

mon nodes. This makes the order-consistency the average

number of precedence relations from the source taxonomy

path that are consistent with a candidate target taxonomy

path. Note that this measure is purely based on order. The

number of co-occurring nodes is disregarded.

3.6. Selecting the Wining Candidate Target Category

Using the co-occurrence and order-consistency mea-

sures (Sections 3.4 and 3.5, respectively), a winner can be

chosen from all candidate target paths. The Park & Kim

algorithm computes the average of these measures, and

take the candidate path with the highest score as winner.

The proposed algorithm uses a different method to score

each candidate target category, given by:

sim∗(Psrc, Ptarg) = (orderConst(Psrc, Ptarg) + t) (15)

· coOcc(Psrc, Ptarg)

where Psrc is the list of nodes from the current source

taxonomy path, Ptarg is the list of nodes from a candidate

target taxonomy path, and t is the similarity threshold. As

shown in Equation (15), the algorithm makes use of the

so-called similarity threshold. This threshold functions as

a cut-off, to filter mappings that are based on a similarity

that is insufficient. When the overall similarity between

the source category and the best candidate target category

is below the similarity threshold, the category will not be

mapped by the algorithm.

The reason to use the similarity threshold in the overall

similarity function, is the following: the order- consistency

is in practice very often just 1 or 0. On one hand it does

not occur often that paths are ordered differently; on the

other hand, paths may not have overlapping nodes that

can be found by the order- consistency procedure. That

is for example the case with the highest level categories

(below the taxonomy root), like ‘Shopping → Entertain-

ment’ in Figure 4, in which ‘Shopping’ is the root. The

order-consistency procedure will always return 0 in such a

case, since no precedence relation pairs can ever be found,

caused by the fact that there is only one category node

that is used in the computation (the root is never used).

In such cases, it can still be that a candidate path with

an order-consistency of 0 is a good choice. To make sure

that the overall similarity will be sufficient to pass the sim-

ilarity threshold, the order- consistency is added to that

threshold before multiplying with the co-occurrence. In

this way, when a candidate path has a co-occurrence of 1,

but an order-consistency of 0, it still has a chance to be

used. By using the overall similarity function as described

above, candidate top categories like ‘Entertainment’ still

have a possibility to win.

Another observation from the overall similarity func-

tion, is that it uses a multiplication. The reason is to

make the two similarity measures more dependent of each

other in the overall similarity computation. With the same

values for the co-occurrence and the order-consistency, the

18

overall similarity is always lower than with taking the nor-

mal average. Candidates with reasonable scores for both

measures have a much bigger chance of winning than those

with a very low score for one and a very high for the other.

With averages, these differences are much smaller, making

the two measures more independent. Using a multiplica-

tion will, for example, prevent that categories that happen

to have a high order-consistency, for instance, because of

a low number of co-occurring nodes, are able to win.

In the end, the candidate target path with the highest

overall similarity is chosen. If its overall similarity is higher

than the similarity threshold, which is the only parameter

in the algorithm, the mapping is executed. Otherwise, the

source category is mapped to the same target category as

its parent, according to one of the assumptions from Sec-

tion 3.1. If the parent could not be mapped either, this

becomes a mapping to nothing. The Park & Kim algo-

rithm does not map to parent mappings. The complete

process as described in this section, from word sense dis-

ambiguation, to candidate selection, to finding the best

candidate, will then be restarted for the next path in the

source taxonomy.

4. Evaluation

In this section, the proposed algorithm will be evalu-

ated against the Park & Kim algorithm [16] and Anchor-

PROMPT [20, 21]. Moreover, two versions of the pro-

posed algorithm are evaluated separately, one using a word

sense disambiguation process based on that of Park & Kim

(Section 3.2.1), the other based on that of Lesk [55] (Sec-

tion 3.2.2). These are respectively referred to as Aanen–

Park and Aanen–Lesk in the tables in this section. Before

the evaluation itself, the design of the evaluation experi-

ment is discussed, together with the measures of evalua-

tion.

4.1. Evaluation Design

This section discusses how the evaluation experiment

has been set up. This includes the retrieval of evaluation

data sets, data sampling, and the creation of the golden

mappings.

Evaluation Taxonomies. For the evaluation of the

proposed algorithm, three data sets were used. Since prac-

tical applications are possible with product taxonomy map-

ping, it is assumed that it is best to use real-life prod-

uct taxonomies that are actually being used on the Web.

The first taxonomy that is used, is from Amazon.com [71],

which is the largest online retailer in the US, and one of

the largest in the world. Amazon sells products for many

different applications, which gives it a very wide taxon-

omy. These products are categorized in over 2,500 classes.

The data was collected using a custom build HTML DOM

crawler.

The second product taxonomy is from Overstock.com

[72] (also referred to as O.co), a large retailer selling almost

a million products, in over 1,000 categories. Overstock

has tagged its product pages with some semantic descrip-

tions, according to the GoodRelations [17] product ontol-

ogy. These descriptions include the taxonomy structure,

for which reason the data set of Overstock was collected

using RDFa-crawlers for this research.

The last data set, is from ODP (or Dmoz) [73]. ODP

(Open Directory Project, also known as Dmoz) is not a

Web store, but a project with the aim to categorize the

complete Web in a hierarchical structure. It is a multilin-

gual collection of Web links, constructed and maintained

by volunteers. While ODP is not only used for products,

it does have a top category called ‘Shopping’. Using an

HTML DOM crawler, the taxonomy has been collected

with ‘Shopping’ as root. This delivers more than a stagger-

ing 44,000 categories for products. It is both a very broad

and deep taxonomy. ODP also contains very specific and

sometimes unusual classes, which makes it a challenge for

the matching algorithms to handle. The enormous size of

19

the taxonomy puts the time performance of the algorithms

to the test. The three data sets that are discussed, can all

be used as source or target taxonomy. This results in six

different combinations of mappings: from each of the data

sets map to another. All six combinations are used in the

evaluation.

Taxonomy Samples. With the three product tax-

onomies that are used for evaluation, six different map-

pings from source to target can be made. However, then

the problem remains of how to specify for each of the

mappings from category to category, whether it is cor-

rect or not, according to a human. This could be done

either afterwards, or in advance of running the automated

procedures. The assumption is, that creating a manual

mapping beforehand is most objective, since all datasets

will have to cope with the same specification of how the

categories should be mapped. Also, by letting a human

decide on correctness afterwards, extra bias can arise be-

cause sometimes a mapping option chosen by the algo-

rithm might look good, while there actually exists a better

option. Therefore, manual mappings are chosen to be used

as reference for evaluation of the algorithm mappings.

The usage of manual mappings would require that for

six combinations of data sets, all categories from the source

taxonomy are linked to categories in the target taxonomy.

Unfortunately, this would require too much manual labor.

Therefore, random samples of five hundred categories have

been taken for each data set. Manual mappings have been

made with these samples as source taxonomies. The algo-

rithms thus also always map from sampled data set to full

data set. It was insured that for each category included

in the random samples, the ancestors were also included.

In this way, the taxonomies keep their tree structure. To

reduce bias in the evaluation results, the manual mappings

have been made by three individual people using majority

voting.

Algorithm Mappings. For each of the six possible

mappings between the taxonomies, the algorithms were ex-

ecuted. The algorithm of Park & Kim, and the proposed

algorithm both have one parameter: the similarity thresh-

old. Therefore, a batch of mappings has been executed for

these algorithms. The similarity threshold has been cho-

sen from 0 to 1 in steps of 0.05. For each mapping, the

similarity threshold giving the best F1-measure is shown

in Tables 2, 3 and 4. The associated value is printed in

the column ‘Threshold’.

For every algorithm, the average computation times

have also been measured. This is the average from the

batches, making it independent of the similarity threshold.

The times have been measured using a computer with an

Intel Core 2 Duo E7600 processor at 3.06 GHz, 4 GB of

memory, running Mac OS X. An overview of the compu-

tation times per mapping can be found in Table 5. The

implementation of each algorithm was done using the Java

programming language.

Table 1 shows the ratio of senses that have been found.

This is based on the number of extended term sets that

could be found by a word sense disambiguation procedure,

against the number of times the algorithm asked to disam-

biguate something. Since the disambiguation procedures

are only used to process category names from the source

taxonomy, there are only three different possibilities (three

taxonomies). The target taxonomy does not influence this

result. Note that the ratio only explains how many of the

senses are found, and not whether the best possible senses

are found. The degree of correctness is expressed by the

accuracy, which is stated in Table 7. The accuracy is mea-

sured by manually classifying each sense assigned by the

word sense disambiguation processes to either be correct

or incorrect. This has been done for all cases in which any

sense could be assigned to a (split) category term from the

sampled data sets. Note that this result is not very reliable

in the case of the algorithm of Park & Kim or Aanen–Park,

in combination with data sets from Amazon or Overstock,

since the amount of cases in which a sense could be found

20

Table 2: Best results for the Park & Kim algorithm

Mapping Precision Accuracy Specificity Recall F1-measure Threshold

Amazon → ODP 29.10% 20.80% 40.63% 11.47% 0.1645 0.10

Amazon → O.co 47.15% 31.80% 60.84% 17.37% 0.2539 0.00

ODP → Amazon 27.07% 42.48% 64.47% 15.93% 0.2006 0.05

ODP → O.co 31.89% 27.66% 38.54% 20.07% 0.2464 0.00

O.co → Amazon 54.29% 32.20% 45.21% 26.84% 0.3592 0.00

O.co → ODP 37.86% 26.60% 47.90% 15.92% 0.2241 0.00

Average 37.89% 30.26% 49.60% 17.93% 0.2415

Table 3: Best results for the proposed algorithm with disambiguation process according to Section 3.2.1, based on Park & Kim

Mapping Precision Accuracy Specificity Recall F1-measure Threshold

Amazon → ODP 25.37% 25.20% 13.65% 41.55% 0.3150 0.20

Amazon → O.co 55.85% 46.40% 42.08% 49.66% 0.5257 0.25

ODP → Amazon 26.63% 41.68% 54.08% 23.90% 0.2519 0.15

ODP → O.co 39.53% 31.86% 46.67% 22.37% 0.2857 0.10

O.co → Amazon 42.53% 34.00% 28.23% 38.14% 0.4022 0.20

O.co → ODP 25.15% 25.40% 17.44% 35.62% 0.2948 0.15

Average 35.84% 34.09% 33.69% 35.21% 0.3459

is so small, that only approximately 10–20 cases could be

evaluated on accuracy.

Performance Measures. The problem of mapping

taxonomy classes is a classification problem. In classifica-

tion, performance is usually evaluated using a confusion

matrix. However, in this situation, there are not just two

possible cases (false or true), but many different cases. We

use the following definitions:

true positives (TP) = # mappings to the correct path

false positives (FP) = # mappings to a faulty path

true negatives (TN) = # correct null mappings

false negatives (FN) = # incorrect null mappings

sensitivity or recall =
TP

P
=

TP

TP + FN

accuracy =
TP + TN

P + N

specificity =
TN

N
=

TN

FP + TN

precision =
TP

TP + FP

F1-measure = 2 · precision · recall

precision + recall

4.2. Results

Table 6 shows the mapping results for PROMPT. As

becomes clear, PROMPT scores relatively bad for recall,

21

Table 4: Best results for the proposed algorithm with disambiguation process according to Section 3.2.2, based on Lesk

Mapping Precision Accuracy Specificity Recall F1-measure Threshold

Amazon → ODP 31.45% 30.40% 16.61% 47.53% 0.3786 0.35

Amazon → O.co 53.02% 51.60% 23.83% 76.23% 0.6254 0.20

ODP → Amazon 20.23% 35.27% 37.05% 31.74% 0.2471 0.20

ODP → O.co 47.67% 37.07% 47.94% 30.16% 0.3695 0.25

O.co → Amazon 40.13% 35.40% 21.34% 48.28% 0.4383 0.20

O.co → ODP 21.97% 24.40% 14.56% 41.30% 0.2868 0.20

Average 35.75% 35.69% 26.89% 45.87% 0.3909

Table 5: Average computation times per mapping for each algorithm (in seconds)

Mapping PROMPT Park & Kim Aanen–Park Aanen–Lesk

Amazon → ODP 12.76 19.67 83.79

Amazon → O.co 0.34 0.72 48.58

ODP → Amazon 0.86 1.52 65.39

ODP → O.co 0.39 0.68 60.55

O.co → Amazon 0.75 1.64 97.01

O.co → ODP 12.00 23.61 130.32

Average 0.47a 4.52 7.97 80.94

aIndividual mapping times are not available for PROMPT (because it was run as a plugin in Protégé)

which is the ratio of mapped classes of the classes that

should have been mapped. Moreover, the precision, which

is the degree of correctness, is very poor: 19.82% on aver-

age. Here the fact that PROMPT is not specifically built

for product taxonomy matching becomes clear. Product

taxonomies have many characteristics that differ from gen-

eral ontology or schema matching, such as polysemy, for

which reason a customized approach is needed. PROMPT

is extremely fast though, as Table 6 makes clear.

The approach from Park & Kim, of which the results

are shown in Table 2, is specifically designed for product

taxonomies. The combination of word sense disambigua-

tion techniques to deal with polysemy, lexical similarity

and path similarity, result in a much better performance

than PROMPT. Worth mentioning is the relative good

performance on precision. Nevertheless, the recall is rather

poor, which means it is less suitable for e-commerce. This

is seen as especially important in the e-commerce domain.

Since generally very large amounts of data have to be pro-

cessed, it is desirable that as many as possible categories

will be handled, so that less human adaptations are re-

quired. Whether the categorization is exactly as wanted

(the precision), is less important than making sure that

every product is retrievable for search.

As Table 1 shows, the algorithm of Park & Kim is

generally not very successful in disambiguating category

names. For disambiguating categories from ODP the re-

sult is a lot better than for the other taxonomies. The

explanation can be, that ODP is a very wide taxonomy,

where classes are usually not (if not never) combined into

composite categories. Park & Kim will for example try

to disambiguate the term ‘Electronics & Computers’ as a

22

Table 6: Best results for AnchorPROMPT

Mapping Precision Accuracy Specificity Recall F1-measure

Amazon → ODP 7.74% 14.40% 29.56% 4.04% 0.0531

Amazon → O.co 35.59% 29.00% 57.54% 13.08% 0.1913

ODP → Amazon 8.08% 31.26% 43.48% 9.04% 0.0853

ODP → O.co 15.51% 20.84% 32.19% 10.90% 0.1280

O.co → Amazon 41.95% 27.80% 39.52% 21.92% 0.2879

O.co → ODP 10.07% 18.80% 39.02% 4.75% 0.0646

Average 19.82% 23.68% 40.22% 10.62% 0.1350

whole, which is very hard from a linguistic point-of-view.

ODP however has separate categories, which are much eas-

ier to disambiguate. Furthermore, classes from ODP are

often more specific, having more information content, than

the more general classes from Amazon or Overstock.

Solving many of the problems from the Park & Kim

algorithm, such as composite category handling, the pro-

posed algorithm from this paper works better on average,

as Table 3 makes clear. The average performance on re-

call increases by more than 17 percent point. The average

computation time shown in Table 5 does increase a bit.

This can be explained by the fact that more terms have

to be disambiguated and handled, because of the splitting

on composite categories. For the same reason, the ratio of

senses that can be found by the word sense disambiguation

process (Table 1), decreases slightly. Although the senses

assigned to (split) categories are often correct, as Table 7

shows, the fact that on average no more than 5.7% of the

senses can be found, undermines the need for a better dis-

ambiguation procedure.

The word sense disambiguation procedure explained in

Section 3.2.2, addresses the desire of finding a larger ratio

of senses. Table 1 shows that the disambiguation pro-

cess based on [55] increases the ratio of senses that can be

found by 622% on average, in comparison to the Park &

Kim algorithm. Of all these senses that were assigned to

category terms, 90.72% is correct on average. It is hard to

tell whether the accuracy has changed in comparison to the

disambiguation procedure of the Park & Kim algorithm,

since that approach only finds a very small proportion of

senses. The evaluation of the amount of those assigned

senses that are correct is therefore less relevant. The fact

that the ratio of found senses increases also results in bet-

ter mapping performance (as depicted in Table 4). Due to

the increase in recall, the overall performance, represented

by the F1-measure, increases significantly. However, this

is at the cost of speed, as Table 5 shows. The overall com-

putation time increases approximately by a factor of 10

on average. However, since taxonomies only have to be

mapped once (or once in a while), we argue that this is

not really an issue. On the other hand, it would be useful

to speed up the disambiguation process because one could

use more than two context words for the disambiguation.

A larger context might improve the performance even more

because it becomes more likely that the algorithm will find

correct senses.

Table 7: Accuracy of senses found per source taxonomy for each

algorithm

Data set Park & Kim Aanen–Park Aanen–Lesk

Amazon 75.00% 94.12% 82.11%

ODP 96.15% 96.43% 97.50%

O.co 80.00% 83.34% 92.55%

Average 83.72% 91.30% 90.72%

23

As becomes clear in Table 5, all algorithms seem to

struggle more with mappings to ODP as target, and map-

pings with Overstock as source. The reason that mapping

to ODP is more time-consuming, is simply the enormous

size. Over 44,000 categories have to be scanned to find

candidate target categories for each path from the source

taxonomy. Since Overstock has got a lot of composite cate-

gories, mapping with this data set as source also puts more

stress on the time performance in the algorithms that han-

dle this phenomenon. This is because the classes have to

be split, after which disambiguation techniques are used

for each part individually. In addition, candidate target

category search is more complicated with split categories.

Table 8 gives an overview of the most important mea-

sures of the evaluation. From this table, we can see that

our proposed algorithm performs best when used with the

new word sense disambiguation procedure that is based on

Lesk. We see that the precision of our approaches is simi-

lar to the Park & Kim algorithm, while our best approach

achieves a recall that is almost twice as high as that of the

Park & Kim algorithm.

5. Conclusion

In this paper we proposed an algorithm for the map-

ping of product taxonomies that are used in the e-commerce

domain. This makes it possible to aggregate product in-

formation from multiple Web sites, in order to deploy it

for comparison or recommendation applications. The eval-

uation results show that the proposed algorithm performs

better than PROMPT [20, 21] and the Park & Kim al-

gorithm [16]. The focus in this research was to improve

the word sense disambiguation procedure from the Park

& Kim algorithm. The approach based on Lesk [55] that

we proposed, increases the amount of senses that can be

found for category names by 622% on average, of which an

average of 90.72% are correct. Since this comes at the cost

of an increased computational cost, an improved version

of the faster disambiguation procedure of Park & Kim was

also discussed.

Furthermore, we proposed several other improvements

to the Park & Kim algorithm. First, we now properly ad-

dress the issue of composite categories, an issue not tack-

led by Park & Kim. By using the index of Jaccard [44] as

similarity measure, instead of exact lexical matching, the

problem of words occurring in different forms is also better

dealt with.

We also found that the classification succeeds more of-

ten by mapping to more general target categories when

more specific matches for a source category are not avail-

able. Overall, our approach showed an increase in F1-

measure by almost 62%, indicating the overall improve-

ment of the proposed algorithm with disambiguation based

on Lesk, in comparison to the approach of Park & Kim.

While the proposed algorithm improves existing ap-

proaches, there is still room for improvement. One of the

drawbacks of the new word sense disambiguation proce-

dure which prevents it from reaching its full potential, is

that is only uses, for performance reasons, a context of

two words: one parent category and one child category.

One possible speed improvement could be to use a gener-

alized Jaccard index for use with more than two sets, so a

candidate combination of senses can be scored at once.

Furthermroe, instead of matching the glosses lexically,

different (semantic) similarity measures could also be used.

An example could be graph-based approaches, that mea-

sure the conceptual distance in a semantic lexicon. Such

approach could improved accuracy by using all the infor-

mation from the taxonmy at-once for deciding where to

map particular categories.

The current order-consistency measure uses all syn-

onyms of terms for matching, disregarding the sense. De-

sirably, this process should use only synonyms of the cor-

rect sense. Furthermore, the search for co-existing nodes

in this process overlaps with that of the procedure to com-

pute the co-occurrence measure. Ideally, the two measures

24

Table 8: Overview of average results per algorithm

Algorithm Precision Recall F1-measure Avg. time Senses found WSD accuracy

PROMPT 19.82% 10.62% 0.1350 0.47 s n/a n/a

Park & Kim 37.89% 17.93% 0.2415 4.52 s 0.057 83.72%

Aanen–Park 35.84% 35.21% 0.3459 7.97 s 0.048 91.30%

Aanen–Lesk 35.75% 45.87% 0.3909 80.94 s 0.411 90.72%

should either be combined, or there should be an increase

in the amount of information that is shared across the two

methods.

Acknowledgment

Damir Vandic is supported by an NWO Mosaic schol-

arship for project 017.007.142: Semantic Web Enhanced

Product Search (SWEPS).

References

[1] G.-Q. Zhang, G.-Q. Zhang, Q.-F. Yang, S.-Q. Cheng, T. Zhou,

Evolution of the Internet and its Cores, New Journal of Physics

10 (2008) 123027.

[2] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, The

Scientific American 284 (2001) 34–43.

[3] T. R. Gruber, A Translation Approach to Portable Ontology

Specifications, Knowledge Acquisition 5 (1993) 199–199.

[4] N. F. Noy, M. A. Musen, Ontology Versioning in an Ontology

Management Framework, Intelligent Systems, IEEE 19 (2004)

6–13.

[5] M. Hepp, P. De Leenheer, A. De Moor, Y. Sure, Ontology Man-

agement: Semantic Web, Semantic Web Services, and Business

Applications, volume 7, Springer, 2007.

[6] L. Arlotta, V. Crescenzi, G. Mecca, P. Merialdo, Automatic

Annotation of Data Extracted from Large Web Sites, in: Inter-

national Workshop on Web and Databases 2003 (WebDB 2003),

2003, pp. 7–12.

[7] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cy-

ganiak, S. Hellmann, DBpedia - A Crystallization Point for the

Web of Data, Web Semantics: Science, Services and Agents on

the World Wide Web 7 (2009) 154–165.

[8] D. Vandić, J. W. J. van Dam, F. Frăsincar, Faceted Product

Search Powered by the Semantic Web, Decision Support Sys-

tems 53 (2012) 425–437.

[9] D. Benslimane, S. Dustdar, A. Sheth, Services Mashups: The

New Generation of Web Applications, Internet Computing,

IEEE 12 (2008) 13–15.

[10] J. B. Horrigan, Online Shopping, Pew Internet & American

Life Project Report 36 (2008).

[11] E. Rahm, P. A. Bernstein, A Survey of Approaches to Auto-

matic Schema Matching, The VLDB Journal 10 (2001) 334–350.

[12] N. F. Noy, Semantic Integration: A Survey of Ontology-Based

Approaches, ACM SIGMOD Record 33 (2004) 65–70.

[13] H.-H. Do, S. Melnik, E. Rahm, Comparison of Schema Match-

ing Evaluations, in: NODe 2002 Web and Database-Related

Workshops, volume 2593 of LNCS, Springer, 2002, pp. 221–237.

[14] P. Shvaiko, J. Euzenat, A Survey of Schema-Based Matching

Approaches, Journal on Data Semantics IV (2005) 146–171.

[15] Y. Kalfoglou, M. Schorlemmer, Ontology Mapping: The State

of the Art, The Knowledge Engineering Review 18 (2003) 1–31.

[16] S. Park, W. Kim, Ontology Mapping between Heterogeneous

Product Taxonomies in an Electronic Commerce Environment,

International Journal of Electronic Commerce 12 (2007) 69–87.

[17] M. Hepp, GoodRelations: An Ontology for Describing Products

and Services Offers on the Web, in: 16th International Confer-

ence on Knowledge Engineering: Practice and Patterns (EKAW

2008), volume 5268 of LNCS, Springer, 2008, pp. 329–346.

[18] C. Fellbaum, WordNet: An Electronic Lexical Database, The

MIT press, 1998.

[19] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso,

M. Crubézy, H. Eriksson, N. F. Noy, S. W. Tu, The Evolution

of Protégé: An Environment for Knowledge-Based Systems De-

velopment, International Journal of Human-Computer Studies

58 (2003) 89–123.

[20] N. F. Noy, M. A. Musen, The PROMPT Suite: Interactive Tools

for Ontology Merging and Mapping, International Journal of

Human-Computer Studies 59 (2003) 983–1024.

[21] N. F. Noy, M. A. Musen, Using PROMPT Ontology-

Comparison Tools in the EON Ontology Alignment Contest,

in: 3rd International Workshop Evaluation of Ontology-based

Tools (EON 2004), 2004. http://bit.ly/1dHCalY.

25

[22] S. Castano, A. Ferrara, S. Montanelli, H-MATCH: An

Algorithm for Dynamically Matching Ontologies in Peer-

Based Systems, in: 1st VLDB Int. Workshop on Seman-

tic Web and Databases (SWDB 2003), 2003, pp. 231–250.

http://bit.ly/14dl7nQ.

[23] S. Castano, A. Ferrara, S. Montanelli, D. Zucchelli, HELIOS:

A General Framework for Ontology-Based Knowledge Sharing

and Evolution in P2P Systems, in: 14th International Workshop

on Database and Expert Systems Applications (DEXA 2003),

IEEE Computer Society, 2003.

[24] E. Mena, A. Illarramendi, V. Kashyap, A. P. Sheth, OB-

SERVER: An Approach for Query Processing in Global In-

formation Systems Based on Interoperation across Pre-existing

Ontologies, Distributed and Parallel Databases 8 (2000) 223–

271.

[25] J. Li, LOM: A Lexicon-Based Ontology Mapping Tool, in: Per-

formance Metrics for Intelligent Systems 2004 (PerMIS 2004),

2004. http://bit.ly/1gQfYm2.

[26] I. Niles, A. Pease, Towards a Standard Upper Ontology, in:

International Conference on Formal Ontology in Information

Systems 2001 (FOIS 2001), ACM, 2001, pp. 2–9.

[27] K. Kotis, G. A. Vouros, K. Stergiou, Towards Automatic Merg-

ing of Domain Ontologies: The HCONE-Merge Approach, Web

Semantics: Science, Services and Agents on the World Wide

Web 4 (2006) 60–79.

[28] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,

R. Harshman, Indexing by Latent Semantic Analysis, Journal

of the American Society for Information Science 41 (1990) 391–

407.

[29] D. L. McGuinness, R. Fikes, J. Rice, S. Wilder, The Chimaera

Ontology Environment, in: 17th National Conference on Arti-

ficial Intelligence (AAAI 2000) and 12th Conference on Innova-

tive Applications of Artificial Intelligence (IAAI 2000), AAAI

Press, 2000, pp. 1123–1124.

[30] M. Ehrig, S. Staab, QOM - Quick Ontology Mapping, in: In-

ternational Semantic Web Conference 2004 (ISWC 2004), 2004,

pp. 683–697.

[31] I. Benetti, D. Beneventano, S. Bergamaschi, F. Guerra,

M. Vincini, An Information Integration Framework for E-

commerce, IEEE Intelligent Systems 17 (2002) 18–25.

[32] M. Ehrig, Y. Sure, Ontology Mapping — An Integrated Ap-

proach, in: 1st European Semantic Web Symposium. The Se-

mantic Web: Research and Applications (ESWS 2004), volume

3053 of LNCS, Springer, 2004, pp. 76–91.

[33] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, L. Schnei-

der, Sweetening Ontologies with DOLCE, in: 13th International

Conference on Knowledge Engineering and Knowledge Manage-

ment. Ontologies and the Semantic Web (EKAW 2002), volume

2473 of LNCS, Springer, 2002, pp. 223–233.

[34] S. Kaza, H. Chen, Evaluating ontology mapping techniques:

An experiment in public safety information sharing, Decision

Support Systems 45 (2008) 714–728.

[35] H.-H. Do, E. Rahm, COMA: A System for Flexible Combina-

tion of Schema Matching Approaches, in: 28th International

Conference on Very Large Data Bases (VLDB 2002), VLDB

Endowment, 2002, pp. 610–621.

[36] D. Aumueller, H.-H. Do, S. Massmann, E. Rahm, Schema and

Ontology Matching with COMA++, in: ACM SIGMOD Inter-

national Conference on Management of Data 2005 (SIGMOD

2005), ACM, 2005, pp. 906–908.

[37] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity Flooding:

A Versatile Graph Matching Algorithm and its Application to

Schema Matching, in: 18th International Conference on Data

Engineering (ICDE 2002), IEEE, 2002, pp. 117–128.

[38] J. Madhavan, P. A. Bernstein, E. Rahm, Generic Schema

Matching with Cupid, in: 27th International Conference on

Very Large Data Bases (VLDB 2001), Morgan Kaufmann Pub-

lishers Inc., 2001, pp. 49–58.

[39] F. Giunchiglia, P. Shvaiko, M. Yatskevich, S-Match: An Al-

gorithm And An Implementation of Semantic Matching, in:

Dagstuhl Seminar Proceedings of Semantic Interoperability and

Integration 2005, 2005. http://bit.ly/15m079i.

[40] W.-S. Li, C. Clifton, SEMINT: A Tool for Identifying At-

tribute Correspondences in Heterogeneous Databases Using

Neural Networks, Data and Knowledge Engineering 33 (2000)

49–84.

[41] B. He, K. C.-C. Chang, Automatic Complex Schema Matching

across Web Query Interfaces: A Correlation Mining Approach,

ACM Transactions on Database Systems 31 (2006) 1–45.

[42] B. Magnini, M. Speranza, C. Girardi, A Semantic-Based Ap-

proach to Interoperability of Classification Hierarchies: Evalua-

tion of Linguistic Techniques, in: 20th International Conference

on Computational Linguistics (COLING 2004), Association for

Computational Linguistics, 2004, pp. 1133–1133.

[43] P. Avesani, F. Giunchiglia, M. Yatskevich, A Large Scale Tax-

onomy Mapping Evaluation, in: 4th International Semantic

Web Conference (ISWC 2005), volume 3729 of LNCS, Springer,

2005, pp. 67–81.

[44] P. Jaccard, The Distribution of the Flora in the Alpine Zone,

New Phytologist 11 (1912) 37–50.

[45] L. R. Dice, Measures of the Amount of Ecologic Association

between Species, Ecology 26 (1945) 297–302.

[46] V. Levenshtein, Binary Codes Capable of Correcting Deletions,

Insertions, and Reversals 10 (1966) 707–710.

[47] P. Resnik, Using Information Content to Evaluate Semantic

Similarity in a Taxonomy, in: 14th International Joint Confer-

26

ence on Artificial Intelligence (IJCAI 1995), Morgan Kaufmann,

1995, pp. 448–453.

[48] S. Patwardhan, S. Banerjee, T. Pedersen, Using Measures of

Semantic Relatedness for Word Sense Disambiguation, in: 4th

International Conference on Computational Linguistics and In-

telligent Text Processing (CICLing 2003), 2010, pp. 241–257.

[49] J. J. Jiang, D. W. Conrath, Semantic Similarity Based on Cor-

pus Statistics And Lexical Taxonomy, CoRR cmp-lg/9709008

(1997). http://bit.ly/18xmEkv.

[50] D. Lin, Using Syntactic Dependency as Local Context to Re-

solve Word Sense Ambiguity, in: 35th Annual Meeting of the

Association for Computational Linguistics (ACL 1997) and 8th

Conference of the European Chapter of the Association for

Computational Linguistics (EACL 1997), Association for Com-

putational Linguistics, 1997, pp. 64–71.

[51] C. Leacock, M. Chodorow, Filling in a Sparse Training Space

for Word Sense Identification, March, 1994.

[52] D. Lin, An Information-Theoretic Definition of Similarity,

in: 15th International Conference on Machine Learning (ICML

1998), Morgan Kaufmann Publishers Inc., 1998, pp. 296–304.

[53] A. Hogenboom, F. Hogenboom, F. Frasincar, K. Schouten,

O. van der Meer, Semantics-Based Information Extraction for

Detecting Economic Events, Multimedia Tools and Applica-

tions 64 (2012) 27–52.

[54] B. Heerschop, F. Goossen, A. Hogenboom, F. Frasincar, U. Kay-

mak, F. de Jong, Polarity Analysis of Texts using Discourse

Structure, in: B. Berendt, A. de Vries, W. Fan, C. Macdon-

ald, I. Ounis, I. Ruthven (Eds.), Twentieth ACM Conference

on Information and Knowledge Management (CIKM 2011), As-

sociation for Computing Machinery, 2011, pp. 1061–1070.

[55] M. Lesk, Automatic Sense Disambiguation using Machine Read-

able Dictionaries: How to Tell a Pine Cone from an Ice Cream

Cone, in: 5th Annual International Conference on Systems

Documentation (SIGDOC 1986), ACM, 1986, pp. 24–26.

[56] S. Banerjee, T. Pedersen, An Adapted Lesk Algorithm for Word

Sense Disambiguation using WordNet, in: 3rd International

Conference on Computational Linguistics and Intelligent Text

Processing (CICLing 2002), 2002, pp. 136–145.

[57] A. Kilgarriff, J. Rosenzweig, Framework and Results for English

SENSEVAL, Computers and the Humanities 34 (2000) 15–48.

[58] F. Vasilescu, P. Langlais, G. Lapalme, Evaluating Variants of

the Lesk Approach for Disambiguating Words, in: 4th Con-

ference of Language Resources and Evaluations (LREC 2004),

2004, pp. 633–636.

[59] E. Agirre, G. Rigau, Word Sense Disambiguation using Con-

ceptual Density, in: 16th International Conference on Compu-

tational Linguistics (COLING 1996), 1996, pp. 16–22.

[60] D. Yarowsky, Word-Sense Disambiguation Using Statistical

Models of Roget’s Categories Trained on Large Corpora, in:

14th International Conference on Computational Linguistics

(COLING 1992), 1992, pp. 454–460.

[61] C. Leacock, G. A. Miller, M. Chodorow, Using Corpus Statistics

and WordNet Relations for Sense Identification, Computational

Linguistics 24 (1998) 147–165.

[62] R. Navigli, P. Velardi, Structural Semantic Interconnections:

A Knowledge-Based Approach to Word Sense Disambiguation,

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 27 (2005) 1075–1086.

[63] R. Navigli, Word Sense Disambiguation: A Survey, ACM Com-

put. Surv. 41 (2009) 10:1–10:69.

[64] SemCor, Sense-Tagged Corpus for Evaluation of Disambigua-

tion Algorithms, http://bit.ly/172YTme, 2013.

[65] Senseval (or SemEval), Conference on Word Sense Disambigua-

tion Algorithm Evaluation, http://www.senseval.org/, 2013.

[66] G. A. Miller, WordNet: A Lexical Database for English, Com-

munications of the ACM 38 (1995) 39–41.

[67] E. Pianta, L. Bentivogli, C. Girardi, Developing An Aligned

Multilingual Database, in: 1st International Conference on

Global WordNet (GWC 2002), 2002.

[68] P. Vossen, EuroWordNet A Multilingual Database with Lexical

Semantic Networks, Computational Linguistics 25 (1998).

[69] D. Tufis, D. Cristea, S. Stamou, BalkaNet: Aims, Methods,

Results And Perspectives. A General Overview, Science and

Technology 7 (2004) 9–43.

[70] G. de Melo, G. Weikum, Towards a Universal Wordnet by

Learning from Combined Evidence, in: 18th ACM Confer-

ence on Information and Knowledge Management (CIKM 2009),

ACM, 2009, pp. 513–522.

[71] Amazon.com, US’ largest online retailer,

http://www.amazon.com, 2013.

[72] Overstock.com, RDFa-annotated web store, http://www.o.co,

2013.

[73] ODP (or Dmoz), Open Directory Project,

http://www.dmoz.org/, 2013.

27

