
Building Web Information Systems using Web
Services

F. Frasincar1,2, G.J. Houben1,3, and P. Barna1

1Eindhoven University of Technology
Den Dolech 2, 5612 AZ Eindhoven, the Netherlands

2Erasmus University Rotterdam
Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands

3Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Brussels, Belgium

Abstract— Hera is a model-driven methodology for designing
Web Information Systems. In the past a CASE tool for the
Hera methodology was implemented. This software had different
components that together form one centralized application. In
this paper we present a distributed Web service-oriented archi-
tecture for the Hera software in which components are mapped
to Web services. The present CASE tool is based on two Web
services: a Data Service which maps to the data component
and a Presentation Service which maps to the presentation
component. For these two Web services a detailed description
of their interfaces in WSDL is given as well as examples of
SOAP messages exchanged between these services and a client.
The paper also proposes how to extend the present architecture
in order to include other services like an Adaptation Service for
performing presentation adaptation based on a user profile and
a Profile Service as a shared memory service for user profiles.

I. INTRODUCTION

The Web has more than three billion pages and around
half a billion users. Its success goes beyond national frontiers
and imposes it as the first truly global information medium.
While the nineteenth century was dominated by the “industrial
revolution”, the beginning of this new century is marked by an
“information revolution” with the Web as its main “engine”.

A Web Information System (WIS) [1] is an information
system that uses the Web paradigm to present data to its
users. In order to meet the complex requirements of a Web
Information System several methodologies have been proposed
for WIS design. In the plethora of proposed methodologies
we distinguish the model-driven ones that use models to
specify the different aspects involved in the WIS design. The
advantages of such model-based approaches are countless:
better understanding of the system by the different stakehold-
ers, support for reuse of previously defined models, checking
validity/consistency between different design artifacts, (semi-
)automatic model-driven generation of the presentation, better
maintainability etc.

Based on the principle of separation of concerns, model-
driven methodologies like OOHDM [2], WebML [3],
UWE [4], SiteLang [5], and Hera [6] distinguish: a conceptual
model that describes the schema of the (multimedia) data to
be presented, a navigation model that specifies how the user
will be able to navigate through the data, and a presentation
model that gives the layout and the low-level characteristics

(e.g. font size, color etc.) of the hypermedia presentation to be
generated. For the model representations, these methodologies
make use of different technologies: OOHDM is based on the
OO paradigm, WebML offers a set of visual units (serialized
in XML) to be graphically composed, UWE is based on
UML notation extended with a Web UML profile, SiteLang
suggests a mathematical language (story algebra), and Hera
uses Semantic Web technology to make explicit the semantics
captured in a certain model and to subsequently exploit this
semantics.

Today there is an increasing need for making WIS com-
ponents interoperable. An isolated WIS is not able to pro-
vide all the information/computational power required by an
organization. Web services (WSs) appear to be the most
popular mechanism to support application interoperability.
Their success is based on the fact that they are cross-platform
and cross-language distributed applications. The fact that the
provider and the requester of a WS are loosely coupled ensures
application robustness. A disadvantage of such an approach is
the XML messaging involved, which affects application speed.
Nevertheless using appropriate optimization techniques and/or
fast computers/networks this disadvantage can be overcome.
We distinguish between two classes of WSs: WSs that provide
data-on-demand and WSs that offer computation-on-demand.
As an example for the first type of WSs we mention WSs
offered by Amazon or Google and for the second type of WSs
we refer to the services developed in the Grid project [7].

Different science communities saw the opportunity of us-
ing WSs to enable data sharing between their systems. For
example, the geoscience community came up with a service-
oriented solution for the interoperability of geographical in-
formation systems aiming at providing better forecasts. The
proposed WS solution [8] is compared with a puzzle (of WSs)
as depicted in Fig. 1. In this puzzle, shapes represent interfaces
and colors (shades of gray for a black and white printing) stand
for data models/encodings. Interfaces are the operations that a
WS provides, and data models/encodings are the input/output
parameter types of the WS operations.

Most model-driven methodologies for WIS design have
modular implementations made from components driven by
different models. Based on the Hera methodology, this paper
proposes the use of WSs in realizing the different components



Fig. 1. Web services puzzle.

and aggregating them in a WIS. In this way the software plug-
and-play vision can be realized in the context of WISs.

II. HERA METHODOLOGY

Hera [6], [9] is a model-driven methodology for WIS
design. It proposes a sequence of steps to be followed by
WIS designers. Each step produces a model that captures
a certain aspect of the application. The conceptual model
(CM) gives the schema of the data to be presented. The
application model (AM) specifies the way the user will be
able to navigate through the data. The layout-specific issues
are described in the presentation model. As the one-size-fits-
all paradigm doesn’t suffice to the WIS user demands, the user
wants the presentation to adapt to its preferences and to the
capabilities of the devices of their choice, Hera devises the
Adaptation Model. Such a model will use information coming
from the User Profile (static information about the user, i.e.
information that doesn’t change after the user starts browsing
the presentation) in order to adapt the AM.

Hera has several other features that will be briefly mentioned
here. It has the capability to integrate data coming from
heterogeneous sources. Also, based on a User Model (rep-
resenting dynamic information about the user, i.e. information
that changes while the user browses the presentation) it is able
to produce dynamic hypermedia presentations.

In order to experiment with the Hera methodology a WIS
was built using the Hera CASE tool. This WIS presents data
made available by the Rijksmuseum in Amsterdam. In this
paper we will present only two of the Hera models, the CM
and the AM, that will enable us to depict a WS-oriented
Hera architecture. All the Hera models and their instances are
represented in RDF(S) [10], [11].

The Hera tool uses RDF/XML for the serialization of
the different models and XSLT [12] for the transformation
between different models and their instances. It is able to pro-
duce HyperText Markup Language (HTML), Wireless Markup
Language (WML), and (Synchronized Multimedia Integration
Language (SMIL) presentations. Fig. 2 gives a snapshot of
the generated HTML presentation. It presents a Self Portrait
painting of Vincent van Gogh.

A. Conceptual Model

The conceptual model (CM) represents the schema of the
data that needs to be presented. It is composed of concepts,
concept relationships, and media types. There are two kinds

Fig. 2. Presentation in Internet Explorer.

of concept relationships: attributes which relate a concept to a
particular media type and inter-concept relationships to express
relations between concepts. A CM instance (CMI) gives the
data that needs to be presented. This data might come from
an integration/retrieval service that is out of the scope of this
paper. Fig. 3 illustrates an excerpt from a CMI. It describes
the Self Portrait painting of Vincent van Gogh. Such
a painting exemplifies the Impressionism painting technique
identified by Technique_ID2. In the description one can
find the year in which the painting was made, i.e. 1887, and
the URL of the Rijksmuseum image depicting it.

The loose-schema definition of RDF enables applications
to extend existing domain models with new features as well
as to cope with missing data, in case that some media items
are not available. In this way we are able to cope with the
semistructured aspects of the Web data.

B. Application Model

The application model (AM) gives an abstract view of the
hypermedia presentation that needs to be generated over the
CM data. It is composed of slice and slice relationships. A
slice is a meaningful presentation unit that groups media items
coming from possibly different CM concepts. The AM is in

<Painting rdf:ID="Painting_ID6">
<name>

<type:String>
<type:data>Self Portrait</type:data>

</type:String>
</name>
<year>

<type:Integer>
<type:data>1887</type:data>

</type:Integer>
</year>
<picture>

<type:Image rdf:about="http://.../SK-A-3262.ORG.jpg"/>
</picture>
<exemplifies rdf:resource="#Technique_ID2"/>
<painted_by rdf:resource="#Painter_ID2"/>

</Painting>

Fig. 3. Excerpt from CMI serialization in RDF/XML.



this way built on top of the CM. A slice that corresponds to
a page from the presentation is called a top-level slice. There
are two kinds of slice relationships: aggregation which enables
the embedding of a slice in another slice, and navigation
which specifies how a user can navigate between slices.
Navigation relationships will be implemented in a hypermedia
presentation by hyperlinks. In a multimedia presentation, nav-
igation relationships can be implemented for example as time
sequences. An AM instance (AMI) populates an AM with data
from a CMI. Fig. 4 depicts an excerpt from an AMI. It presents
the slice Slice.painting.main_ID6, a top-level slice
associated to the painting presented in the above subsection.
This slice refers using slice aggregation relationships to four
other slices. Each of the four slices contains a media item
related to different painting/painter attributes.

Slices can have attached conditions based on attribute values
coming from a user profile. A user profile stores attribute-value
pairs for user preferences (e.g. user’s level of expertise) and/or
device capabilities (e.g. image capability of the display). A
slice that has the condition not fulfilled will be removed from
the AM. The same is valid for slice relationships that refer to
such a slice.

III. HERA WEB SERVICE-ORIENTED ARCHITECTURE

Hera has an implementation made from different compo-
nents that together form one centralized application [9]. In
this paper we present a distributed architecture for the Hera
tool in which components are mapped to WSs. The loosely
coupled Hera WSs realize the plug-and-play software vision
in the context of WISs. For example, Hera can generate a
WIS by composing a WS which provides up-to-date data, a
WS that knows how to present this data, and a WS that is
able to perform adaptation of the presentation based on user
preferences/device capabilities.

We chose for a WS solution for realizing the distributed
Hera architecture because WSs have clear advantages com-
pared to their predecessors CORBA, J2EE, and DCOM [13].

<Slice.painting.main rdf:ID="Slice.painting.main_ID6">
<slice-ref rdf:resource="#Slice.painting.name_ID6"/>
<slice-ref rdf:resource="#Slice.painting.year_ID6"/>
<slice-ref rdf:resource="#Slice.painting.picture_ID6"/>
<slice-ref rdf:resource="#Slice.painter.name_ID2"/>

</Slice.painting.main>

<Slice.painting.name rdf:ID="Slice.painting.name_ID6">
<media>
<type:String>

<type:data>Self Portrait</type:data>
</type:String>

</media>
</Slice.painting.name>
...

<Slice.painter.name rdf:ID="Slice.painter.name_ID2">
<media>
<type:String>

<type:data>Vincent van Gogh</type:data>
</type:String>

</media>
</Slice.painter.name>

Fig. 4. Excerpt from AMI serialization in RDF/XML.

First of all WSs are based on the XML document paradigm, a
human readable language that abstracts from the implemen-
tation details. WS interfaces are specified in a universally
accepted Web Service Definition Language (WSDL) [14], an
XML-based language. Last but not least, Web services use the
popular HTTP protocol as the carrier of exchanged messages.

Fig. 5 presents a Web service-oriented architecture (WSOA)
for Hera based on two WSs: the Data Service and the
Presentation Service. The Data Service is responsible for
delivering up-to-date data for which the Presentation Service
will make a hypermedia presentation. A Client placed at a
Web Server location will orchestrate the communication with
the two services. The proposed WSOA has a star topology,
with the Client in the middle. The communication between
Client and services is done at SOAP [15] level which resides
on top of HTTP while the communication between the Web
Browser and the Web Server is done in plain HTTP.

First the Client asks the Data Service to provide the data.
Once the data is received it is passed to the Presentation
Service. After receiving the data, the Presentation Service
constructs a hypermedia presentation which is passed back
to the Client. The Web Server that hosts the Client uses
this presentation in providing pages to the Web Browser. The
underlying assumption here is that the Data Service and the
Application Service share the same CM.

Note that a service-based solution provides a lot of flexi-
bility for such a system. Different Presentation Services (with
different AMs) can be plugged into the system to produce
different presentations for the same data. Moreover one Pre-
sentation Service may make an HTML presentation, while
another one can provide a WML presentation, ensuring thus
the ubiquity of the built WIS. Also different Data Services
can be used in the same manner (assuming the fact that they
agree with the Presentation Service on the CM). In this way
data that comes from two different sources but sharing the

Conceptual Model Application Model

Client

Web Server

Presentation ServiceData Service

page (HTTP)

is used by

is used by

Web Browser

is used by

data (SOAP/HTTP) presentation (SOAP/HTTP)

data (SOAP/HTTP)

Fig. 5. Web service-oriented architecture.



same domain can benefit from presentation capabilities from
the same Presentation Service.

Fig. 6 describes the data transformations performed in the
two services. The Data Service holds only the CMI and
this is provided as output of the service. The Presentation
Service gets as input a CMI and performs two pipelined XSLT
transformations [9] to produce a presentation (in this particular
service an HTML presentation, but other services can produce
other types of presentations like WML, SMIL, cHTML etc.).
The first transformation (CMI2AMI) populates an AM with
data coming from the input CMI. This transformation is based
on the fact that the AM is built on top of the CM as we pointed
out in the previous subsection. The second transformation
(AMI2HTML) computes the HTML pages that correspond to
top-level slices. These HTML pages represent also the output
of the Presentation Service.

A. Web Services Descriptions

The interface of a WS is given in a Web Service Description
Language (WSDL) specification. In addition to the service
interface, such specifications give also the data types used
by the service messages and the location of the service. In
this subsection we will describe only the interface as we only
use existing XML Schema Datatypes [16], [17] (we did not
need to define our own types) and the service location can be
defined anywhere on the Web.

Fig. 7 depicts an excerpt from the Data Service WSDL
specification. First it specifies which are the messages, their
embeddings, and the type of data that messages will carry. The
getDataRequest message is an empty message. This mes-
sage is used just to trigger the response from the service. The
getDataResponsemessage has a <wsdl:part> contain-

CM

AMAMI

CMI

HTML

CMICM

XSLT transformation

Input/Output

uses

instance of

CMI2AMI

AMI2HTML

Output

Input

Output

Presentation Service

Data Service

Fig. 6. Data Service/Presentation Service.

<wsdl:message name="getDataRequest">
</wsdl:message>

<wsdl:message name="getDataResponse">
<wsdl:part name="getDataReturn"

type="xsd:string"/>
</wsdl:message>

<wsdl:portType name="DataService">
<wsdl:operation name="getData">

<wsdl:input message="impl:getDataRequest"
name="getDataRequest"/>

<wsdl:output message="impl:getDataResponse"
name="getDataResponse"/>

</wsdl:operation>
</wsdl:portType>

Fig. 7. Excerpt from Data Service WSDL.

ing the requested data string. The <wsdl:portType> asso-
ciates the request and response messages with the getData
operation of the Data Service. It also specifies the type of the
message as input or as output for the operation. The data string
returned is the CMI that the service holds.

Fig. 8 depicts an excerpt from the Presentation
Service WSDL specification. The request message
getPresentationRequest has a <wsdl:part> named
in0 (this is the default naming convention used by our SOAP
server for the operation arguments) containing one string.
The response message getPresentationResponse will
contain also a string. The <wsdl:portType> associates the
request and response messages with the getPresentation
operation of the Presentation Service. As for the Data Service,
it also specifies the type of the message as input or as output
for the operation. The input data string is the CMI and the
data string returned from the operation is the encoded (in one
string) presentation.

B. SOAP messages

After we have defined the service interface we can have
now a closer look at the actual representation of the service
messages. Despite its name the Simple Object Access Protocol
(SOAP) is not a classic (communication) protocol. It is rather a
one-way message exchange paradigm (or some others prefer

<wsdl:message name="getPresentationRequest">
<wsdl:part name="in0"

type="xsd:string"/>
</wsdl:message>

<wsdl:message name="getPresentationResponse">
<wsdl:part name="getPresentationReturn"

type="xsd:string"/>
</wsdl:message>

<wsdl:portType name="PresentationService">
<wsdl:operation name="getPresentation"

parameterOrder="in0">
<wsdl:input message="impl:getPresentationRequest"

name="getPresentationRequest"/>
<wsdl:output message="impl:getPresentationResponse"

name="getPresentationResponse"/>
</wsdl:operation>

</wsdl:portType>

Fig. 8. Excerpt from Presentation Service WSDL.



to say a lightweight protocol to exchange information in a
distributed system). A SOAP message is an XML message
containing a SOAP envelope. A SOAP envelope has an
optional SOAP header and a required SOAP body. It is the
SOAP body that will actually contain the data carried in a
message. The current implementation uses SOAP RPC which
means that all message communication is done synchronously.

Fig. 9 presents a snapshot of Client-services communi-
cation, namely the SOAP messages exchanged between the
Client and the Data Service. The SOAP Request window
displays the getDataRequest message, an empty mes-
sage as we already saw from the interface description. The
SOAP Response window shows the getDataResponse
message containing in its getDataReturn part an actual
CMI. Note that <, > are escaped as we encoded the data as a
string.

C. Tools

In order to experiment with the proposed architecture a
Java-based Hera tool was developed. Tomcat 4.1 [18] was
used as the Web server that supports servlets. On this Web
server we installed Axis 1.1 (Apache eXtensible Interaction

System) [19], a SOAP 1.1 engine. By SOAP engine we
mean a tool that supports both a SOAP server and SOAP
clients. We did deploy on the SOAP server two services
DataService and PresentationService. For their deployment we
used appropriate Axis Web Service Deployment Descriptors.
The SOAP Client that communicates with these services
was installed on the Web server, outside the SOAP server.
The WSDL specifications were generated by the Java2WSDL
emitter. Both Java2WSDL and the SOAP Monitor are part of
the Axis distribution kit. Tomcat and Axis are Java-based and
freely available from the Apache Software Foundation. The
services and the client were written in Java. The Saxon [20]
implementation was used as the XSLT processor. All software
is running on the Java 1.4 platform.

It is important to notice that when developing WSs with
Axis, the programmer doesn’t need to bother about making
WSDL interfaces or the actual encoding of the SOAP mes-
sages. All these will be automatically done by the system.
Making all WS details transparent to the programmer enables
him to focus only on the application logic implementation in
Java and makes thus the system less error-prone.

Fig. 9. SOAP messages.



D. Adaptation in Hera Web Service-Oriented Architecture

In previous work [9] we had extended the Hera methodology
to consider presentation adaptation (at AM level) based on
a user profile. Fig. 10 presents a WSOA based on four
services: Data Service, Presentation Service, Profile Service,
and Adaptation Service. Note that this architecture doesn’t
have a star topology as the Client only communicates with
three of the four services. In order to denote the order in
which the messages will be passed we added a label to the
continuous arrows. This label should be read in the increasing
number order or alphabetical order. Both sequences (1, 2, 3)
and (a, b) can be done in parallel (this is the reason why we
use both numerical and letter labels). Step 4 is performed after
completion of steps 3 and b.

The steps 1, 2, and 5 were already discussed in the be-
ginning of this section. In step a the nProfile (‘n’ stands for
new) provided by the Client is sent to the Profile Service. The
Profile Service can be viewed as a shared memory service
for user profiles. By a shared memory service we simulate
shared memory between services using one service. The profile
attributes not captured in the nProfile will be taken from the
oProfile (‘o’ stands for old), the old profile of the user, and
result in a merged Profile. The data management (e.g. updates
on the oProfile) of the Profile Service is not presented here. In
the request message sent to the Profile Service the user may
also specify if an update of the oProfile with the Profile should
be done. The Profile is sent to the Adaptation Service. Also,
the Adaptation Service receives the AM from the Presentation
Service. After receiving these two messages the Adaptation
Service computes the aAM (‘a’ stands for adapted) and sends
it to the Presentation Service. In this WSOA the Presentation
Service will use the aAM, instead of the AM, to compute the
presentation.

IV. CONCLUSION

In this paper we have described how we have implemented a
distributed WIS architecture based on the Hera methodology.
We chose for a WS-oriented solution due to the popularity

CMI

CMI

CM

is used by

AM

is used by

AM

nProfile

Client

Presentation ServiceData Service

Presentation

1 2
3

5

a

aAM

4

Adaptation Service

Profile

b

Profile Service

oProfile

is used by

Fig. 10. Extended Web service-oriented architecture.

and easy-to-implement features of WSs. In this way WISs
can be seamlessly built by composing appropriate WSs. The
Axis distribution kit proved to be a very flexible set of tools
to support WS development, deployment, and monitoring. We
have also shown examples of WSDL specifications used to
describe WSs and of SOAP messages exchanged between
WSs. At the end of the paper we have sketched a more
complex architecture based on four services.

As future work we would like to expand the Hera Web
service-oriented architecture/tool with new services like a data
query service, a data integration service, or a service able to
generate dynamic hypermedia presentations.

REFERENCES

[1] T. Isakowitz, M. Bieber, and F. Vitali, “Web information systems,”
Communications of the ACM, vol. 41, no. 1, pp. 78–80, July 1998.

[2] D. Schwabe and G. Rossi, “An object oriented approach to web-based
application design,” Theory and Practice of Object Systems, vol. 4, no. 4,
pp. 207–225, 1998.

[3] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Mat-
era, Designing Data-Intensive Web Applications. Morgan Kaufmann,
2003.

[4] N. Koch, A. Kraus, and R. Hennicker, “The authoring process of the
uml-based web engineering approach,” in First International Workshop
on Web-Oriented Software Technology, 2001.

[5] K.-D. Schewe and B. Thalheim, “Reasoning about web information sys-
tems using story algebras,” in Advances in Databases and Information
Systems (ADBIS 2004), ser. Lecture Notes in Computer Science, vol.
3255. Springer, 2004, pp. 54–66.

[6] F. Frasincar, G. J. Houben, and R. Vdovjak, “Specification framework for
engineering adaptive web applications,” in The Eleventh International
World Wide Web Conference, Web Engineering Track, 2002, http://
www2002.org/CDROM/alternate/682/.

[7] I. Foster, C. Kesselman, J. M. Nick, and S. Tueke, “The physiology
of the grid: An open grid services architecture for distributed systems
integration,” Global Grid Forum, 2002.

[8] S. Nativi, “Service-oriented technology to support geosciences,” in
Expanding Horizons: Using Environmental Data for Education, Re-
search, and Decision Making Workshop, 2003, http://my.unidata.ucar.
edu/content/Presentations/2003 expanding horizons/nativioverview.pdf.

[9] R. Vdovjak, F. Frasincar, G. J. Houben, and P. Barna, “Engineering
semantic web information systems in hera,” Journal of Web Engineering,
vol. 2, no. 1-2, pp. 3–26, 2003.

[10] G. Klyne and J. J. Carroll, “Resource description framework (rdf):
Concepts and abstract syntax,” W3C Recommendation 10 February
2004, 2004, http://www.w3.org/TR/rdf-concepts/.

[11] D. Brickley and R. Guha, “Rdf vocabulary description language 1.0:
Rdf schema,” W3C Recommendation 10 February 2004, 2004, http:
//www.w3.org/TR/rdf-schema/.

[12] M. Kay, “Xsl transformations (xslt) version 2.0,” W3C Candidate Rec-
ommendation 3 November 2005, 2005, http://www.w3.org/TR/xslt20/.

[13] A. O’Toole, “Web service-oriented architecture: The best solution to
business integration,” Cape Clear Software, 2005, http://www.capeclear.
com/technology/clearthinking/websoa.shtml.

[14] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
services description language (wsdl) 1.1,” W3C Note 15 March 2001.

[15] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer, “Simple object access protocol (soap)
1.1,” W3C Note 08 May 2000.

[16] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, “Xml
schema part 1: Structures,” W3C Recommendation 02 May 2001.

[17] P. V. Biron and A. Malhotra, “Xml schema part 2: Datatypes,” W3C
Recommendation 02 May 2001.

[18] Apache Software Foundation, “Apache tomcat,” 2006, http://jakarta.
apache.org/tomcat/.

[19] ——, “Webservices - axis,” 2006, http://ws.apache.org/axis/java/
user-guide.html.

[20] M. Kay, “Saxon (the xslt and xquery processor),” 2006, http://saxon.
sourceforge.net.


