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Abstract

With the vast amount of information available on the Web, there is an urgent need to structure Web data in order to

make it available to both users and machines. E-commerce is one of the areas in which growing data congestion on

the Web impedes data accessibility. This paper proposes FLOPPIES, a framework capable of semi-automatic ontology

population of tabular product information from Web stores. By formalizing product information in an ontology, better

product comparison or parametric search applications can be built, using the semantics of product attributes and their

corresponding values. The framework employs both lexical and pattern matching for classifying products, mapping

properties, and instantiating values. It is shown that the performance on instantiating TVs and MP3 players from Best

Buy and Newegg.com looks promising, achieving an F1-measure of approximately 77%.
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1. Introduction

A few decades ago, it was hard to imagine the enor-

mous impact the Web would have on our daily lives these

days. However, with the vast amount of information avail-

able, still doubling in size roughly every five years [1], there

is a serious need to structure all the Web data in order

to keep it findable. With this aim in mind, the Semantic

Web [2] was conceived in 2001. In the past years, some de-

velopments based on the ideas of the Semantic Web have

been adopted for large-scale use. One of these is the in-

troduction of a semantic vocabulary called schema.org [3],

proposed by the four major search engines Bing, Google,

Yahoo!, and Yandex. Schema.org is a very broad vocabu-

lary with which the search engines aim to have a high-level
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shared vocabulary that focuses on popular Web concepts.

This means that it is by no means an effort to have an

ontology of ‘everything’ or an ontology that is very spe-

cialized in one domain. Furthermore, Google introduced

recently the Knowledge Graph [4], which is a project that

augments search results with appropriate semantic meta-

data. Despite these recent movements, which are often

attributed to the concept of ‘Linked Data’ [5], the initially

envisioned Semantic Web is still at its infancy.

One of the areas in which growing data congestion

on the Web has serious consequences, is the field of e-

commerce [6]. Today’s search engines are still primarily

keyword-based, fail to work with syntactical differences,

and are language-dependent. Web-wide parametric prod-

uct search is unavailable, making it difficult for users to

find the optimal purchase for their needs. According to

existing research [7], a large fraction of online shoppers

get confused or are overwhelmed by the information they
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get presented while searching for products. The result can

be that prices become the determining factor for purchases

on the Web. This situation is not optimal for both buyers

and sellers: the buyers could be better off with a more

expensive product if that would fit better to their needs,

whereas the sellers might want to be competitive on other

characteristics than pricing alone [8].

This research focuses on the extraction of product in-

formation from tabular data sources on the Web, such

as product information pages. Many major e-commerce

shops use, in one way or another, a tabular format for

the product specifications. This especially holds for com-

plex (technical) products. For example, Amazon, Best-

Buy.com, Walmart, and Shopping.com, which are 4 well-

known e-commerce sites, all represent product information

in a tabular format.

In order to extract product information from tabular

data, we propose FLOPPIES: a Framework for Large-

scale Ontology Population of Product Information in E-

commerce Stores. FLOPPIES is a semi-automatic ap-

proach, aided by user-defined ontology annotations in the

form of lexical representations and regular expressions.

Using the tabular data often available on Web store prod-

uct pages, which conveys the factual information about a

product, the ontology-driven framework creates a struc-

tured knowledge base of product information. In order to

achieve this goal, FLOPPIES employs user-defined anno-

tations for lexical and pattern matching, which facilitates

product classification, property association, and value ex-

traction. Our knowledge base, the proposed OWL [9] on-

tology OntoProduct, defines specific properties and char-

acteristics for 24 consumer electronic product classes. Fig-

ure 1 provides an overview of the input and output of the

framework, based on our product ontology.

The proposed OntoProduct ontology is mapped to the

GoodRelations ontology for e-commerce [10], which is a

more formal ontology than the schema.org vocabulary and

is developed and maintained by Martin Hepp since 2002.

It is a highly standardized vocabulary that not only can

describe product data, but also company data and prod-

uct offerings. This ontology aims to specify all aspects that

come into play in the domain of e-commerce. For exam-

ple, it supports statements to depict time frames for which

an offering is valid. Fortunately, in 2012, the schema.org

team announced that GoodRelations has been integrated

in their vocabulary, which means that schema.org can now

be used to describe more granular product information [3].

Although GoodRelations defines concepts that can be used

to describe product classes, i.e., their hierarchy and the

associated product properties, the actual product classes,

such as ‘Phone’ or ‘Television’, are not defined. This is

one of the reasons why we propose the OntoProduct on-

tology and a system that can semi-automatically extract

instances from unstructured product information.

When product information is formalized in an ontol-

ogy, better product comparison or recommendation appli-

cations can be built, employing more intelligent paramet-

ric search by exploiting the semantics of product attributes

and their corresponding values. Furthermore, there will be

no need for existing Web stores to provide their data in a

specific format (which is currently the case), as search en-

gines will be able to effectively ‘pull the information’ from

the Web stores themselves by consuming the annotated

product information on the Web pages. Information could

be more easily aggregated in order to have a very extensive

source of product information. A prototype that utilizes

Semantic Web technology to aggregate product informa-

tion from multiple sources, as a means to improve product

comparison, has been implemented in earlier research [11].

The formalization of product information has several

advantages in practice for both business and consumers.

For example, solving the information heterogeneity prob-

lem in e-commerce can lead to serious improvements in the

business information exchange [12]. Furthermore, the con-

sumers’ product retrieval capabilities will increase because

of the more intelligent product search engines. For exam-
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Figure 1: Overview of the input and output of the proposed framework. The tabular Web product data on the left (input) is transformed

into the product instances part on the right (output), using the given ontology structure.

ple, search engines will be able to better rank products

because they can reason about how values of a product at-

tribute relate to one another. This is best illustrated with

an example. Consider the facts that ‘HSPDA’ is faster

than ‘3G’ and that ‘3G’ is faster than ‘GPRS’. From these

facts, a semantic search engine can deduce that ‘HSPDA’ is

faster than ‘GPRS’ if the property ‘faster than’ is declared

to be transitive. This reasoning can help in cases where

fuzzy search is needed, i.e., when a user is searching for a

phone with ‘HSPDA’ but none actually exist with the cur-

rent selection of properties and the next best phone has to

be displayed. FLOPPIES supports these developments by

providing a semi-automatic method to store actual facts

about a product (i.e., the values of its attributes) in a

product ontology. As a result, one has access to a knowl-

edge base that is understandable for both humans and

machines.

This paper is organized as following. First, related

research approaches are discussed in Section 2. Then, Sec-

tion 3 explains the proposed framework in detail. Section 4

evaluates the performance of FLOPPIES in a component-

wise analysis and compares it with a baseline approach.

Last, conclusions and future work directions are given in

Section 5.

2. Related Work

In this section, we discuss some similar research ap-

proaches for ontology population that are applicable in

the e-commerce field. Furthermore, some existing product

ontologies are reviewed, as such an ontology is required for

instantiation in our problem context. The scope of this re-

search is the ontology population itself, and not HTML

table extraction. Therefore, approaches focusing on this

topic are not discussed in this paper.

2.1. Ontology Population Approaches

Due to the wealth of information that is now available,

both on the Web and within organizations, it would be

impractical to manually instantiate all that information

in an ontology. Therefore, several semi-automatic ontol-

ogy population approaches have been conceived in recent

years, which are also applicable to the e-commerce domain.

Holzinger et al. [13] propose a fully autonomous pro-

cess, which only needs some initial seed knowledge about
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a specific product domain. Using this knowledge, it per-

forms a knowledge extraction process on Web pages, which

retrieves tabular data that is relevant to the product do-

main from the Web page. However, instead of populating

an ontology with the extracted information using an ex-

ternal framework that contains custom logic, they propose

a more integrated approach in which parts of the required

logic are replaced by OWL reasoning in the ontology. Once

the tabular data has been extracted from the Web page,

content spotters are employed, which detect specific val-

ues through regular expressions and are able to annotate

this information with OWL statements. Afterwards, ad-

ditional facts can be derived from the annotated tabular

data using the domain-specific ontology that was given

as the seed knowledge for the process. The authors argue

that this provides a more modular and transparent system

in which logical tables and domain models can be easily

substituted.

A different approach, using the semantic lexicon Word-

Net [14], is proposed by Patel et al. [15]. OntoGenie is a

semi-automatic tool that takes domain ontologies and un-

structured data, often in the form of natural language, as

input. It first maps the concepts in a domain ontology to a

WordNet equivalent. Then it captures the terms occurring

in Web pages and tries to map each word to a WordNet

concept. Finally, the relationships between the domain

ontology concepts and the words on the Web pages can be

determined by examining their mappings to WordNet. It

employs the principle of locality to compute the distance

between concepts, using information discovered from other

pages, for increasing the recall.

Ontosophie [16] is a strictly semi-automatic system for

ontology population, requiring user input for each infor-

mation extraction cycle. It consists of a natural language

processor, which uses shallow syntactical parsing for an-

notating terms in sentences. The next process is deriving

a set of extraction rules from the annotated documents.

A conceptual dictionary induction system is employed for

this phase, which uses a training corpus to derive a dic-

tionary of concept nodes. The extraction rules are gener-

ated using the different combinations of concept nodes oc-

curring in the sentences of the training corpus. However,

as not every extraction rule might be correct or specific

enough, Ontosophie also computes a rule confidence fac-

tor for each extraction rule, using K-fold cross-validation.

During this process, it merges rules giving identical results

and assigns each rule a confidence factor. After reviewing

all the generated extraction rules, the extraction rules with

a sufficient rule confidence factor are used to populate an

ontology. The authors argue that it is important for the

user to maintain control of the process, while only pre-

senting suggestions that the process considers to be cor-

rect. Therefore, Ontosophie comes up with instantiation

suggestions and ultimately lets the user decide on whether

it should instantiate the information or not. Furthermore,

it employs configurable thresholds for setting the desired

minimum confidence factor for making the suggestions.

OntoSyphon [17] is an unsupervised ontology popula-

tion system, which takes any ontology as input and uses it

to specify Web searches. Using both the ontology and the

additional information obtained from the Web, it is able

to automatically identify entities and their relations. The

advantage of this approach is that the entire Web can be

used as a corpus for instantiating entities in the ontology.

Our approach differs from these approaches on several

aspects. First, with the exception of [13], the aforemen-

tioned methods are not specifically targeted at populating

an ontology with (tabular) product information gathered

from the Web. Second, the other methods generally rely

on natural language processing, using the syntactical con-

text of a text to derive facts, while our approach focuses

on tabular data. Last, even though the framework we pro-

pose shows some resemblance with the approach in [13], as

both use regular expressions and lexical representations for

entity annotation, there is on important difference. Unlike

other approaches, including the approach in [13], our ap-
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proach employs a GoodRelations-based ontology for anno-

tating instances, making it compatible with major search

engines (GoodRelations is already supported by some of

the major search engines). The approaches that are dis-

cussed in this section do not share this advantage.

Even though most other methods are not directly ap-

plicable to the discussed problem, we can, nevertheless, re-

use some of their elements. For instance, the classification

of products can be achieved by mapping the category hi-

erarchy of a Web store, if it is available, to product classes

in the ontology. It could use a similar approach as [15], to

create the mappings by employing WordNet.

In addition, the proposed value instantiation process,

as used by the framework, employs a set of different value

extraction rules capable of converting key-value pairs to

the proper format for instantiating the ontology. Unfortu-

nately, as there is no freely available implementation of a

relevant ontology population framework, and not enough

information to precisely recreate an existing framework, we

cannot compare the performance of our proposed frame-

work to that of the aforementioned frameworks.

2.2. Ontologies for E-commerce

Ontologies have been successfully applied in various do-

mains, ranging from mechanical engineering [18, 19, 20] to

biology [21, 22, 23]. Also, various ontologies and cate-

gorization standards have been proposed for usage in the

e-commerce domain. These can help businesses in a va-

riety of ways, for example by improving communication

possibilities between companies, and by automating vari-

ous processes such as stock management.

A commonly used classification system for products is

the United Nations Standard Products and Services Code

(UNSPSC) [24]. Though UNSPSC is not freely available,

it is applied broadly as it covers a very wide range of prod-

ucts. The UNSPSC dataset has also been converted into

an OWL [9] ontology for research use, though it is ques-

tionable whether the purely hierarchical data structure of

UNSPSC benefits from such a conversion [25]. Similar

to UNSPSC, eCl@ss [26] provides a wide base of prod-

uct classes and descriptions. It is also a commercial stan-

dard, competing with UNSPSC, though more successful

in Germany and containing properties per product class

as well. For eCl@ss, an OWL conversion project is also

maintained for research purposes [27, 28]. A third catego-

rization standard worth mentioning is the Open Directory

Project (ODP) [29], which is a project aiming to categorize

the Web. Its shopping division consists of roughly 44,000

categories, but the classes have no further information at-

tached to them.

In the e-commerce domain, another project, Roset-

taNet [30], is a non-profit standard for sharing business

to business information. It is based on XML [31], and

is mostly used in the supply chain area. These and other

general e-commerce categorization standards are evaluated

and discussed in a survey by Hepp et al. [32].

Moving on to projects more related to Semantic Web,

GoodRelations [10] is a high-potential ontology describ-

ing products and service offerings for e-commerce. It has

been adopted by various large Web stores in the form of

RDFa [33] annotations. Furthermore, by mapping it to the

schema.org vocabulary, the project is increasingly gain-

ing attention from major search engines, which offer sup-

port for a growing set of annotations from GoodRelations.

However, GoodRelations only specifies the way in which

products and services need to be described, and does not

contain product-specific properties or product classes.

In an attempt to augment GoodRelations with prod-

uct classes and properties for consumer electronics, the

Consumer Electronics Ontology (CEO) [34] has been de-

veloped. Although this ontology includes a subclass-of re-

lationship between the product entities, product attribute

information is not available.

There are some other approaches that are related to

the product ontology that we propose. One of them is

the productontology.org project [35]. This project pub-
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lishes an ontology that extends the GoodRelations ontol-

ogy with approximately 300,000 product and service def-

initions, based on the automatic extraction of these from

Wikipedia. It contains some basic properties that are

mapped to GoodRelations. However, these properties are

very general and apply to many products. There are not

many properties that are product specific, such as ‘maxi-

mum load’ for washing machines and ‘cpu speed’ for lap-

tops. Furthermore, existing ontologies miss the metadata

needed for appropriate extraction of properties and their

values from text.

There are also other efforts that do not directly rely

on Wikipedia for the schema creation [36, 37]. Although

the ontologies that are proposed in these projects contain

more detailed schemas, they fail to address the issue of for-

mal semantics with respect to the unit of measurements.

Our proposed OntoProduct ontology does address this as-

pect by integrating an existing ontology-driven on units of

measurement.

3. FLOPPIES Framework

In this section, we provide a detailed explanation of the

FLOPPIES framework. First, the general processes for the

framework are discussed in an overview. Then we elabo-

rate on the ontology that is used for instantiation. Last,

each step of the framework is explained in more detail.

3.1. Framework Overview

The goal of the FLOPPIES framework is to structure

consumer product information from Web sites in order to

improve product search or recommendation systems. To

achieve this goal, several steps are required: extraction

of key-value pairs from (tabular) Web data; instantiation

of the product data into an ontology; product entity res-

olution to detect and aggregate duplicate products from

different Web sources and; an application that uses the

instantiated ontology data for product search or recom-

mendation. A lot of research effort has already been in-

vested in extraction of (tabular) Web site data [38], and

in (product) duplicate detection [39, 40]. Therefore, these

steps are left outside the scope of this research.

The FLOPPIES framework starts with the assumption

that product information in the form of key-value pairs is

present. Collecting this data is often trivial, as many Web

stores already offer product information in tabular form,

ordered as key-value pairs. FLOPPIES uses this raw prod-

uct data, as we refer to it, for instantiating the individual

products and their features into a predefined product on-

tology. This domain ontology has to be able to describe in-

dividual products with specific properties for each type of

product. For instance, a TV shares some properties with

digital audio players (i.e., ‘screen size’), but it also has

properties that digital audio players do not possess (i.e.,

‘remote control’). Although significant effort has been put

into establishing ontologies on the Web, a domain-specific

ontology for products with the required amount of speci-

ficity does not yet exist. Therefore, we introduce the Onto-

Product ontology, which will be explained in more detail

in the next subsection.

Figure 2 provides an overview of the FLOPPIES frame-

work. It starts with the raw product data, the key-value

pairs describing a product, as input. The final output of

the framework is an OntoProduct ontology file, instanti-

ated with the product and its features.

Between input and output, we identify three main pro-

cesses, as shown in the diagram. First, it is necessary to

obtain the type of product that is being instantiated: the

Classification process. The classes are predefined in the

ontology and determine the possible properties of the prod-

uct. Most Web stores nowadays have some kind of product

class or category data of each product available. Therefore,

the Classification process in the FLOPPIES framework is

seen as optional, in case the class data is not available.

The second framework process is called Property Match-

ing. This step is used to create a link between the key-

value pair keys from the raw product data, and the prop-
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Property Matching Value InstantiationClassification

OUTPUT

PROCESS

INPUT Raw product

Map<raw product, class>

Set<classes>

Set<properties>

Similarity Threshold

Raw product

Map<raw product, class>

Map<raw product keys, 

properties>

Set<properties>

Raw product

Set<classes>

Set<properties>

Infogain Threshold

Similarity Threshold

Map<raw product keys, 

properties>

Instantiated ontologyMap<raw product, class>

Figure 2: Overview of the processes in the proposed framework. Dashed lines indicate a usage relationship. Classification is only used when

no class data is available.

RAW PRODUCT DATA

Product Height 
(without stand)

27-7/8"

Other 
Connectors

PC Audio Input (Mini 
Jack) x1, DVI  x1

V-Chip Yes

2

1920 x 1080

LG 42" 1080p 60Hz 
LCD HDTV 42LK450

No

HDMI Inputs

Maximum 
Resolution

Title

ENERGY STAR 
Qualified

#hasNumberOfHDMI
Inputs

#hasConnectivity

#hasHeight

#hasDisplayResolution
Vertical

#hasDisplayResolution
Horizontal

#name

#isEnergyStar
Qualified

property

ONTOLOGY

valuekey

null

Figure 3: Example of property matching between (real-world) raw

product data and ontology properties from OntoProduct.

erties from the ontology. This is dependent on the product

class, as the class determines the possible ontology prop-

erties that can be linked. Figure 3 indicates more clearly

what Property Matching is about. Note that, as the fig-

ure indicates with the mapping of ‘Maximum Resolution’,

one raw product key can be mapped to multiple ontology

properties. This is required as some raw product key-value

pairs combine multiple characteristics of a product, which

are separately stored in the ontology.

The third and last process in the FLOPPIES frame-

work is that of Value Instantiation. This part uses the class

obtained from Classification, or directly from input data

if the class is available, together with the result of Prop-

erty Matching to instantiate the values in the ontology.

Value Instantiation is very much about content spotting,

parsing, and creating property assertions in the ontology.

After the Value Instantiation, the raw product informa-

tion from the Web has been structured and semantically

annotated using an ontology. From that point on, appli-

cations can use the data to improve for example product

search or facilitate product recommendation.

3.2. The OntoProduct Ontology

As Section 2.2 discussed, there have been various at-

tempts to create product ontologies. However, unfortu-

nately none of them are freely available and are both broad

and specific enough to describe products in the domain

this research uses: consumer electronics. Therefore, we

introduce a new OWL [9] product ontology for consumer

electronics, which builds on the foundations of existing

work: OntoProduct. It was conceived by four domain ex-

perts, who used training data originating from existing

Web stores to create the ontology structure.
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3.2.1. Dependencies of OntoProduct

OntoProduct is fully compatible with GoodRelations,

known as ‘The Web Vocabulary for E-commerce’ [10]. How-

ever, GoodRelations is a high level ontology, which misses

the specificity that is required to describe product fea-

tures in detail. Another project led by GoodRelations’

creator Martin Hepp, the Consumer Electronics Ontology

(CEO) [34], attempts to extend GoodRelations with spe-

cific properties and product classes for better description

possibilities of products. Although CEO provides a fruitful

extension to GoodRelations, it only defines product prop-

erties and some product classes, but not the links between

these. OntoProduct, nevertheless, uses CEO as a base,

and extends it with new properties, product classes, and

relations between these. In total, OntoProduct contains 24

product classes and 270 distinct product properties from

the consumer electronics domain, which allows for the in-

stantiation of product information with sufficient detail.

In e-commerce, many product features are quantitative

and use a unit of measurement. For example, the weight of

a product can be given in pound or in kilogram, resulting

in a very different meaning. To cope with this problem,

OntoProduct requires a unit of measurement to be linked

to quantitative values. Although GoodRelations does not

include a standard list of units of measurement, nor a way

to define for example the used notations, we were able

to extend it with another ontology that does enable to

do this: the Units of Measurement Ontology (MUO) [41].

MUO provides the ontology structure for working with

units of measurement, but does not yet contain the in-

stances. For the instances, OntoProduct uses the Unified

Code for Units of Measure code system (UCUM) [42]. The

authors of MUO have made the dataset available to use

UCUM in conjunction with the MUO ontology.

3.2.2. OntoProduct Structure

Figure 4 gives an example of an instantiation in the

OntoProduct ontology. Any instantiated product individ-

ual, such as op:LG-47LV in this example, is member of a

product class, in this case ceo:TV. This product class de-

termines which properties are valid for the type of prod-

uct that is being instantiated. In general, we identify

three important property types: quantitative object prop-

erties (i.e. ceo:hasWidth), qualitative object properties

(i.e. ceo:hasDataFormat), and data properties (i.e. ceo:-

hasTouchscreen). OntoProduct contains 57 qualitative

object properties (with 783 qualitative individuals), 151

quantitative object properties, and 62 data properties. The

domain of these properties entails one or more product

classes, to define which characteristics a product can have.

The range of the properties depends on the type: object

properties have a range of respectively quantitative and

qualitative values, whilst data properties point to data

types. In the case of qualitative values, the range also

determines the possible units of measurement that can be

attached to some property value.

3.2.3. OntoProduct Metadata

As Section 3.1 mentioned before, FLOPPIES is a semi-

automatic framework for product ontology instantiation.

The reason we do not present it as being automatic, is

because the algorithms largely depend on ontology anno-

tations for linking product properties to raw product keys,

and for parsing values from the raw product data. In prac-

tice, this means that for new data sources (i.e., a new Web

store), the ontology needs to be annotated with appropri-

ate metadata. For example, one Web store might specify

the property of diagonal display size as ‘Display size’ while

another uses ‘LCD screen size’. Moreover, the lexical rep-

resentations in the ontology can be used to enable pro-

cessing for data with differing denominations or even from

different languages. In OntoProduct Metadata, which is

an extension to OntoProduct used purely for the purpose

of assisting the ontology instantiation with human input,

the lexical representations can be applied to all properties

and qualitative value individuals.
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owl:Thing

gr:ProductOr
Service

ceo:TV
ceo:Digital-
AudioPlayer

muo:UnitOf
Measurement

muo:meter

op:LG-47LV
op:UnitOf
Length

gr:Qualitative
Value

gr:Quantitat-
iveValue

ceo:Data-
Format

op:Quantitat-
iveValueFloat

Length

op:LG-47LV
hasWidth

op:hasUnitOf
Measurement

ceo:hasWidth
ceo:has-

Touchscreen

gr:hasValue

false

1.09

ceo:has-
DataFormat

ceo:FLAC

Class

Individual

Literal

Object property

Datatype property

Subclass-of

Individual-of

Property assertion

op OntoProduct
ceo ConsumerElectronics ontology
gr GoodRelations
muo Units of measurement ontology

Figure 4: Example of an instantiated TV in the OntoProduct ontology.

Next to lexical representations, OntoProduct Metadata

can be used to annotate quantitative object properties and

data properties with regular expressions [43]. Regular ex-

pressions provide a pattern to which the raw product val-

ues should match for a certain property. This is used

for Property Matching to filter out possible faulty map-

pings. In addition, regular expressions are used in the

Value Instantiation process to parse numeric data from

the raw product values, by means of grouping. Group-

ing is commonly used in regular expressions to select cer-

tain parts of a matching region in the input value. For

instance, consider the key-value pair [‘Refresh Rate’,-

‘60Hz’], which can be mapped to the ontology prop-

erty op:hasScreenRefreshRate. A screen refresh rate

needs to have a unit of measurement for the frequency,

commonly measured in Hertz (Hz), therefore we anno-

tate the property with the following regular expression:

(\d+)\s?(?:Hz|Hertz). A regular expression searches

the raw product value for a region which corresponds to

the specified pattern, in this case a numerical value fol-

lowed by either ‘Hz’ or ‘Hertz’. If the search succeeds, it

stores the numerical value in a separate group, which can

be retrieved by the Value Instantiation process to instan-

tiate the numerical value with the property gr:hasValue.

As another example of the flexibility offered by regular

expressions, take key-value pair [‘Dimensions’,‘55.3"

x 33.2" x 1.3"’]. Since there is no property to specify

‘dimensions’ in the ontology, it is required to break up the

raw product value into multiple instantiations. Using lexi-

cal representations, the user could annotate ontology prop-

erty ceo:hasWidth with ‘Dimensions’ for improved prop-

erty matching. Adding a regular expression would enable

the Value Instantiator to detect a match with value ‘55.3"

x 33.2" x 1.3"’, and select the first number, 55.3, from
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it through grouping. Similarly, the height and depth can

be annotated for improved matching and parsing.

Annotation of properties is one of the key reasons why

FLOPPIES is successful in instantiation, as we shall see.

The user can help the computer by specifying recognition

patterns in the form of regular expressions, and lexical rep-

resentations, after which the computer can automatically

instantiate most of the products with their various char-

acteristics. For practical use, one could consider building

a (Web) application to make the annotation easier for the

end-user, for example by pre-collecting lexical represen-

tations from raw product data which the user can select

for addition to the OntoProduct Metadata database. For

this research however, the ontology editor Protégé [44] was

used to create the annotations.

3.3. Classification

As mentioned in the previously given overview, the first

core framework process of Classification is optional. Class

data is often already available in Web data sources, for ex-

ample through means of a category hierarchy. When a cat-

egory hierarchy is available, a category mapping algorithm,

such as SCHEMA[45], can be used to obtain mappings be-

tween the category hierarchy and the product classes in the

ontology. However, this subsection explains the process we

propose to use when class data is not available. It uses the

Property Matching process (explained in the next subsec-

tion), to measure the best fit between a raw product and

the ontology product classes.

Figure 2 shows that the input of the Classification pro-

cess consists of the raw product to classify, the sets of total

classes and properties in the ontology, and two threshold

parameters. The output of the algorithm is an association

(type-of) between the raw product and an ontology class,

such as ‘TV’ or ‘Camcorder’. Algorithm 1 explains how

the proper class is determined.

Classification computes the highest information gain

per key-value pair to create a fit score per product class

Algorithm 1 Classification of a Raw Product

Require: set of product classes C from the ontology

Require: set of key-value pairs K from the raw product

Require: Average Information Gain Threshold t

Require: function getHighestInformationGain(k, c), returns

the highest normalized information gain between a key-

value pair k ∈ K and a product class c ∈ C

1: ic ← 0 {Keep track of average information gain ic for each

c ∈ C}

2: for all k ∈ K do

3: {Add the highest information gain for this key-value pair

and each product class, divided by the total number of

key-value pairs for normalization, to the total informa-

tion gain of each product class.}

4: for all c ∈ C do

5: ic = ic + getHighestInformationGain(k, c)/|K|

6: end for

7: end for

8: {Determine the best matching product class and return it

if its score exceeds the threshold}

9: bestMatch← null

10: bestScore← 0

11: for all c ∈ C do

12: if ic ≥ t and ic > bestScore then

13: bestMatch← c

14: bestScore← ic

15: end if

16: end for

17: return bestMatch

(by taking into account all key-value pairs): the average in-

formation gain. The information gain measures the speci-

ficity of a property for a certain product class. The infor-

mation gain used here differs from the “classical” informa-

tion gain measure used for instance-based classifications

with decision trees.

Algorithm 2 explains how the highest information gain

between one key-value pair and a product class is com-

puted. As visible from the pseudo-code, the algorithm

searches for the best-fitting property to a key-value pair.
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Algorithm 2 Computing the Highest Information Gain

Require: key-value pair k from the raw product

Require: set of product classes C from the ontology

Require: product class c ∈ C from the ontology, which is to

be matched with k

Require: set of properties Pc from the ontology, for which c

is in the domain of each p ∈ Pc

Require: Similarity Threshold s

Require: function propMatchScore(k, p), which computes the

similarity score between k and p ∈ Pc

Require: function propDomainSize(p), which returns the

number of classes in C that are entailed by the domain

of property p ∈ Pc

1: maxInformationGain← 0

2: for all p ∈ Pc do

3: matchScore← propMatchScore(k, p)

4: if matchScore ≥ s then

5: informationGain← 1− propDomainSize(p)/|C|

6: if informationGain > maxInformationGain then

7: maxInformationGain← informationGain

8: end if

9: end if

10: end for

11: return maxInformationGain

For this property, it returns the information gain, which

is thus the highest information gain. It is the added value

of the fact that the raw product has a certain property, in

relation to finding the correct product class. A matching

property that is used for many product classes, such as

‘width’, adds little value, whereas a specific one, such as

‘TV tuner’, yields a higher information gain. For every

product class, the highest information gains per key-value

pair of the raw product are aggregated, and their average

is computed in order to obtain the average information

gain. Based on this measure, the best class is chosen, as

Algorithm 1 illustrates.

The information gain is dependent on the Property

Match Score, as Algorithm 2 depicted. This is actually

the score that is computed by the Property Matching pro-

cess, and explains the dependency of Classification on the

Property Matching process. Algorithm 3 explains how the

score is computed. The details will however be explained

in the subsection on Property Matching.

The Classification process is dependent on two param-

eters, as stated in the requirements of the algorithms and

Fig. 2. The first, the Average Information Gain Thresh-

old, is used to strike a desirable balance between the re-

call and precision of the algorithm. When no threshold is

used, products with a very low average information gain

will still be classified, but with a high probability of fail-

ure. When the Average Information Gain Threshold is set,

high-risk classifications will be skipped, that is, the clas-

sifier will return null. This moment could be used in an

application to ask for user input, to prevent the product

ontology from getting polluted. The higher the Average

Information Gain Threshold, the higher the precision and

the lower the recall of the Classification process. The sec-

ond parameter is the Similarity Threshold, which is actu-

ally a parameter from the Property Match process. It will

therefore be explained in the next subsection.

3.4. Property Matching

As Fig. 2 depicts, Property Matching is dependent on

the result of Classification (a product class linked to the

raw product), the raw product, the sets of ontology prop-

erties and classes, and the Similarity Threshold. The goal

of Property Matching is to map each raw product key to

an ontology property, as preparation for the Value Instan-

tiation. To achieve this goal, the Property Match Score

between each key-value pair from the raw product and

each ontology property is computed using Algorithm 3.

The Property Match Score consists of two components:

a lexical comparison between the raw product key and

the ontology property, and a regular expression match.

The regular expression match is optional, and depends on

whether the ontology property is annotated with a regu-

lar expression in the OntoProduct Metadata or not. As
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Algorithm 3 Property Match Score

Require: key-value pair k from the raw product

Require: set of product classes C from the ontology

Require: product class c ∈ C for which to compute the Prop-

erty Match Score using k

Require: set of properties Pc from the ontology, for which c

is in the domain of each p ∈ Pc

Require: set of lexical representations Lp for each p ∈ Pc

Require: set of regular expressions Rp for each p ∈ Pc

Require: function levenshtein(k, Lp), which computes the

maximum normalized Levenshtein similarity score between

k and Lp

Require: function regexMatch(k,Rp), which matches value

from k with regular expressions in Rp

1: scorelexical ← levenshtein(k, Lp)

2: if Rp 6= ∅ then

3: if regexMatch(k,Rp) = true then

4: scoreregex ← 1

5: else

6: scoreregex ← 0

7: end if

8: scoretotal ← (scorelexical + scoreregex)/2

9: else

10: scoretotal ← scorelexical

11: end if

12: return scoretotal

explained in Section 3.2.3, the regular expressions work as

a filter for finding the right ontology properties to match,

based on the raw product values. For instance, key-value

pair [‘Product Height (without stand)’,‘27-7/8"’]

from Fig. 3 would not be mapped to property ‘hasHeight’

if the regular expression of this property would not match

to values with fractions such as 27-7/8.

The second component of the Property Match Score,

the lexical comparison, uses the normalized Levenshtein

similarity score to compare the raw product key to each

lexical representation of the ontology property, which are

part of the OntoProduct Metadata file. The Levenshtein

distance [46] is a widely used edit distance measure for

measuring the amount of difference between sequences of

characters. Property Match Score uses the normalized

Levenshtein similarity, which inverts the distance to trans-

form it to a similarity, and then normalizes it by dividing

with the maximum sequence length to become an index

with range [0, 1], where 1 would indicate that the sequences

are equal. Of all lexical representations attached to the on-

tology property, the maximum similarity between a lexical

representation and the raw product key is used.

For each key-value pair from the raw product, the on-

tology property with the highest Property Match Score

is chosen under one condition: it must have a score that

exceeds the Similarity Threshold (see Algorithm 2). This

is a parameter of the framework that indicates how strict

the Property Matching process should work regarding its

mappings. When the threshold is very low, many raw

product keys will be mapped, but with the chance of hav-

ing a higher error rate. When the threshold is very high,

less raw product keys will be associated with a property,

but with higher accuracy. In the Evaluation section, we

optimize the Similarity Threshold so that the algorithm

works well under most conditions.

One special situation that can occur is when multiple

properties match to a key-value pair with the same Prop-

erty Match Score. In this case, the raw product key is

mapped to all properties that have the same score, that

is, if the Similarity Threshold has been exceeded. This

characteristic enables for example the display resolution

properties from Fig. 3 to be linked correctly with the key-

value pair for resolution. In this case, both properties

share the same lexical representation of ‘Maximum Res-

olution’, with which it has been annotated manually in

OntoProduct Metadata. For this reason, the lexical score

is equal. Moreover, the regular expressions of the display

resolution properties both match to the value of the key-

value pair, which results in both properties ending up with

the same Property Match Score. Grouping in the regular

expression enables the Value Instantiation process to ex-
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tract the proper numeric data (for horizontal and vertical)

from the complete raw product value.

3.5. Value Instantiation

Once the class of the raw product has been deter-

mined, and its key-value pairs have been mapped to ontol-

ogy properties, the framework is ready for Value Instan-

tiation. This step uses the output of the first two core

process, in order to respectively create a product individ-

ual within the proper class, and to associate each value

using the correct property. Value Instantiation consists of

a collection of parsers, content spotters, and instantiation

tools. This process is therefore explained using a flowchart,

given in Fig. 5. For Value Instantiation, a clear distinc-

tion is made between qualitative and quantitative object

properties, and data properties. These are therefore sep-

arately explained in the following subsections. The pro-

cedure from the flowchart is followed for every key-value

pair from the raw product.

3.5.1. Instantiation of Qualitative Object Properties

When the Property Matching process has linked a key-

value pair to a qualitative object property, all qualitative

values from the ontology that are in the range of the prop-

erty are gathered. The goal is to find one or multiple

of these qualitative values in the raw product value. Of-

ten, Web stores combine multiple qualitative values in one

key-value pair, as is the case with ‘Other Connectors’ in

Fig. 3, for example. First, the lexical representations of all

qualitative individuals are sorted on length, longest first.

Then, the algorithm tries to find a matching lexical repre-

sentation in the raw product value. If the search succeeds,

the corresponding qualitative individual is attached to the

product individual by means of the property found in the

Property Matching process, and the matching part is re-

moved from the raw product value string. This continues

until no matches can be found anymore. The reason to or-

der the procedure on lexical representation length, is that

shorter labels might be contained in longer ones, leading

to errors in parsing. This would for example be the case

while parsing the raw product value SDHC, MemoryStick,

CompactFlash; if the ontology contains qualitative value

individuals for both SDHC and SD, the SD could match

first without sorting, causing a faulty instantiation.

Extracting Qualitative Individuals from the Raw Product

Key. The ‘normal’ way in which qualitative values are

instantiated, is through the control path just described.

Property Matching links the key-value pair to a qualita-

tive object property, after which qualitative individuals are

extracted from the raw product value. Two special situa-

tions arise however, in which qualitative values are parsed

differently, as Fig 5 denotes: When a qualitative property

is found, but the Value Instantiation process is incapable

of extracting qualitative values, or, when the result of the

Property Matching process for the key-value pair is null.

In these cases, the Value Instantiation process does not

examine the raw product value for qualitative individu-

als, but the raw product key. Although this might seem

counterintuitive, it is actually an important aspect of the

Value Instantiation process. For example, a common sit-

uation in which it is needed to examine the raw product

key instead of the value, is for qualitative properties such

as ‘Features’. Many features, such as ‘Sleep Timer’, are

often not structured as [‘Feature’,‘Sleep Timer’] in

the key-value pairs, but more likely as [‘Sleep Timer’,-

‘Yes’]. In the last case, Property Matching will be un-

successful, as Sleep Timer is a qualitative individual (from

the features class), and not a property in the ontology.

In this situation, the raw product key will be examined

for matches with any qualitative individuals from the on-

tology, in a similar fashion as with ‘normal’ qualitative

value instantiations, in which the Property Matching re-

sult is used. When a qualitative individual is found in the

raw product key, the ontology is checked for properties

that both have a range that includes the found individual,

and a domain that entails the product class of the current
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Figure 5: Overview of the instantiation process as flowchart.

product individual is entailed. Such a property is needed

to be able to link the qualitative individual to the prod-

uct individual in case that the property was not previously

discovered with the Property Matching process.

Finding a qualitative individual in the raw product key

does not provide sufficient information on itself to be able

to assert ontology knowledge axioms. Whether the asser-

tion can be made, also depends on the raw product value.

Using what we call the Boolean Value Convertor, the raw

product value is checked on terms such as ‘false’, ‘no’,

‘none’, ‘0’, ‘-’, ‘optional’, ‘null’, ‘N/A’, ‘not available’, and

‘not applicable’, and aborts the instantiation when such a

term is encountered. If the raw product value passes this

test, the ontology is instantiated with property assertions,

each containing one found qualitative individual.

The extraction of qualitative individuals from the raw

product key enables the Value Instantiation process to

handle key-value pairs like [‘Sleep Timer’,‘Yes’]. As

mentioned before, and as Fig. 5 makes clear, this proce-

dure is also followed when ‘normal’ qualitative value in-

stantiation is unsuccessful, that is, when there is a result

from Property Matching, but no qualitative individuals
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can be found in the raw product value. This problem arises

for example with ‘AM/FM Tuner’,‘Yes’, which does have

a match with ontology property ‘hasRadioTuner’ based

on one of its lexical representations, but does not con-

tain qualitative individuals in the raw product value. In

this case, looking at the raw product key solves the prob-

lem and successfully instantiates hasRadioTuner to AM and

hasRadioTuner to FM.

3.5.2. Instantiation of Quantitative Object Properties

Parsing and instantiating quantitative values is very

different from working with qualitative values. All quan-

titative values are parsed using regular expressions. By

means of grouping, these enable to select the numeric data

from the raw product value, disregarding additional con-

tent such as the unit of measurement. Note that some

key-value pairs need multiple instantiations. Hence, mul-

tiple groups may exist in the regular expression, or the

complete expression can match multiple times in one raw

product value. The regular expressions come from the

Ontoproduct Metadata, which is manually defined. When

Property Matching has linked the key-value pair to a quan-

titative property, and no regular expression is attached to

the property through the OntoProduct Metadata, then a

default regular expression for parsing values is used. The

default regular expression is a generic value extractor and

is capable of extracting numerical values.

Extracting the Unit of Measurement. Usually, a quanti-

tative value contains a unit of measurement. This unit

of measurement is parsed in a similar fashion as pars-

ing qualitative raw product values, which is described in

Section 3.5.1. As discussed in Section 3.2, the quanti-

tative properties refer to a fixed set of possible units of

measurement. For every parsed numeric value from the

raw product value, an associated unit of measurement is

searched, and if possible, the new quantitative value in-

dividual is linked to this unit individual by means of the

‘hasUnitOfMeasurement’ property. Fig. 4 gives an indica-

tion of how a value individual is linked with the product

individual and unit of measurement. When no unit of

measurement is found, it is simply not instantiated.

3.5.3. Instantiation of Data Properties

The third and last type of instantiation is when the

Property Matching process returned a data property. Data

properties are less commonly used than object properties

in OntoProduct. Mostly, they are used for Boolean asser-

tions (i.e., ‘hasTouchscreen’), numeric data without unit of

measurement (i.e., ‘region code’), and strings (i.e., ‘prod-

uct name’). The values can be parsed in two ways: using a

regular expression that is attached to the property, or, us-

ing a specific parsing method based on the datatype range

of the data property. When a key-value pair linked to

a data property needs to be instantiated, and the prop-

erty, say ‘hasTouchscreen’, appears to have a data range

of xsd:boolean, a boolean parser is used. This parser

aims to find terms in the raw product value, using ex-

act lexical matching, that could indicate whether the data

value should be true or false. Similar parsers are used for

integers, floats, and strings (or literals).

3.5.4. Finalizing the Value Instantiation

Using all extraction rules described above, Value In-

stantiation is capable of converting a raw product key-

value pair into ontology assertions. For each key-value

pair of the raw product, the process, as made visible in

Fig. 5, is repeated. Though there are various points at

which parsers could fail, preventing actual instantiation,

it is easy to keep track of all failures and handle these

separately. An application could for example hand the

problematic key-value pairs over to the user, which could

then instantiate them manually.

4. Evaluation

This section presents an overview and discussion of the

performance of the FLOPPIES framework on our data, by
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means of a component-wise analysis of the various steps

in the framework. First, we elaborate on how the exper-

iment has been conducted, and which performance mea-

sures have been used throughout the evaluation. After-

wards we present the results, and discuss the performance

of the framework by comparing it with the performance of

a baseline approach.

4.1. Evaluation Design

This section discusses how the evaluation experiment

has been set up. It provides a detailed overview of the used

data and the methods employed to train the FLOPPIES

framework.

The raw product data was obtained from two different

Web sources, in order to increase the heterogeneity in the

data set. Both sources are Web stores: Best Buy [47] and

Newegg.com [48], which are large and well-known retailers

in consumer electronics. As the research is focused on pop-

ulating an ontology with product data, the Web crawler

was intentionally kept simple. It crawls through eight pre-

defined categories and obtains product data from them,

using fixed extraction rules that are specific to each Web

store. Seven of these categories are represented by a prod-

uct class in the ontology, which means the products can be

instantiated, whereas one category is not. By including a

category that does not exist as a product class in the ontol-

ogy, we can check whether the framework correctly refuses

to instantiate the products from this category. For each

product, the title and a tabular list, containing property

information about the product as key-value pairs, were ex-

tracted from the Web store and stored along with product

data from other products belonging to the same category.

The end result consists of sets of products, each set de-

scribing a category from a specific Web store.

As mentioned earlier in Section 3.2.3, a part of the

obtained product data is used to augment the ontology

by enriching it with metadata. The metadata consists of

lexical representations and regular expressions, which are

manually annotated to ontology entities. The raw product

keys are used to add lexical representations to properties,

whereas the raw product values are used to construct reg-

ular expressions, which are also annotated to properties.

The resulting metadata can be used by the FLOPPIES

framework to match tabular data, originating from the

Web, with properties in the ontology, and for instantiation

of the values. For a proper evaluation of the FLOPPIES

framework it is important to assess its performance on

data that was not used to enhance the ontology. There-

fore, each data set obtained by the crawler is split into

a training and a test set, using a 60% – 40% split which

randomly distributes the products in the file across both

sets. This ensures that we have data available, for each

category and from each Web store, that can be used for

either training or testing. After splitting the raw product

data, we obtain a training set consisting of 1046 products

in total, whereas the test set contains 672 products.

Each step in the framework depicted in Fig. 2 is eval-

uated separately. In order to compute the performance

measures we have to be able to compare the output of

each step in the framework with a reference, known as the

golden standard. The golden standard for the Classifica-

tion process can be generated automatically in our case,

as the products from each product class are stored in sep-

arate training or test data sets, and the name of each set

corresponds to the correct product class in the ontology.

Unfortunately, creating the golden standard for the

Property Matching process is far more complicated and

therefore it cannot be generated automatically. Due to

the sheer amount of different properties, either originating

from the tabular data or the ontology, it is not feasible to

provide a complete golden standard manually. Therefore,

for evaluation of the Property Matching process, the soft-

ware prompts the user for input whenever it comes across

a mapping from the Property Matching process that it has

not encountered before. The user can then select whether

the mapping is correct or not and the user input is stored
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in a knowledge base, which can be consulted the next time

the evaluation is performed.

For evaluating the Value Instantiation process we man-

ually instantiated products in the ontology beforehand,

thus creating a golden standard. As manually instanti-

ating products is a very time-consuming process, we de-

cided to instantiate a subset of the data, namely TVs and

MP3 players, consisting of 48 complete products from both

Web stores. Because the golden standard is only available

for the manually instantiated products and not for all the

products, we only evaluate the performance of this step for

these products. We have chosen for TVs and MP3 players

because TVs are generally described with much detail in

both Web stores, whereas the tabular data obtained from

MP3 players is often pretty scarce and lacking in detail

on the Web store page. In order to analyze how the two

considered Web shops compare in terms of the product de-

scriptions they use, we computed the overlap in product

attributes and values. For the TVs category, there are on

average 7.2% matching keys. We computed this average

over all the pairs of product descriptions that describe the

same product. For one product pair we compute the match

value by dividing the number of matching keys by the max-

imum number of matches (i.e., min(|Ka|, |Kb|), where Ka

and Kb represent the product attributes of description a

and b, respectively). For MP3-players, the percentage of

matching keys is much lower, i.e., 0.6%. Furthermore, we

also computed, for the keys that matched, the overlap in

the corresponding values. We found that for TVs 57.4% of

these values match, while for MP3-players this is 12.8%.

For component evaluation of Property Matching, per-

fect class data was used as input, enabling a more accurate

analysis of this component. This is done as the Property

Matching process uses the product class as a filter, i.e., it

only tries to match tabular data with properties from the

ontology that are valid for the specific product class. By

ensuring that the supplied input for the Property Match-

ing process is completely accurate, we can evaluate the

performance of this particular component in a more ob-

jective manner. Evaluation of the Value Instantiation is

dependent on both Classification and Property Matching.

As no golden standard for Property Matching is available,

the Value Instantiation is evaluated with performance de-

pendency of this step. Since the Classification process is

seen as optional, the Value Instantiation will be evaluated

both with perfect class input and with the result from the

Classification process.

The FLOPPIES framework uses two different param-

eters, the Average Information Gain Threshold and the

Similarity Threshold, for which the optimal values need

to be computed. However, due to the interoperability be-

tween the Classification and the Property Matching pro-

cesses, optimizing both parameters might seem like a con-

voluted process. Fortunately, because there is a golden

standard for the Classification process, perfect class input

for the Property Matching process can be used. This al-

lows for the computation of the optimal value for the Sim-

ilarity Threshold, as other variables are eliminated and

thus the differences in performance are now solely caused

by varying the Similarity Threshold value. Afterwards the

optimal value for the Average Information Gain Threshold

can be computed, given the optimal Similarity Threshold.

It is preferable to compare the results obtained by the

FLOPPIES framework with another approach. However,

as there is no freely available implementation of other rel-

evant ontology population frameworks, and not enough

information to precisely recreate a framework, we decided

to create baseline approaches as well.

The baseline Classification process computes the lexi-

cal similarity, using the longest common substring as mea-

sure, between the raw product title and each product class

label name in the ontology for the classification. The base-

line Property Matching process tries to find the highest

normalized Levenshtein similarity score between a key-

value pair from the raw product data and the lexical rep-

resentations of a property from the ontology. The used
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baselines are straightforward and based on purely lexical

approaches. We have chosen these as we want to investi-

gate if the addition of semantics in the ontology population

processes can provide benefits compared to lexical-based

approaches. This type of baselines have been used also

in the past for comparing lexical and semantic approaches

(e.g., TF-IDF versus CF-IDF [49]).

We have opted not to evaluate the performance of the

FLOPPIES framework against a different process for the

Value Instantiation process, because it is more like a col-

lection of different value extraction rules rather than a

single unified algorithm. Together they form the logic to

parse and instantiate a wide array of values, but removing

some rules for creating a simpler process would obviously

only yield lower results and therefore would not really con-

tribute to a useful evaluation of the framework.

We have implemented the software and the experi-

ments in Java. For the storage and retrieval of RDF data,

we have used the Jena library [50]. Furthermore, we have

used the Google Guava [51] library for caching and im-

proved type primitives support.

4.2. Performance Measures

This section describes the performance measures that

were used to evaluate the FLOPPIES framework and ex-

plains the used definitions for each step in the framework.

For the evaluation of the framework we use a binary classi-

fication scheme, which is commonly used for evaluating the

performance of classification and mapping algorithms. We

employ the standard measures that can be computed with

such a scheme, e.g., precision, recall, and the F1-measure

we have [52]. However, in this case we need to use a slightly

adapted form, as it is not a pure binary problem.

For the Classification process, a true positive (TP) in-

dicates that the framework has mapped a raw product to

the correct product class. Unlike regular binary classifi-

cation, where a false positive (FP) would mean that the

framework mapped something which it should not have

mapped at all, here it could also mean that it should have

mapped the raw product, but it mapped to a wrong prod-

uct class instead. A true negative is a raw product that

has been correctly mapped to null, whereas a false nega-

tive (FN) indicates a raw product that should have been

mapped to a product class, but the framework mapped it

to null.

The evaluation of the Property Matching process ba-

sically follows the same definitions as the Classification

process, but it maps key-value pairs to properties, rather

than mapping raw products to a product class. Note that

a single key-value pair can be mapped to multiple prop-

erties, which could result in a slightly different amount of

mappings per algorithm run, depending on the used pa-

rameter values.

Rather than individually evaluating all RDF triples

created by the Value Instantiation process, we adopt a

graph-based evaluation approach. The reason for this is

trivial: consider a key-value pair like [‘Product Width’,

‘1.09m’] from the raw product data. This key-value pair

should be instantiated with multiple RDF triples, as de-

picted by Fig. 4, because we need to instantiate the value,

the unit of measurement and the property assertion sep-

arately. Leaving out one of the triples would mean that

the other triples loose most of their meaning, as a value

is rather meaningless without a unit of measurement and

vice versa. Therefore, we combine the triples of a quanti-

tative value and evaluate them as a whole. In other words,

for each triple where the instantiated product individual

is the subject, we evaluate its subgraph as a whole.

As we manually instantiated 48 products for the golden

standard, the instantiated products by the FLOPPIES

framework can be compared to the products in the golden

standard. Within this context a true positive means that

a property was correctly instantiated, as it also occurs in

the golden standard. A false positive indicates that the

property should not have been instantiated at all, or that

the associated value, unit of measurement, or individual, is
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wrong or missing. Whenever the golden standard contains

a property that the instantiated product by the framework

does not have, it is counted as a false negative. Note that

there are no true negatives in the evaluation of the Value

instantiation process, as the instantiated ontology is only

being compared to the golden standard ontology, and non-

existing assertions cannot be counted. One could propose

to count the number of key-value pairs from the raw prod-

uct data, for which no instantiation has been made while

manually creating the golden standard ontology. How-

ever, since there is no direct relation between the number

of key-value pairs and the number of instantiated facts, it

is impossible to count the number of true negatives using

this way. This is because one key-value pair can contain

any number of facts that require to be separately stored

in the ontology.

Using the aforementioned definitions, the following per-

formance measures can be computed:

recall =
TP

P
=

TP

TP + FN

accuracy =
TP + TN

P + N

specificity =
TN

N
=

TN

FP + TN

precision =
TP

TP + FP

F1-measure = 2 · precision · recall

precision + recall

F0.5-measure = 1.25 · precision · recall

0.5 · precision + recall

The F1-measure is the harmonic mean of precision and

recall, which means that both precision and recall are

equally important. However, for the evaluation of the op-

tional Classification process, the F0.5 score is also com-

puted, for which the precision is twice as important as

the recall. This score might be more preferable to use as

performance measure, as instantiating raw products with

the wrong product class would pollute the ontology and

does not contribute to solving the search problems on the

Web. It is envisioned that the Classification process uses

a conservative approach and prompts the user for input

when it cannot determine the correct product class with

enough certainty. The F0.5 score is more useful for this

usage scenario, but we also include the F1-measure for the

Classification process in the results for completeness.

4.3. Results

This section presents the obtained results for each step

of FLOPPIES, along with an in-depth discussion of these

results.

4.3.1. Training set results

First of all, the two parameters that are used by the

FLOPPIES framework need to be optimized. Therefore,

we run the algorithm with different parameter values on

the training set. Due to the interoperability between the

Classification process and the Property Matching process,

we first optimize the Similarity Threshold parameter in

the Property Matching process, using the golden standard

from the classification step as input. In order to find the

optimal value, we raised the threshold from 0 to 1 in steps

of 0.05. Table 1 shows the results of the Property Match-

ing process on the training set, both for the FLOPPIES

framework and the baseline algorithm.

At first, the framework obtains a better F1-measure by

increasing the Similarity Threshold, until the score stabi-

lizes, between 92% and 95%, from a Similarity Threshold

of 0.70 onwards. As expected, the precision increases and

the recall decreases when the Similarity Threshold is in-

creased, due to the stricter lexical matching. At the opti-

mal Similarity Threshold level (0.80), the number of false

positives has declined to 395 out a total of 28038 map-

pings, whereas the number of false positives at a Similar-

ity Threshold of 0.60 was quite a bit higher: 1462 out of

28146 mappings. Note that the small discrepancy between

the total number of mappings is caused by the fact that a

single key-value pair can be mapped to multiple properties

if their similarity scores are both the same. Although the

number of false positives continues to drop when increasing

the Similarity Threshold beyond 0.80, the sharp increase
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Table 1: Training set results for Property Matching using golden standard classification

Process Similarity Threshold Precision Recall Accuracy Specificity F1-measure

Baseline - 49.07% 100.00% 49.07% 0.00% 65.84%

FLOPPIES 0.60 71.21% 97.91% 78.01% 55.78% 82.45%

FLOPPIES 0.65 82.54% 95.67% 86.71% 76.14% 88.62%

FLOPPIES 0.70 90.90% 94.93% 92.03% 88.54% 92.87%

FLOPPIES 0.75 92.90% 94.40% 93.14% 91.69% 93.64%

FLOPPIES 0.80 97.28% 93.47% 95.07% 96.94% 95.34%

FLOPPIES 0.85 99.05% 90.78% 94.60% 99.00% 94.73%

FLOPPIES 0.90 99.87% 90.66% 94.96% 99.86% 95.04%

FLOPPIES 0.95 99.89% 88.10% 93.62% 99.89% 93.62%

FLOPPIES 1.00 99.90% 85.86% 92.43% 99.90% 92.35%

in false negatives prevents it from obtaining a higher F1-

measure. A total of 987 false negatives has been measured

at the optimal value of 0.80, which gradually increases to

2109 when a Similarity Threshold of 1.00 is used.

Also worthy to note is the enhanced precision of the

FLOPPIES framework compared to that of the baseline al-

gorithm, scoring 97.28% at the optimal Similarity Thresh-

old against 49.07% respectively. This is due to the fact

that the baseline algorithm uses an optimistic approach,

which enables it to actually score better on true positives

than the FLOPPIES framework: 16971 against 14136.

However, it comes at the expense of a large number of

false positives, which considerably lowers the precision and

therefore also the F1-measure.

Using the optimal Similarity Threshold of 0.80, ob-

tained from the first step, the Average Information Gain

Threshold of the Classification process can now be opti-

mized. By keeping the Similarity Threshold constant and

varying the Average Information Gain Threshold, raising

it from 0 to 1 in steps of 0.05, the results in Table 2 are

obtained. As is evident from the results, the Average In-

formation Gain Threshold functions as a parameter for

finding the optimal trade-off between precision and recall.

Generally speaking, the precision will increase when the

threshold is increased as well, at the expense of a decline

in recall. In other words, increasing the threshold means

that the algorithm cannot classify as many products as

before, but the ones it did classify are more likely to be

correct. This is due to the fact that a higher threshold

means that the properties of a product need to convey

more specific information about the product, in order for

the algorithm to map them to a product class from the

ontology. Therefore, a product with a high Average Infor-

mation Gain can be more reliably classified than a product

with a lower Average Information Gain.

In contrast to the Similarity Threshold in the Property

Matching process, the optimal value for the Average Infor-

mation Gain Threshold is relatively low. The Similarity

Threshold is a threshold operating on a lexical matching

score, whereas the Average Information Gain Threshold

operates on an average, namely the Average Information

Gain for all key-value pairs from a raw product. This ex-

plains the difference in the optimal value, especially con-

sidering that nearly every product also has very generic

key-value pairs, like the weight of a product, that help

bring down the Average Information Gain. Also inter-

esting to note is the difference between the F1 and F0.5

scores. Because the F0.5 score emphasizes the precision,

the highest F0.5 score of 70.18% is obtained with an Av-

erage Information Gain Threshold of 0.20, whereas the

20



Table 2: Training set results for Classification using optimal Similarity Threshold of 0.80

Process Average IG Threshold Precision Recall Accuracy Specificity F1-measure F0.5 score

Baseline - 29.83% 100.00% 29.83% 0.00% 45.95% 34.70%

FLOPPIES 0.00 49.33% 100.00% 49.33% 0.00% 66.07% 54.89%

FLOPPIES 0.05 49.33% 99.81% 49.33% 0.00% 66.07% 54.93%

FLOPPIES 0.10 54.93% 83.53% 50.67% 5.24% 66.27% 58.97%

FLOPPIES 0.15 68.91% 69.20% 57.07% 29.81% 69.06% 68.97%

FLOPPIES 0.20 72.17% 63.19% 56.31% 39.13% 67.38% 70.18%

FLOPPIES 0.25 70.00% 48.37% 46.94% 43.01% 57.21% 64.25%

FLOPPIES 0.30 58.05% 28.68% 32.50% 43.01% 38.39% 48.18%

highest F1-measure is achieved using an Average Informa-

tion Gain Threshold of 0.15. As argued in Section 4.1,

achieving a high precision is paramount for the Classifi-

cation process, as it is better to ask the user for input

rather than instantiating products with the wrong prod-

uct class. Therefore, we consider an Average Information

Gain Threshold of 0.20 as optimal for the training set, be-

cause it achieves the most precision and the highest F0.5

score.

In addition, the results show that it can be quite dif-

ficult to classify products based on their properties alone.

While this may seem a trivial task to humans, the dif-

ferences in product properties between multiple product

classes is often smaller than you would imagine. For in-

stance, consider a camcorder and a digital photo camera:

both are small, have a lens, connect to a computer through

USB, use memory cards to store information, and so on.

They share many characteristics, but there is essentially

only one defining characteristic that separates them: a

camcorder is meant for shooting video, whereas a dig-

ital photo camera is meant for shooting pictures. And

even in this example the line between the two is blurry, as

many digital photo cameras nowadays are perfectly capa-

ble of shooting videos as well. This high degree of function

integration between products can be found in numerous

products within the domain of consumer electronics, which

makes the classification of products, based purely on prod-

uct properties, a non-trivial task. Fortunately, practically

every Web store contains a product category hierarchy,

which can be used for the classification of products. That

is why the Classification process in the FLOPPIES frame-

work is optional and is only meant as a backup whenever

insufficient information is available.

To complete the evaluation on the training data, the

Value Instantiation process is executed using the output

from the previous steps in the framework. Table 3 shows

the results of this process when using either the golden

standard classification or the output from the Classifica-

tion process. As the training set contains 27 out of the

48 products that were manually instantiated in the golden

standard ontology, the performance on those 27 products

is evaluated. At first glance the results seem counterin-

tuitive, as the Classification process of the FLOPPIES

framework actually has a slightly better F1-measure than

the Golden standard, scoring 83.79% and 83.64% respec-

tively. However, this is caused by the method used to eval-

uate this part of the framework, which is explained in more

detail in Section 4.2. Because the evaluation is performed

on the instantiated products in the ontology, the products

that were not instantiated are not evaluated. As the Clas-

sification process could not determine the product class of

one MP3 player, due to the lack of specific product infor-
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Table 3: Training set results for Value instantiation using optimal Average Information Gain Threshold (0.20) and Similarity Threshold (0.80)

Classification Precision Recall Accuracy F1-measure Product instantiation rate

Golden standard 82.11% 85.23% 71.89% 83.64% 100.00%

FLOPPIES Classification 81.67% 86.05% 72.11% 83.79% 96.30%

mation, the Value Instantiation process only instantiated

26 of the 27 products, resulting in a product instantiation

rate of 96.30%. Using the golden standard means that the

product does get instantiated, but the Property Matching

and Value Instantiation process have relatively more diffi-

culty with this particular MP3 player, which results in the

slightly lower F1-measure.

From these results we can conclude that the FLOPPIES

framework as a whole performs rather well when instan-

tiating TVs and MP3 players. However, it still fails to

instantiate some properties or it is unable to instantiate

them correctly.

Error analysis on the instantiated products reveals that

occasionally the framework is not capable of extracting

and instantiating all individuals from a list of qualitative

values. For example, consider the key-value pair [‘System

Requirements’,‘Windows: 2000 or later; Mac: OS X-

10.4 or later’], which can be instantiated with the prop-

erty ceo:hasCompatibleOperatingSystem. Any person,

who manually instantiates this key-value pair, would also

instantiate property assertions for the versions of Win-

dows and Mac OS X that were released after Windows

2000 and Mac OS X 10.4 respectively. However, for our

Value Instantiation process it is difficult to determine for

which individuals it should instantiate property assertions,

as it is trying to match the value with the lexical repre-

sentations of individuals from the ontology. Therefore, it

is able to instantiate property assertions for the individu-

als ‘ceo:Windows2000’ and ‘ceo:MacOSXTiger’, as their

lexical representations are also present in the value of the

key-value pair, but later versions are not recognized. For-

tunately, because the Value Instantiation process is using

a set of value extraction rules, we could easily add a new

rule to replace ‘or later’ in the value with the lexical rep-

resentations of the referred individuals. By adding a new

property assertion between the individuals in the ontology,

which states that a certain individual is the successor of

the other individual, the Value Instantiation process could

learn to instantiate property assertions for all compatible

operating systems. We consider creating new value extrac-

tion rules and augmenting the ontology with more details

about the relationship between individuals as useful future

work for improving the framework.

4.3.2. Test set results

After optimizing both parameters of the FLOPPIES

framework on the training set, the performance of the

framework on the test data can be evaluated.

Table 4 shows that the performance of the FLOPPIES

framework on the classification of products from the test

data is equal to the performance on the training data.

The F1-measure dropped slightly, from 67.38% to 66.24%,

while the F0.5 score dropped from 70.18% to 69.18%. Rela-

tively more products are marked as a false positive though:

124 out of 672 (18.45%) against 182 out of 1046 products

(17.40%).

Although the Classification process is optional within

the framework, more work on lowering the amount of false

positives would be beneficial, as these errors could cause

more problems later on in the Property Matching and

Value Instantiation processes. One way to achieve this

could be to also take the value of the key-value pairs into

consideration for the information gain score. For example,

many consumer electronics have an LCD display, which
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Table 4: Test set results for Classification using optimal Average Information Gain Threshold (0.20) and Similarity Threshold (0.80)

Process Precision Recall Accuracy Specificity F1-measure F0.5 score

Baseline 29.64% 100.00% 29.46% 0.00% 45.52% 34.30%

FLOPPIES 71.30% 61.84% 53.27% 28.74% 66.24% 69.18%

means that the property currently does not yield much

information gain for our framework. However, the value

could help differentiate between product classes and in-

crease the information gain for this property. For instance,

both a TV and an MP3 player have an LCD display, but

if the display size of a raw product is 40”, it is most likely

that the product is a TV. By comparing this numerical

value with TVs and MP3 players that are already instan-

tiated in the ontology, a higher information gain for this

property can be achieved, thus making it easier to deter-

mine the correct product class. Therefore, we consider

differentiating between values for the purpose of product

classification as a useful future addition to the framework.

The Property Matching process also scores roughly the

same on the test and training data, as can be seen in Ta-

ble 5. The precision and recall have decreased a little

bit, which is caused by the fact that the key-value pairs

from the test data were not used to ‘train’ the ontology by

adding lexical representations and regular expressions. Al-

though the test data contains some new raw product keys,

the Property Matching was still able to match many key-

value pairs with properties, because the Similarity Thresh-

old allows it to also map raw product keys with slight

lexical variations. In practice, this means that a semi-

automatic approach would only require training the algo-

rithm with a few products from each product class in order

to achieve satisfactory performance on Property Matching

for all the products in a Web store.

By analyzing the results, we conclude that the regu-

lar expressions in conjunction with the lexical represen-

tations are often capable of correctly mapping key-value

pairs to properties in the ontology. For example, the key

‘Product Dimensions’ is correctly mapped to ceo:has-

Width, ceo:hasHeight, and ceo:hasDepth, which demon-

strates the usefulness of regular expressions for the Prop-

erty Matching process.

While the Property Matching process performs quite

satisfactory on most key-value pairs, it sometimes gets con-

fused between properties representing a quantitative mea-

sure without a unit of measurement. Consider raw prod-

uct keys ‘DVI Inputs’ and ‘HDMI Inputs’, of which only

‘HDMI Inputs’ can be mapped with ontoproduct:has-

NumberOfHDMIInputs in the ontology. Unfortunately, the

Property Match process also creates a mapping from ‘DVI

Inputs’ to ontoproduct:hasNumberOfHDMIInputs, as their

lexical similarity is fairly high and they both describe a

count of inputs. This could be avoided by raising the

Similarity Threshold, which in turn would mean that the

framework is less capable of automatically mapping slightly

varying raw product keys. However, as shown in Sec-

tion 4.3.1, stricter lexical matching degrades the overall

performance of the framework.

When running the FLOPPIES framework in its en-

tirety, the results on the test data in Table 6 are obtained.

Unlike the previous steps in the framework, the perfor-

mance of the Value Instantiation process on the test data

is considerably lower than the performance on the training

data: the F1-measure dropped from around 83% to ap-

proximately 77%. This is because the test data contains a

few keys and values from key-value pairs that have a con-

siderably different lexical representation than those used

for annotating the ontology. While the Similarity Thresh-

old allows for some lexical variation to occur, a key-value

pair with a considerably different lexical representation
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Table 5: Test set results for Property Matching using golden standard classification and optimal Similarity Threshold of 0.80

Process Precision Recall Accuracy Specificity F1-measure

Baseline 48.30% 100.00% 48.30% 0.00% 65.14%

FLOPPIES 96.95% 93.27% 94.80% 96.58% 95.07%

Table 6: Test set results for Value instantiation using optimal Average Information Gain Threshold (0.20) and Similarity Threshold (0.80)

Classification Precision Recall Accuracy F1-measure Product instantiation rate

Golden standard 77.12% 76.09% 62.07% 76.60% 100.00%

FLOPPIES Classification 76.99% 77.41% 62.87% 77.20% 90.48%

still would not exceed the threshold, and thus it cannot

be mapped to a property in the ontology. This means

does not find as many mappings for the test set as for the

training set. The effect can also be observed in the product

instantiation rate when using the Classification process of

the FLOPPIES framework to perform the classification,

which drops from 96.30% to 90.48%. Two MP3 players

from the total set of 21 products in the test set could not be

classified by the Classification process. Regardless of the

decline in performance though, the FLOPPIES framework

still performs quite well, based on the obtained results, on

instantiating TVs and MP3 players in the ontology.

5. Conclusions

This paper proposes FLOPPIES, a framework capa-

ble of semi-automatic ontology population of product in-

formation from Web stores. It employs a predefined on-

tology, compatible with the GoodRelations ontology for

e-commerce, in order to formalize the raw product infor-

mation contained in tabular format on product pages in

Web stores. With product information formalized in an

ontology, better product comparison or recommendation

applications could be built, using full parametric search.

Furthermore, it could facilitate the aggregation and ex-

change of product information between multiple Web sites

without relying on Web stores to provide their data in

a specific format, as is the case with current comparison

platforms.

The framework consists of an optional Classification

process, which can identify the product class of a raw prod-

uct by analyzing its key-value pairs and computing an Av-

erage Information Gain between each product class in the

ontology and the key-value pairs from the raw product.

It uses the second step in the framework, the Property

Matching process, to compute this score. The Property

Matching process computes a Similarity Score between a

key-value pair and properties in the ontology, using both

lexical matching and pattern matching with regular ex-

pressions. After the key-value pairs have been mapped to

properties in the ontology, the Value Instantiation process

instantiates the product information. A set of different

value extraction rules is employed in order to instantiate

the correct values and units of measurement.

The performance of the framework is compared to the

performance of a baseline approach, which merely uses lex-

ical matching for the Classification and Property Match-

ing processes. Product information from 1718 products,

spread across eight different consumer electronic product

categories from Best Buy and Newegg.com, was gathered

and split into a training and test set. The training set

was used to annotate the ontology with lexical represen-

tations and regular expressions, which are used to im-
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prove the performance of the matching and parsing pro-

cesses. Afterwards, it is used in the component-wise anal-

ysis to compute the optimal parameter values for the Sim-

ilarity Threshold and Average Information Gain Thresh-

old, which are used in the framework as a cut-off for the

Property Matching and Classification process respectively.

Last, using the optimal parameter values, the performance

of the all the steps in the framework on the test data is

evaluated.

It is shown that the FLOPPIES framework performs

considerably better than the baseline approach for the

Classification process, achieving an F0.5 score of 69.18%

against 34.30%, due to the better precision. The Prop-

erty Matching process also scores better than the baseline

approach with an F1-measure of 95.07% against 65.14%,

due to the use of both lexical matching and patter match-

ing. The evaluation of the Value Instantiation process was

performed using a graph-based approach, comparing it to

a manually instantiated ontology with 48 products. Al-

though running the framework with the optional Classifi-

cation process resulted in a classification of only 45 out of

48 products, it did manage to achieve a similar F1-measure

as when using perfect classification input, scoring roughly

83% and 77% for the training and test set, respectively.

For future research, there are several ideas that can

further improve (semi-)automated product ontology pop-

ulation. First, FLOPPIES currently only uses the tabular

data from product pages. However, often also textual de-

scriptions are available, next to the semi-structured key-

value pairs. Through text mining, one could try to use the

descriptions to extract additional knowledge. Another un-

explored possibility for the framework, is to use already in-

stantiated ontology data for the instantiation of new data.

Through data mining techniques such as clustering, the

algorithm could for example learn when to match certain

properties to key-value pairs.

The Classification process uses most of the time the

raw product keys, via the Property Match Score. The

raw product values however can sometimes also provide a

good indication of the proper class. Take for example key-

value pair [‘Capacity’,‘10-cup’]; the key is not very

informative, however the value is a better indication for the

fact that this key-value pair is one from a coffee machine

page.

The Value Instantiation process could be enhanced by

adding new value extraction rules and by creating new

property assertions between individuals in the ontology

that further specify the relationship between them. By

formally defining in the ontology that ‘Windows XP’ is

the successor to ‘Windows 2000’, the framework could also

instantiate a property assertion for ‘Windows XP’ when it

encounters a raw product value such as ‘Windows 2000 or

later’.

In the current framework, the regular expressions pro-

vide a reliable way for parsing values and filtering prop-

erties. However, regular expressions are labor-intensive to

build, and the user needs quite some technical background

in order to be able to make these. In the past years, there

has been some successful research on automated genera-

tion of patterns like these. One could consider using such

a technique for this framework, although it might affect

the accuracy of the overall framework.
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