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Abstract

This paper proposes a framework to automatically construct taxonomies from a corpus of text documents.
This framework first extracts terms from documents using a part-of-speech parser. These terms are then
filtered using domain pertinence, domain consensus, lexical cohesion, and structural relevance. The re-
maining terms represent concepts in the taxonomy. These concepts are arranged in a hierarchy with either
the extended subsumption method that accounts for concept ancestors in determining the parent of a con-
cept or a hierarchical clustering algorithm that uses various text-based window and document scopes for
concept co-occurrences. Our evaluation in the field of management and economics indicates that a trade-off

between taxonomy quality and depth must be made when choosing one of these methods. The subsumption
method is preferable for shallow taxonomies, whereas the hierarchical clustering algorithm is recommended
for deep taxonomies.
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1. Introduction

In the past, data were stored physically, not digitally, and were often structured manually so that the
desired information could be found easily. Today, data are often stored digitally and are usually unstruc-
tured, as in documents. Manually structuring documents is time consuming, which makes it interesting to
investigate possibilities to automatically organize documents. This could be performed by automatically
generating a concept taxonomy from a document corpus [1].

A taxonomy can be defined as a specific form of an ontology, which is a formal, explicit specification of
a shared conceptualization [2], containing type-of relations. Ontologies are more complex than taxonomies.
Not only do they consider type-of relations, but they also consider other relations, including part-of or
domain-specific relations. A taxonomy provides users with insights into the type-of relations between con-
cepts in a certain domain. These taxonomies are usually manually created, although researchers have pro-
posed several techniques that support automatic taxonomy construction [3, 4]. These techniques could serve
as a first step for ontology learning. Automatically constructed taxonomies generally have more errors than
manually created taxonomies, but constructing a taxonomy manually might be time consuming, especially
when a large taxonomy is desired. Researchers thus aim to automatically create taxonomies that approach
the quality of manually created taxonomies. Moreover, although automatic construction still involves a large
amount of engineering, this construction must be performed only once, whereas for manual construction, a
taxonomy must be built manually for each new domain. Examples of applications which could benefit from
an automatic development of taxonomies are monitoring the most important concepts and their evaluation
in a certain field, allowing users to refine their queries by selecting more specific or more general concepts
(when the previous queries returned too many or too few answers, respectively), contributing as a first step
to the development of domain ontologies for improved application inter-operability, etc.
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Several approaches that target building domain taxonomies for text corpora are available [1, 3, 5, 6].
These approaches extract terms from a document set. Extracting terms, however, is rather complex because
texts contain many words that are not all relevant. Researchers have defined methods that handle these
difficulties [7, 8, 9]. The extracted terms should not be too general, e.g., in the case of prepositions and
articles, and they must be relevant to the target domain. If the terms are irrelevant, the taxonomy would be
a collection of general words without any specific domain meaning. It is thus necessary to find a method
that considers these factors. The extracted terms are considered concepts in a domain. Concepts here have
shallow semantics in which relations such as part-of and synonymy are not defined.

There is also a need for a technique that generates hierarchical type-of relations between concepts. To
create these relations, a method is required that can analyze specific properties of concepts in a data set.
Based on these properties, this method should be able to form taxonomic relations between concepts. The
properties we consider are mainly co-occurrences of concepts in documents, which makes this method
data-driven.

In our current work, we present a framework for automatically constructing a domain taxonomy from
text corpora. We call this framework Automatic Domain Taxonomy Construction from Text (ADTCT).
This framework extracts concepts from text and arranges these concepts in a type-of hierarchy. We use
a filtering method to extract terms from documents. Because many types of semantics can be captured
with statistics [10], hierarchical relations are created using the statistics-based methods of subsumption and
hierarchical clustering algorithms. For processing times, our statistics-based methods offer better scaling
performance than their alternatives, i.e., the relatively heavy-weight semantics-based approaches, which are
generally time consuming when disambiguating and reasoning.

We have implemented our approach in economics and management, a domain that has been rarely tar-
geted for automatic taxonomy construction. We extracted thousands of abstracts and titles from RePub1 and
RePEc.2 RePub is the repository of publications from the Erasmus University Rotterdam, and RePEc is a
collection of economic articles maintained by a group of hundreds of volunteers in 70 countries. The docu-
ment set has been divided into domain and contrastive sets. The domain set contains documents belonging
to economics and management, including all RePEc documents and those RePub documents classified as
belonging to economics and management. The contrastive set contains all RePub documents that do not
belong to economics and management (e.g., medicine, sociology, or psychology).

Compared with existing approaches that focus on different domains, use semantics (e.g., by consulting
online resources [11]), or concentrate on general ontology construction instead of taxonomy construction
specifically, our contributions are fivefold. First, we compare the hierarchical clustering algorithm and
the concept subsumption method in taxonomy extraction from text corpora. Second, we optimize the pa-
rameters for these methods. Third, we elaborate an implementation of this approach in economics and
management. Although taxonomy construction has been applied to many domains, including finance and
tourism [1], economics and management is relatively unexplored and thus is examined in our efforts. Fourth,
we define guidelines for choosing the proper method for taxonomy extraction based on a trade-off between
taxonomy quality and depth. Last, we refine the existing state-of-the-art subsumption algorithm by consid-
ering the position of the ancestors of the current node when constructing the taxonomy, and show that this
delivers a superior performance with respect to the taxonomic F-measure.

The remainder of the paper is structured as follows. First, Section 2 reviews related work in the area
of automatic taxonomy construction from text. Sections 3 and 4 introduce the ADTCT framework and
its implementation. Then, Section 5 evaluates the taxonomy built using our ADTCT implementation. Fi-

1http://repub.eur.nl/
2http://repec.org/
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nally, we summarize our research and provide future work directions in automatic taxonomy construction
in Section 6.

2. Related Work

In this section, we discuss the current body of literature in automatic taxonomy construction. Three
taxonomy construction aspects are addressed. First, methods that extract - and possibly filter - terms from
a text corpus are described. Next, techniques that can be used to construct taxonomic relations between
concepts are discussed, followed by a review of methods used for taxonomy evaluation.

2.1. Term Extraction and Filtering Techniques

The related literature discusses several term extraction methods. These techniques can be classified into
three general categories. In this paper, we distinguish among linguistic, statistical, and hybrid methods.

Linguistic methods investigate the linguistic function of a word in a sentence, and terms are extracted
based on this function. However, linguistic methods cannot define the importance of a word well. Linguistic
methods use natural language processing (NLP) [7]. A common technique is part-of-speech tagging, which
assigns a tag to a word in a sentence to indicate a part of speech (e.g., nouns, verbs, adjectives) [7]. Nouns
or adjectives are often selected as terms when part-of-speech tagging is used [12]. Using lexico-syntactic
patterns, it is possible to extract terms and their relations (including the type-of relation) from text [13].

Statistical methods use probabilistic techniques to extract terms. These methods are generally good
for finding the importance of a word, but they lack techniques that handle the grammatical function of a
word, as explained above. A popular statistical method is Term Frequency Inverse Document Frequency
(TF-IDF) [8]. TF-IDF computes a value for a certain term, with a higher value indicating a more important
term. The TF-IDF value is higher for terms that appear frequently in one document, but it is lower for terms
that appear frequently in multiple documents. This can be balanced by adding a manual non-stop list to
this method [12]. This list contains words that should not be filtered out. However, the non-stop list adds a
non-statistical element to this technique, and this method is thus no longer a pure statistical method.

Hybrid methods combine linguistic and statistical techniques to overcome flaws in both methods. This
section discusses several hybrid methods. One method is the filtering method of Sclano and Velardi [9, 14].
This method first employs linguistic methods to extract terms, as previously presented. The importance of
these terms must then be determined by filtering the terms through five filters. These filters are primarily
based on the term frequencies in a domain and a contrastive corpus. Based on the different filters’ values, a
score is defined that determines the importance of a term. Only the terms with the highest scores remain in
the eventual term set.

Another method is the χ2 method [15]. In this method, named entities are extracted using a linguistic
processor, and occurrences of these entities are placed in a contingency table, which contains informa-
tion about the term frequencies in the domain or contrastive corpus. Based on this table, the χ2 value is
calculated, and terms are selected if their χ2 value is above a certain threshold value.

The last hybrid method discussed is the C/NC-Value [12]. The C-value is first calculated, which aims
to improve the compound term extraction. The terms with the highest C-value are selected, and these terms
undergo additional filtering with the NC-value. The NC-value adds a context weighting factor to the C-
value, that is, it considers context words, which are words surrounding the selected term. These context
words provide additional information about the selected term.
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2.2. Creation of Hierarchical Relations
There are several methods for creating hierarchical relations between concepts. In hierarchical cluster-

ing, taxonomic relations between concepts are created by clustering terms hierarchically [16]. At the start
of this algorithm, all terms are individual clusters; the distances between these clusters are calculated for
each cluster. The clusters that are closest to each other are merged. This process continues until one cluster
remains. Although hierarchical clustering methods have several drawbacks such as high time and memory
complexities, and inefficient and inaccurate cluster validations, previous research has shown that these can
be alleviated [17, 18].

Hierarchical clustering methods employ several distances. Distances can be measured using similarity
in a semantic lexicon [4, 19] or in a term co-occurrence analysis [4]. One co-occurrence similarity is
co-occurrence of terms in a document. The window-based co-occurrence measure, which analyzes the
co-occurrences of words in windows of words, can also be used [20].

Sanderson and Croft [5] proposed the subsumption method to derive a term hierarchy from a set of
documents. In the subsumption method, a given term subsumes another term (i.e., an ancestor) if the
documents in which the latter term occurs are a subset of the documents in which the given term occurs [5,
21]. The advantages of the subsumption method are that it is easy to implement and it makes labeling
concepts easy. The disadvantages are that with this method, it is difficult to classify terms that do not
co-occur frequently and it requires a large data set to work well. Some extensions have been proposed,
for example, subsumption in a fuzzy domain [22]; however, the position of the ancestors with respect
to a concept is not considered during the taxonomy construction process, as proposed in this paper. We
hypothesize that being able to discount the ancestors contribution to the score of a parent node can enable
us to produce more accurate taxonomic relations.

2.3. Classification Methods
Classification methods can also be used to create taxonomic relations. By combining a domain corpus,

a general corpus, and a named-entity tagger, terms are extracted and arranged in a taxonomy using addi-
tional sources, such as an online encyclopedia or dictionary that provide more information, e.g., synonyms,
homonyms, etc. [3]. A tree-descending algorithm adds terms to a hierarchy by descending a tree or hierar-
chy from the root to the leaves. At every node, the child node most similar to the current node is chosen
as the next node in the path to a leaf. Once this method has reached a leaf, the new word is assigned to the
most similar node in the tree [23]. The tree-ascending algorithm uses a combination of similarity measures
and taxonomic similarities to give a node a certain number of votes, and nodes are placed below the node
with the highest number of votes [23]. Classification methods provide good results, but they require a large
training set to work properly, and it is thus difficult to use these methods with a small training set.

Formal concept analysis is a conceptual clustering technique that groups objects and their attributes
based on similarities. In this method, objects, attributes, and their relations form a formal concept. By
linking the attributes of an object with other objects, taxonomic relations can be found. Applications of
this method occur in information extraction by linking verbs with terms [1, 24]. Another method, lexical-
syntactic patterns, is a linguistic technique that creates relations by analyzing textual patterns. This tech-
nique links named entities with noun phrases, and these links form taxonomic relations [13]. For example,
if the noun phrase ‘Portfolio management’ appears with the named entity ‘Markowitz,’ then ‘Markowitz’ is
extracted, and a taxonomic relation is added because it appears with the noun phrase.

2.4. Evaluation Methods
Previous studies have discussed several evaluation methods [1, 5, 25, 26, 27]. These evaluation methods

often involve a comparison with a golden taxonomy, which is a taxonomy created by experts in a certain

4



Concept Hierarchy Creation
Documents

Term Extraction

Terms
Term Filtering

Concepts

Subsumption 

Method

Hierarchical 

Clustering

Taxonomy

Figure 1: ADTCT framework architecture

domain. The relevance of terms in a certain domain can be determined using lexical recall and precision.
The semantic cotopy [25] is used only to consider the super- and sub-concepts of nodes. The common
semantic cotopy is similar, but this cotopy only considers nodes that both taxonomies have in common [27].
Both cotopies can be used to compute the taxonomic precision and recall, which reflect the taxonomic
relation quality in the taxonomy. It is also possible to evaluate a taxonomy without a golden taxonomy by
asking several experts to rate the taxonomy; these judgments are then averaged [5].

3. ADTCT Framework

In this section, we discuss our framework for automatically constructing a taxonomy for a specific
domain. Our framework - Automatic Domain Taxonomy Construction from Text (ADTCT) - comprises
several steps. First, terms are extracted from documents. Next, these terms are processed in the term
filtering step, which filters them on domain pertinence, lexical cohesion, domain consensus, and structural
relevance. The resulting term set contains the terms with the highest scores for several filters. These
terms are stored as concepts, which are used in the taxonomy construction process. For these concepts,
the hierarchical relations between them are created using either the subsumption method or the hierarchical
clustering algorithm.

Figure 1 depicts the ADTCT framework architecture. As input, we have a document set. Terms are
extracted from the documents in the Term Extraction step. These terms are filtered on several aspects in
the Term Filtering step, so only the most relevant terms remain, which our taxonomy considers concepts.
These concepts can be hierarchically arranged in the Concept Hierarchy Creation step, using either the
Subsumption Method or Hierarchical Clustering. After hierarchically arranging these concepts, we have
created a Taxonomy.

3.1. Term Extraction

The terms must first be extracted from text corpora. We use a part-of-speech parser [7], which processes
a sentence into a tree structure. In this tree structure, part-of-speech tags are assigned to each node in the tree.
All individual words are leaves on the tree, and the internal nodes are tags that determine the grammatical
function of several words in sequence. The parser is used to find nouns, which are among the leaves of
the tree, and noun phrases, which are internal nodes that group words (appearing in a sequence) with one
meaning.
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3.2. Term Filtering
In the Term Filtering step, terms are processed using several filters. This allows us to select terms based

on various criteria. The method used is an adapted version of a previous filtering method [9]. We first filter
the terms using domain pertinence and lexical cohesion. We then determine a domain score, which is based
on domain pertinence, domain consensus, and structural relevance. The terms with the highest scores are
selected as concepts.

The domain pertinence DP of domain corpus Di (DPDi), first introduced in [28], is a filter that checks
whether a term is relevant for the target domain. It is defined as a function of term t:

DPDi(t) =
f req(t/Di)

max j( f req(t/D j))
, (1)

where D j is a contrastive corpus and f req(t/Di) is the number of times term t appears in domain Di. In
this equation, the term frequency in the domain corpus is divided by the maximum term frequency in a
contrastive corpus. A term that appears more frequently in the domain corpus than in the contrastive corpus
has a higher DP than a term that appears less frequently in the domain corpus than the contrastive corpus.
Terms with high DP values are thus likely to be more important in the target domain. To emphasize the
importance of this filter and accelerate the computing time, we remove the bottom 30% of term DP values.

The lexical cohesion LC of domain Di (LCDi), first defined in [28], is used to measure the cohesion
among words in compound term t. It is defined as a function of term t:

LCDi(t) =
n · f req(t/Di) · log( f req(t/Di))∑

w j∈t f req(w j/Di)
, (2)

where n is the number of words in compound term t, f req(t/Di) is the frequency of the term in domain
corpus Di, and f req(w j/Di) is the frequency of word j from term t in domain Di. A compound term with
a high frequency that approaches the frequencies of the individual words in the compound term has a high
value for lexical cohesion. To ensure that only relevant compound terms are selected, we remove the 30%
compound terms with the lowest values for LC.

The domain consensus DC, first introduced in [29], is used to determine term importance by analyzing
term frequencies in documents. This measure, which is a function of term t, is defined thus:

DCDi(t) = −
∑

dk∈Di

norm f req(t, dk) · log(norm f req(t, dk)) , (3)

where norm f req(t, dk) is the normalized frequency of term t in document dk, which is a document in
domain corpus Di. Normalization occurs by dividing the calculated frequency by the maximum frequency
of term t in any document in the domain corpus. This procedure is defined thus:

norm f req(t, dk) =
f req(t, dk)

maxd∈D j( f req(t, d))
. (4)

Terms that appear in the title are likely to be more important than terms that do not appear in the title.
We need to consider this information. We thus add a constant value k to terms that appear in the title for the
domain score.

After calculating all filter values, we combine these values to compute a final domain score:

score(t,Di) = α ·
DPDi(t)

maxt∈Di(DPDi(t))
+ β ·

DCDi(t)
maxt∈Di(DCDi(t))

+ k , (5)
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where α and β are weights that emphasize DPDi(t) or DCDi(t), respectively. Furthermore, maxt(DPDi(t)) and
maxt(DCDi(t)) are the highest values for domain pertinence and consensus in domain corpus Di. The latter
two values are used to normalize the domain consensus and pertinence, thus allowing a relative comparison.
Normalizing these values has not been performed in the previous literature. Terms that appear in a title
receive a value of k added to their score. The α, β, and k parameters can have any value between 0 and 1.

3.3. Concept Hierarchy Creation

In our framework, we distinguish two methods to determine hierarchical relations between concepts.
First we discuss the subsumption method [5, 21], and then we discuss the hierarchical clustering algo-
rithm [16].

We improve the subsumption method introduced in [5] and [21] by considering the ancestors’ position
with respect to the current node. The subsumption algorithm is based on concept co-occurrences. The
co-occurrences for this method are based on document co-occurrence, which means that we analyze con-
cept co-occurrences in different documents. For each concept, potential parent concepts or subsumers are
determined. Concept x potentially subsumes concept y if:

P(x | y) ≥ t, P(y | x) < t , (6)

where t is a co-occurrence threshold. If x appears in at least proportion t of the documents in which y
also appears and y appears in less than proportion t in which x appears, then x is a potential parent of y.
Multiple potential parents might exist, so we must choose one potential parent to maintain the hierarchical
tree structure. This decision is based on a score calculated for each potential parent. The score is defined
thus:

score(p, x) = P(p | x) +
∑
a∈Ap

w(a, x) · P(a | x) , (7)

where p is the potential parent node of x and Ap is the list of ancestors of p. In the equation, w(a, x) is a
weight that is multiplied by the co-occurrence probability of ancestor a given concept x. In this equation,
the weight is defined thus:

w(a, x) =
1

d(a, x)
, (8)

where d(a, x) is the path length between node x and ancestor a. By applying this weight, concept nodes
that are closer to the parent node have more influence on the final score calculation. In the end the potential
parent with the highest score based on (7) is chosen as the parent of node x.

Hierarchical agglomerative clustering is a clustering method that begins with all terms as separate
clusters and the nearest clusters are progressively combined until one cluster remains that comprises all
terms [16]. In general, we can describe the algorithm as follows.

1. Start with n clusters (each term is a cluster).
2. Compute the distances between clusters.
3. Merge the two nearest clusters into one cluster. Return to step 2 if more than one cluster remains;

otherwise, the algorithm has finished.

We implemented several measures to define the distances between clusters: minimum distance/single
linkage, maximum distance/complete linkage, and average distance/average linkage. The minimum and
maximum distances are calculated by taking the distances between a concept in cluster A and a concept
in cluster B that are the shortest and longest distances between concepts in clusters A and B, respectively.
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The average distance is calculated by taking the average distance of all of the distances between concepts
in clusters A and B.

To calculate the distances between the clusters, the distances between individual concepts must be
calculated. We have defined two distance measures for this purpose: document co-occurrence similarity and
window-based similarity. The document co-occurrence similarity is determined by computing the number
of documents in which two terms co-occur [4]. The similarity is defined thus:

sim(t1, t2) =
2d f (c1, c2)

d f (c1) + d f (c2)
, (9)

where d f (c1, c2) is the total number of documents in which c1 and c2 co-occur. Furthermore, d f (c1) is the
total number of documents in which concept c1 appears and d f (c2) is the total number of documents in
which concept c2 appears. Concepts that co-occur frequently in documents thus have higher values for this
similarity.

The window-based similarity is analogous to the document co-occurrence similarity, but it analyzes
the co-occurrences of concepts in user-specified word windows instead of examining co-occurrences in
documents [4]. This similarity is defined thus:

sim(c1, c2) =
2w f (c1, c2)

w f (c1) + w f (c2)
, (10)

where w f (c1, c2) is the total number of times that c1 and c2 co-occur in one window, w f (c1) is the total
number of times that concept c1 appears in windows, and w f (c2) is the number of times that concept c2
appears in windows. Concepts that often co-occur in windows thus have higher values for this similarity.

The windows are created for each document based on window size. Suppose that we have a document
with four concepts: ‘Ad,’ ‘Bert,’ ‘Cees,’ and ‘Dirk.’ If the window size is 2, the following windows are
created for this document: {Ad}, {Ad, Bert}, {Bert, Cees}, {Cees, Dirk}, and {Dirk}.

One disadvantage of this method is that it is difficult to label clusters because the algorithm only clusters
concepts together and does not create labels for these clusters. Therefore, we need an appropriate labeling
method. In our case, we label concepts by calculating the distances between all of the concepts in the
cluster. The centroid, the concept in the center of the cluster, is then chosen as the cluster label. When there
are only two concepts in a cluster, the concatenation of these two concepts is chosen as the cluster label
because this cluster does not have a center.

4. ADCTC Implementation

We implemented the ADTCT framework as a Java application. We chose Java because many Java
libraries are available that support the methods proposed in our framework. To parse nouns, we used the
Part-of-Speech Parser created by Stanford University [7]. RDF representations are manufactured using the
Jena framework [30]. The created taxonomies are exported as RDF files with a SKOS vocabulary [31]. We
can thus compare our generated taxonomy with manually created taxonomies, which are usually also stored
as RDF files with an SKOS vocabulary.

Figure 2 presents a screen shot of our program implementation. This screen shows the output of a
computed taxonomy created using the hierarchical clustering algorithm.
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Figure 2: ADTCT implementation

4.1. Term Extraction

In this step, terms are extracted from the domain corpus. This corpus contains RePEc documents and
RePub documents that belong to the economics and management domain. The contrastive corpus contains
documents from other domains, including law and health. The total corpus size is 25, 000 documents, of
which 20, 000 documents are in our domain and 5, 000 documents belong to the contrastive domain.

We use a part-of-speech parser [7] to parse a sentence and extract the nouns and noun phrases from this
sentence. A part-of-speech parser is slower than a part-of-speech tagger, but the results are more accurate,
especially for compound nouns [32].

4.2. Term Filtering

The term filtering step is used to select the most relevant terms. The extracted terms are processed
through several filters before the most important terms are selected. The terms are processed through five
filters sequentially, and a score is eventually calculated based on some of these filters, as explained in our
framework. A higher score indicates that a term is more relevant for our domain. The most relevant terms
are stored as concepts.

The domain pertinence filter assigns a domain pertinence value to each term in the potential term set.
This value indicates the relevance of a term to a certain domain. To emphasize the term relevance in our
domain, we have filtered out the bottom 30% of the terms’ domain pertinence values.

The lexical cohesion filter assigns a lexical cohesion value to all compound terms (terms represented
by noun phrases). This value reflects the relevance of a compound term. We use this filter to eliminate

9



Change

Technological change

Technological

Technology

Adaptation

Figure 3: Potential parents of ‘Technology adaptation’ in a tree structure

compound terms that are less relevant. Therefore, 30% of the compound terms with the lowest value for
lexical cohesion are removed from the list of potential terms.

The domain consensus filter assigns a domain consensus value to all of the remaining potential terms.
The domain consensus reflects the term frequencies in the domain documents, and it thus reflects the rele-
vance of terms for the taxonomy. This filter value is used only to calculate the final score.

This domain consensus filter assigns an additional k value to potential terms that appear in the title of a
document. Terms that appear in the title are most likely more important than terms that do not; we account
for this effect by adding a constant of k to the potential terms that appear in the title.

After all filters have processed the potential terms, we can compute a domain score for these terms. A
higher score indicates that a term is more relevant for our domain. The score is based on domain pertinence,
lexical cohesion, domain consensus, and structure relevance, as explained in the framework.

To find the optimal domain score, we evaluated the taxonomy for values of α, β, and k ranging between
0 and 1 on a set of 25, 000 documents. The full analysis of this evaluation can be found in our evaluation
section. Based on this evaluation, we found the optimal values, using a discretization step of 0.05, for α, β,
and k to be 0.95, 0.05, and 0.5, respectively.

4.3. Concept Hierarchy Creation

We implemented two methods to create a concept hierarchy: the subsumption and hierarchical clustering
methods. With the subsumption method, we can create taxonomic relations between concepts by applying
a subsumption algorithm. This algorithm is executed as explained in our framework.

Let us consider the concept ‘Technology adaptation’ with three potential parents: ‘Technology,’ ‘Tech-
nological,’ and ‘Adaptation,’ as in Fig. 3. Scores can be calculated using threshold t, which equals 0.4 in
this example. Because ‘Technology’ has no potential parents, we calculate P(p | x) using (6), yielding
0.4. For the ancestors of ‘Technological,’ which are ‘Technological change’ and ‘Change,’ we calculate
P(p | x), which is 0.4. Subsequently, we calculate P(a | x) for both parents, yielding 0.2 and 0.05 for
‘Technological change’ and ‘Change’, respectively. The influence of the parents is considered by weighing
the scores with 1

d(a,x) . The final score is a sum of P(p | x) and all weighted ancestor scores 1
d(a,x) P(a | x),

that is, 0.4 + 1
2 0.2 + 1

3 0.05 ≈ 0.52. Similarly, the score for ‘Technology adaptation’ can be calculated. The
parent of ‘Technological adaptation’ is ’Adaptation’ and the parent of ‘Adaptation’ is ‘Technology.’ Based
on this hierarchy we can compute the score: 0.6 + 1

2 0.35 + 1
3 0.4 ≈ 0.93. All scores have been summarized

in Table 1.
Based on these scores, ‘Adaptation’ is chosen as the parent of ‘Technology adaptation.’ The quality of

the created taxonomy depends on the value of threshold t. A higher threshold means that the results are
more reliable but the taxonomy is shallower. We have evaluated the subsumption algorithm for t-values
ranging from 0.2 to 0.8 with incremental steps of 0.05. Based on these evaluations, we find that t = 0.75 has
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Potential Parent Concept Score
Technology 0.40
Technological 0.52
Adaptation 0.93

Table 1: Potential parents of ‘Technology adaptation’ and their scores

the best results according to the taxonomic F-value but the generated taxonomy has a low average depth. A
t-value of 0.25 has a deeper taxonomy, and the results are only 3.2% worse than t = 0.75 in the taxonomic
F-value. We must make a trade-off between tree quality and depth. More information about this process
can be found in the evaluation section of this paper. Figure 4 presents an example of part of a taxonomy
constructed using the subsumption method.

The agglomerative hierarchical clustering algorithm is another method used to create taxonomic rela-
tions. This method is more complex than the subsumption algorithm, and it requires more computing time.
Hierarchical clustering first defines every concept as a cluster and groups these clusters until there is only
one cluster remaining. The distances between clusters are based on single, full, or average linkages, which
define the distances between clusters based on the distances between concepts in these clusters. The dis-
tances between these concepts are calculated using the document co-occurrence or window co-occurrence
similarities.

Suppose that we have two concepts, ‘System’ and ‘Process,’ and we want to calculate the similarity be-
tween them. We have found that ‘System’ appears in documents {1,3,6,8} and windows {1,5,10,14,18,20,28};
‘Process’ appears in documents {1,3,6,12} and windows {1,5,12,14,18,25,30}. Both terms thus co-occur
three times in documents and four times in windows. Hence, we can compute the document similarity as
2·3
4+4 = 0.75 and the window similarity as 2·4

7+7 ≈ 0.57.
After calculating the distances between concepts, we can compute the distances between the clusters.

Suppose that we have the clusters defined in Table 2, where the similarities are converted to distances by
applying the following equation to the similarities:

d(t1, t2) =
1

sim(t1, t2)
. (11)

We merge the clusters that are closest to each other. For minimum linkage, these are ‘Money’ and ‘(Return,
Trader)’ because the minimum distance between the clusters is 0.09, which is the lowest distance in the

Policy

Government

Spending

Public Spending

Central Government

Inflation

Monetary Policy

Federal ReserveInflation Target

Figure 4: Part of a taxonomy created using the subsumption method for economics and management
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XXXXXXXXXXXConcept
Concept

(Return, Trader) Organization Real Option Money

(Return, Trader) 0.00
Organization {0.20,0.10} 0.00
Real option {0.55,0.40} 0.55 0.00
Money {0.09,0.28} 0.70 0.21 0.00

Table 2: Distance matrix after (Return, Trader) concatenation

distance matrix. For maximum linkage, this connection is ‘(Return, Trader)’ with ‘Organization’ because
the maximum distance is 0.20, which is the lowest distance in the distance matrix. For average linkage, we
use ‘(Return, Trader)’ with ‘Organization’ because the average distance is 0.15, which is also the lowest
distance in this distance matrix.

The newly created cluster must be labeled. Suppose that we have used complete linkage, and ‘(Return,
Trader)’ is merged with ’Organization.’ Table 3 shows the distances between these concepts. The average
distance from ‘Return’ to other concepts is (0.20+0.06)

2 = 0.13, the distance from ‘Trader’ to other concepts is
(0.06+0.10)

2 = 0.08, and the distance from ‘Organization’ to other concepts is (0.20+0.10)
2 = 0.15. ‘Trader’ has

the lowest average distance, which implies that ‘Trader’ is most likely the centroid. ‘Trader’ is thus chosen
as the cluster label.

After two clusters have been merged, the algorithm continues to merge clusters until one cluster remains.
We evaluated this algorithm for complete, single, and average linkages. Based on our evaluation, we found
that complete linkage gives the most accurate results. We also evaluated the different window sizes, ranging
from 4 to 17, and we found an ideal window size of 11. We found that window-based similarity has
better results than document-based similarity. More information about our evaluation can be found in our
evaluation section. Figure 5 presents an example of part of a taxonomy constructed with the hierarchical
clustering algorithm.

Model

Model

Roots

Computing / Monte Carlo

Monte CarloComputing

Lagrange

Bayesian Approach

Statistical Inference

Optimum

Figure 5: Part of a taxonomy created using hierarchical clustering for economics and management
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XXXXXXXXXXXConcept
Concept

Return Trader Organization

Return 0.00
Trader 0.06 0.00
Organization 0.20 0.10 0.00

Table 3: Distance matrix of concepts in a cluster

5. Evaluation

In this section, we evaluate the taxonomy for the economics and management domain built based on the
settings used in the previously discussed implementation of our ADTCT framework. We first describe the
framework of our evaluation approach and report and discuss the evaluation results.

5.1. Experimental Setup
Previous studies [1] and [27], have discussed several evaluation methods for domain taxonomies. Based

on these research results, we defined our evaluation framework. In this framework, we compare our auto-
matically created taxonomy with a taxonomy created by experts in economics and management. The golden
taxonomy used for this purpose is a pre-processed version of the STW Thesaurus.3 This pre-processed ver-
sion does not include concepts belonging to other domains, and approximately 2% of the concepts were
translated from German into English. This detailed taxonomy contains approximately 4, 000 concepts.

First, we define a measurement that analyzes the relevance of found terms. The measurement used is
the lexical precision, defined thus:

LP(OC ,OR) =
|CC ∩CR|

|CC |
, (12)

where OC is the core ontology, our computed taxonomy, and OR is the reference ontology, our golden tax-
onomy. Furthermore, CC are concepts in the core ontology, and CR are concepts in the reference ontology.
This method thus divides the number of concepts in the intersection of concepts in both taxonomies by the
number of concepts in the core ontology. This measure gives a good indication of the relevance of the found
terms. A similar measurement, lexical recall, is also used in the literature. This method is unsuitable for our
purposes because our golden taxonomy is much larger than our computed taxonomy.

After defining a method to compute term relevance, we need a method to compute the quality of the
relations between concepts. We must first define the foundations of these measurements. We can define the
common semantic cotopy of a node, which considers only the super- and sub-concepts that appear in both
in taxonomies:

csc(c,O1,O2) = {ci ∈ C1 ∩C2|(ci ≤C1 c ∨ c ≤C1 ci)} , (13)

where O1 and O2 are two ontologies, c is the concept being analyzed, ci is a common concept, and ≤C1 is
the partial order induced by type relationships in ontology O1.

With this definition, we can define local measurements that compute the local taxonomic relation qual-
ities using the local taxonomic precision:

tpcsc(c,O1,O2) =
|csc(c,O1,O2) ∩ csc(c,O2,O1)|

|csc(c,O1,O2)|
. (14)

3http://zbw.eu/stw/
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This measurement uses the intersection of the two common semantic cotopies in which the input ontologies
are swapped. This intersection is then divided by the first of these common semantic cotopies. This indicates
how many common relations are found in O1.

Using this local measurement definition, we can define a global measurement, for which we use the
taxonomic precision and recall, formulated as:

T Pcsc(OC ,OR) =
1

|CC ∩CR|

∑
c∈CC∩CR

tpcsc(c,OC ,OR) , (15)

TRcsc(OC ,OR) = T Pcsc(OR,OC) , (16)

where OC is the core ontology, our computed taxonomy, and OR is the reference ontology, our golden
taxonomy. The taxonomic precision reflects how similar the relations in the intersection of both ontologies
are to the core ontology; the taxonomic recall captures the similarity of the relations in the intersection of
the ontologies to the reference ontology. Both measurements must be considered; we use a measure for the
overall quality of the relations in the taxonomy, the taxonomic F-measure (T F):

T F(OC ,OR) =
2 · T Pcsc(OC ,OR) · TRcsc(OC ,OR)
T Pcsc(OC ,OR) + TRcsc(OC ,OR)

, (17)

where T F is the harmonic mean of the taxonomic recall and precision. This measurement obtains a value
between 0 and 1; higher values indicate that the relations between common concepts in the taxonomies are
more similar.

5.2. Experimental results

We evaluated the parameters of the term filtering algorithm using a brute force approach by incrementing
α, β, and k with a step size of 0.05 in the range between 0 and 1 on a set of 20, 000 domain and 5, 000
contrastive documents. We extracted 2, 000 concepts, which we placed in the taxonomy. Table 4 shows a
selection of the results.

Table 4 gives the optimal setting for term extraction for the considered discretization step size and
range. The weights are α = 0.95 (domain pertinence), β = 0.05 (domain consensus) and k = 0.5 (structural
relevance). The values for these weights can be explained by the importance of domain pertinence. Do-
main pertinence considers the appearance of terms in domain documents relative to contrastive documents,
whereas domain consensus analyzes only the appearance of terms in domain documents. More specific
terms can be found by assigning a high weight to the domain pertinence filter. A high k value indicates that
important domain terms often appear in term titles.

We evaluated the subsumption algorithm for t ranging from 0.2 to 0.8 with a step size of 0.05. We
also added the results of a subsumption algorithm that does not consider the position of the ancestors with
respect to the current node. The results are presented in Table 5 and Figs. 6 and 7. Table 5 also includes the
results of the improved and original versions of the subsumption algorithm.

Table 5 demonstrates that the improved subsumption algorithm has the same or better T F results for
all t-values. This is especially true for a low t because this value generates more potential parents and
our method improves the parent selection process from a set of potential parents. Furthermore, t = 0.75
provides the highest T F value, and the relations for this t-value are the best; however, the average depth
for this t-value is low. It is possible to achieve a deeper taxonomy with minimal quality loss by lowering
the threshold value because the depth increases significantly more than the quality decreases. For very low
threshold values, however, the quality decreases too much, and the concept relations are poor. We must
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generally consider two aspects in our trade-off decision. A user might want a minimal taxonomic relation
quality and taxonomy depth. We can formulate this trade-off decision mathematically as:

TaxonomyS core(t) = γ ·
T F(t)

maxt(T F(t))
+ λ ·

Depth(t)
maxt(Depth(t))

w.r.t. (18)

T F(t) ≥ q ,Depth(t) ≥ d , γ + λ = 1 , γ ≥ 0 , λ ≥ 0 ,

where T F(t) is the T F measure depending on threshold t, Depth(t) is the average depth depending on
threshold t, and γ and λ are weights that emphasize quality and depth. The t-value that maximizes the
TaxonomyS core is chosen as the best value, which must adhere to the above mentioned constraints. In
these constraints, q is the minimal required taxonomy quality, and d is the minimal required taxonomy
depth.

Suppose that we want to develop a taxonomy with a minimal average depth of 3 and a minimal quality
of 0.60. Only t = 0.20,t = 0.25, and t = 0.30 obey these constraints. Then, suppose that we place more
emphasis on depth, so that γ = 0.40 and λ = 0.60. For t = 0.20, the computed score is 0.40 · 0.6002

0.6401 + 0.60 ·
5.07
5.07 ≈ 0.975; for t = 0.25 the computed score is 0.40 · 0.6182

0.6401 + 0.60 · 4.14
5.07 ≈ 0.878; and for t = 0.30 the

α β k LP
1.00 0.00 0.00 0.1579
1.00 0.00 0.05 0.1744
1.00 0.00 0.10 0.1744
1.00 0.00 0.50 0.1749
1.00 0.00 1.00 0.1749
0.95 0.05 0.00 0.1614
0.95 0.05 0.05 0.1764
0.95 0.05 0.10 0.1764
0.95 0.05 0.50 0.1769
0.95 0.05 1.00 0.1769
0.90 0.10 0.00 0.1624
0.90 0.10 0.05 0.1759
0.90 0.10 0.10 0.1759
0.90 0.10 0.50 0.1759
0.90 0.10 1.00 0.1759
0.85 0.15 0.00 0.1589
0.85 0.15 0.05 0.1734
0.85 0.15 0.10 0.1734
0.85 0.15 0.50 0.1734
0.85 0.15 1.00 0.1734
0.10 0.90 0.00 0.1409
0.10 0.90 0.05 0.1489
0.10 0.90 0.10 0.1494
0.10 0.90 0.50 0.1494
0.10 0.90 1.00 0.1494

Table 4: Evaluation results of term extraction
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ADTCT Original
t T F Avg. Depth T F Avg. Depth

0.20 0.6002 5.07 0.5887 5.52
0.25 0.6194 4.15 0.6148 4.34
0.30 0.6294 3.29 0.6268 3.35
0.35 0.6323 2.95 0.6319 2.97
0.40 0.6327 2.81 0.6320 2.82
0.45 0.6385 2.64 0.6379 2.65
0.50 0.6399 2.59 0.6397 2.59
0.55 0.6399 2.59 0.6387 2.50
0.60 0.6391 2.47 0.6391 2.47
0.65 0.6399 2.43 0.6399 2.43
0.70 0.6399 2.42 0.6399 2.42
0.75 0.6401 2.39 0.6401 2.39
0.80 0.6392 2.38 0.6392 2.38

Table 5: Evaluation results of the subsumption method

computed score is 0.40 · 0.6282
0.6401 + 0.60 · 3.29

5.07 ≈ 0.782. With these preferences, we obtain t = 0.20 as the
preferred t-value.

In our work, we also implemented the hierarchical clustering algorithm. The computing time of this
algorithm is much longer than before, and the algorithm evaluation is based on a smaller set than the
subsumption algorithm. To ensure that both sets are similar, we calculated the average number of nouns per
document for every set with their standard deviations, as in Table 6. The table underlines that the used data
sets are comparable because the averages and standard deviations of the different sets are similar. Labels
may appear multiple times in the clustering evaluation. Approximately 11% to 40% of the concepts have
double labels, and these values can differ depending on the algorithm parameters and input.

We evaluated the cluster linkages on a set of 5, 000 domain and 2, 500 contrastive documents with
1, 000 extracted concepts. The distance used is the document co-occurrence similarity. Table 7 presents
the evaluation results. As demonstrated by the table, the complete linkage method provides the best results.
Many relations formed with clustering are appropriate. This evaluation method has not, however, considered
the labeling issue. A concept often appears multiple times in the taxonomy because the centroids of some
clusters might be the same. In our evaluation framework, we considered every label as a separate concept.

For hierarchical clustering, we can use two distance measures: the document co-occurrence or window
co-occurrence similarities. We evaluated both distance measures on a set of 2, 500 domain and 2, 500
contrastive documents with complete linkage and 1, 000 extracted terms. Table 8 summarizes the results,
based on which we can conclude that the window co-occurrence similarity outperforms the document co-
occurrence similarity and the optimal window size is 11.

To compare the hierarchical clustering and subsumption algorithms, we evaluated two document sub-
sets, containing 2, 500 domain and 2, 500 contrastive documents, for both algorithms. For the subsumption
algorithm, the thresholds t = 0.25, t = 0.50, and t = 0.75 were evaluated to reflect different user prefer-
ences. For the hierarchical clustering algorithm, the optimized settings found in the previous experiments
were used. Table 9 presents the results, indicating that the subsumption algorithm outperforms the hierar-
chical clustering algorithm for t = 0.75 and t = 0.50. However, for t = 0.25, the hierarchical clustering
algorithm performs better. The taxonomic relations formed in the subsumption algorithm are more accurate
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for higher thresholds than those formed in the hierarchical clustering algorithm. The hierarchical clustering
is interesting mainly for users who want to obtain a deep taxonomy. For deeper taxonomies, the optimized
hierarchical clustering algorithm settings perform better, but the subsumption method performs better for
shallower taxonomies.

The greater depth of the hierarchical clustering algorithm can easily be explained. The depth is greater
because the clustering algorithm clusters all 1, 000 concepts until one cluster remains that contains all
concepts. When many concepts are clustered, the paths from the leaf nodes to the root node tend to be
long, which increases the path length. The taxonomy has one root node and many leaf nodes. The paths
to the leaf nodes vary in length: some are long, and some are short, and long paths often have many
repeated labels. The relations in the taxonomy are, however, precise. Taxonomy interpretability and quality
are especially good near leaf nodes because these nodes are most similar to each other and there are few
repeated labels at this level.
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Data set Size Avg. Nouns St. Dev.

Domain
20,000 36.23 20.16
5,000 36.35 18.30
2,500 36.88 20.28

Contra
5,000 60.62 18.30
2,500 60.97 20.28

Table 6: Average nouns per document per data set

Cluster linkage T F
Average 0.5432
Minimum 0.5508
Maximum 0.6210

Table 7: Evaluation results of cluster linkages

Distance T F
Window (size: 4) 0.5839
Window (size: 5) 0.5708
Window (size: 6) 0.6163
Window (size: 7) 0.6153
Window (size: 8) 0.6367
Window (size: 9) 0.6046
Window (size: 10) 0.6110
Window (size: 11) 0.6509
Window (size: 12) 0.6303
Window (size: 13) 0.6404
Window (size: 14) 0.6495
Window (size: 15) 0.6417
Window (size: 16) 0.6429
Window (size: 17) 0.6196
Document 0.5700

Table 8: Evaluation results of distance measures

Method T F Avg. Depth
Subsumption (t = 0.25) 0.6296 4.837
Subsumption (t = 0.5) 0.6887 2.9585
Subsumption (t = 0.75) 0.7022 2.4378
Hierarchical clustering (window size: 11) 0.6509 237.9040

Table 9: Subsumption and clustering compared
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6. Conclusions and future work

In this paper, we have presented a framework to automatically extract a taxonomy from text corpora. In
our framework, Automatic Domain Taxonomy Construction from Text (ADTCT), we extract terms from the
text corpora employing a part-of-speech parser. The nouns extracted by this parser are filtered using domain
pertinence, domain consensus, lexical cohesion, and structural relevance. After filtering these terms, only
the most important terms remain, which we consider domain concepts.

In our framework, concepts (taxonomy terms) are hierarchically arranged using two methods: the sub-
sumption method and a hierarchical clustering algorithm. The subsumption method is based on document
co-occurrence: in this method, a concept subsumes another concept if the occurrence of the second concept
is always in conjunction with the occurrence of the first concept, but not the other way around. The sub-
sumption algorithm labels concepts and arranges them in a hierarchy. We refined the algorithm so that it
considers the position of the ancestors with respect to a concept when creating a taxonomy. The taxonomy
created by this method is often shallow, but its depth can be influenced by changing the threshold param-
eter of this method. A lower threshold creates a deeper taxonomy, although the relation qualities in this
taxonomy are usually worse than those of a shallower taxonomy.

The hierarchical clustering algorithm creates a hierarchy by first assuming that all concepts are clusters.
The most similar clusters are merged until one cluster remains. The hierarchical clustering algorithm pro-
vides good results for the created taxonomic relations. However, labels may appear multiple times when the
hierarchical clustering algorithm is employed because of the labeling method used. Approximately 11% to
40% of the concepts have the same labels, and these values differ depending on the algorithm parameters
and input.

We used several evaluation methods for our framework. To determine the relevance of the found con-
cepts, we used the lexical precision (LP), which expresses the relevance of the found terms in the computed
taxonomy. To evaluate taxonomic relations in the taxonomy, we used the taxonomic F-measure (T F),
which is based on the taxonomic recall and precision.

We found that the optimized settings in the term extraction step require that the domain pertinence
filter has a higher weight than the other filters. The optimized settings for the subsumption method depend
on the user’s preferences regarding the depth and quality of the relations in the taxonomy. A taxonomy
with greater depth has more information about the taxonomic relations, but these taxonomic relations are
less reliable. We have defined a decision-support criterion based on taxonomy quality and average depth
that considers the user-preferred settings. For hierarchical clustering, complete linkage provides better
results than single and average linkage. The best-performing distance measure is the window co-occurrence
similarity with a window size of 11. We compared the subsumption method to the hierarchical clustering
algorithm. Users who are primarily interested in the quality of the taxonomic relations should apply the
subsumption algorithm with a high threshold value. Users interested in a deep taxonomy should apply the
hierarchical clustering algorithm with the previously determined optimized settings.

For future work, we would like to evaluate other term extracting techniques, including the C/NC-Value
or TF-IDF. It could also be useful to develop better labeling methods for the hierarchical clustering algo-
rithm, for instance by using Web-based approaches such as using highly ranked search result snippets [11].
Alternatively, we would like to investigate how to label concepts by analyzing the relations between con-
cepts in a cluster using a semantic lexicon (e.g., WordNet). Our current approach does not consider concepts
that have the same meaning, but that are lexically different, or concepts that share the same lexical repre-
sentation, but have different meanings, to be equal. This limitation can be addressed by employing a word
sense disambiguation step in the taxonomy construction process.
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Future work could also examine the possibilities of using external sources and evaluate the impact of
these external sources on automatic taxonomy creation. For example, the distance measures in the hierarchi-
cal clustering algorithm could be based on external sources, such as a semantic lexicon [19]. Nevertheless,
in order to be able to apply these distance measures, the previously identified word sense disambiguation
procedure needs to be performed.

Our framework could also be used with a different method to create taxonomic relations. We could
use formal concept analysis or classification methods to create taxonomic relations. Experimenting with
these techniques in our framework will result in a better overview of the advantages and disadvantages of
methods that can be applied to create taxonomic relations from text corpora. Additionally, we could refine
our subsumption method by analyzing concept co-occurrences in user-defined word windows instead of
whole documents, similar to how we applied the hierarchical clustering algorithm. We would also like to
apply our framework to other domains such as law, physics, and chemistry.
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