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Abstract

The problem addressed in this paper is the allocation of multiple advertisements on a Web banner, in order to maximize
the revenue of the allocated advertisements. It is essentially a two-dimensional, single, orthogonal, knapsack problem,
applied to pixel advertisement. As this problem is known to be NP-hard, and due to the temporal constraints that Web
applications need to fulfill, we propose several heuristic algorithms for generating allocation patterns. The heuristic
algorithms presented in this paper are the left justified algorithm, the orthogonal algorithm, the GRASP constructive
algorithm, and the greedy stripping algorithm. We set out an experimental design using standard banner sizes, and
primary and secondary sorting criteria for the set of advertisements. We run two simulations, the first simulation
compares the heuristics with an optimal solution found using brute force search, and the second simulation compares
the heuristic algorithms to gain a better insight into their performance. Finding a suitable pattern generating algorithm
is a tradeoff between effectiveness and efficiency. Results indicate that allocating advertisements with the orthogonal
algorithm is the most effective. In contrast, allocating advertisements using the greedy stripping algorithm is the most
efficient. Furthermore, the best settings per algorithm for each banner size are given.

Key words: Pixel advertisement, Allocation patterns, Heuristics, Two-dimensional knapsack problem

1. Introduction

With the continuing growth of Web usage, Web advertising becomes a more dominant form of marketing every
year. According to the Interactive Advertising Bureau, Web advertising revenues for 2008 totaled $23.4 billion in the
U.S. only [1]. A special form of Web advertising is pixel advertisement, the presentation of several small advertise-
ments on a larger, two-dimensional space. It originated in 2005 from the English student Alex Tew’s “Million Dollar
Homepage” [2]. In order to make some money, he came up with the idea to sell advertising space in a unique concept.
The homepage displays a 1000 by 1000 pixel grid from which blocks of 10 by 10 pixels could be bought for 1 dollar
per pixel. Buyers could place an advertisement image on their pixels and let it link to their website. The pixel adver-
tisement website became a great success, due to its novel proposition [3]. The copycats that arose could not repeat
the success of the “Million Dollar Homepage”, but applying the concept in a different way may still be interesting.
In this work, we apply the pixel advertisement concept to Web banners. Representing 22 percent of the total Web
advertisement revenue in 2008, banner advertisements remain a significant source of income for Web advertisers [1].
A sample from the “Million Dollar Homepage” in the shape of a banner is given in Figure 1.

In our modified version of the concept, advertisers commit small Web advertisements, without specifying a loca-
tion on the banner where the advertisement should be placed. In the original approach, advertisers choose their own
pixels from the ones available and are sure of placement, while here not every advertisement is placed on the banner.
Each advertisement has a certain price per pixel, which can be obtained either by negotiations with the space-owner
or just represent the value the advertiser is asked to pay for it. If an advertisement is placed, the advertiser has to pay
the costs corresponding to the size of the advertisement. An assumption we make is that we have more advertisements
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Figure 1: Sample from “Million Dollar Homepage”

than would fit on the banner, so some advertisements of the set may not be placed. This increases the competition
among advertisers which will lead to higher prices per pixel. On the other hand, smaller advertisements are more
affordable, which makes Internet advertising more accessible for anyone. When we have a set of advertisements,
we allocate them across the banner in such a way that the revenue of the space-owner is maximized. We name this
modified version of the pixel advertisement concept, multiple advertisement allocation.

This research deals specifically with the advertisement allocation process and focuses on finding a suitable pattern
generating algorithm. The problem tackled in this work can be seen as a variant of the well-known cutting and packing
problems in the literature. When following the typology in [4], our problem can be classified as a two-dimensional,
single, orthogonal, knapsack problem. In the knapsack problem, a strongly heterogeneous assortment of small items
has to be allocated to a given set of large objects. The availability of the large objects is limited in a way that not
all small items can be accommodated. The objective is to maximize the value of the accommodated items. The term
single means we have only one large object to place our advertisements in, namely the banner. In orthogonal patterns,
the edges of small items are set parallel to the edges of the large object and rotation is not allowed [5]. The problem
is NP-hard [6], making it extremely time-consuming to find the optimal solution. Besides this, we also plan to apply
our solution on the Web which makes temporal restrictions highly relevant. As a consequence of all these constraints,
we decided to apply heuristics to find adequate solutions.

Due to the nature of our problem we chose a simulation-based research methodology. We implement several
heuristic algorithms for generating adequate allocation patterns for multiple advertisement placement. In addition,
we implement a brute force search algorithm that finds the optimal allocation pattern. In our experiments we run two
simulations, a small and a large one. The small simulation benchmarks the heuristics against the brute force search
algorithm using a small problem size, in order to emphasize the difficulties of using an optimal solution yielding
approach under temporal constraints. The large simulation uses a normal problem size with only heuristic algorithms,
to gain a better insight into their performance. We analyse the performance of the different algorithms with respect to
their effectiveness and efficiency.

In this paper, we extend our previous work on pixel advertisement [7] by refining the experimental design. We
use more realistic sets of advertisements, improved the GRASP algorithm, and added two other algorithms (i.e., the
brute force search algorithm, and the greedy stripping algorithm). In addition, we do a more thorough analysis of the
effectiveness and efficiency of the algorithms, also covering the influence sorting criteria and banner types have on the
results.

The rest of this paper is organized as follows. First, we discuss related work in Section 2. Then, we give the
problem formulation and we present a brute force search implementation for finding the optimal solution in Section
3. Four heuristic algorithms that generate adequate solutions are presented in Section 4. The description of the exper-
imental design is given in Section 5. In Section 6 we present and analyse the results of the simulation experiments.
Finally, Section 7 concludes the paper and identifies future work directions.

2. Related work

At the current moment, there is very little literature available on pixel advertisement. In [3], Web advertisement
is discussed in general and the “Million Dollar Homepage” is analysed. The author identifies the success factors and
also proposes some improvements for the pixel advertisement concept. Such an improvement is a heuristic approach
for placing multiple advertisements on a banner in [8]. We formalized this heuristic-based approach and performed
an extensive evaluation in [7].
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Other literature on the placement of Web advertisements has been focusing on the ad placement problem, intro-
duced in [9] as a variant of the bin packing problem. The ad placement problem (APP) focuses on time scheduling
(or space sharing) of advertisements on a banner. The banner has multiple time slots through which it is cycled over
time, and every slot has a different allocation pattern of advertisements. Furthermore, the authors are concerned only
with the placement of one advertisement on a banner or some advertisements side-by-side, with the height of the
advertisements equal to the height of the banner. Note that this differs from the pixel advertisement and the multiple
advertisement allocation approach, where advertisements are placed in a two-dimensional way.

Since the APP is the most popular related problem we give a short overview of the field aiming to solve this
problem. In [9], a distinction is made between the offline and online scheduling of advertisements. In the offline
problem, we have a predefined set of advertisements to be scheduled, whereas in the online problem we receive
requests for placement sequentially and have to decide whether to accept these without knowledge of future requests.
Another distinction made concerns the MINSPACE and MAXSPACE problem. In the MINSPACE problem, we are
given a number of time slots and a set of advertisements and have to allocate all advertisements over the time slots,
while minimizing the banner size. Note that all time slots have the same width and height. The goal of the MINSPACE
problem is to find the minimum banner width and height such that all advertisements are placed. In the MAXSPACE
problem, we are given the banner dimensions, the number of time slots, and a set of advertisements, and we have
to allocate the advertisements in such a way that the revenue is maximized, which means that not all advertisements
are allocated. The goal of the MAXSPACE problem is to find the optimal allocation pattern. For both problems,
several solutions are available using polynomial time approximation algorithms [10, 11, 12], column generation [13],
Lagrangian decomposition [13, 14], and a hybrid genetic algorithm [15]. Based on the previous classifications, our
research deals with an offline and MAXSPACE problem.

An overview and categorisation of cutting and packing problems is given in [4]. In this categorisation, several
variants of the knapsack problem are identified, which differ in the dimension used, the size and the number of
containers, or the use of rotated items. According to this classification, our problem is a two-dimensional, single,
orthogonal, knapsack problem. As previously stated in the introduction, the problem is two-dimensional as the banner
and advertisements have only two dimensions (width and height). It is a single problem as we have only one container,
the banner. The problem is orthogonal as we are allowed to place advertisement edges only parallel to the banner
edges. Last, it is a knapsack problem as we have more advertisements to place than the banner supports.

There are several exact approaches available on the two-dimensional knapsack problem (2DKP) and related cutting
and packing problems. The solution space of these problems can be seen as a tree, where enumerative algorithms are
used to find the optimal solution. In [5] and [16], exact tree search procedures are presented for the two-dimensional
orthogonal knapsack problem. The algorithms limit the search space by using an upper bound on the optimal solution,
after which branch & bound is used to solve the problem. A related problem, the two-staged two-dimensional knapsack
problem, is considered in [17]. The two stages refer to the classical variant of the 2DKP, in which the maximum
number of cuts allowed to obtain each item is fixed to 2. The authors propose two integer linear programming models
that are solved with a branch & bound algorithm, one for an unconstrained version of the problem, that has no limit
to the number of items that can be cut off, and another in which a 90◦ rotation of items is allowed.

Another problem related to the 2DKP is the two-dimensional orthogonal packing problem (2D-OPP). This prob-
lem, classified as an open dimension problem, differs from the knapsack problem in the sense that it focuses on input
minimisation, whereas the knapsack problem focuses on output maximization [4]. In [18], the authors present two
exact algorithms for this problem, the first being an improvement on the classical branch & bound approach, the sec-
ond is based on a new relaxation of the problem. An exact branch & bound algorithm for the subproblem of finding
a set of items that fits into the container, the orthogonal packing problem, is presented in [19]. The authors assign
items to the container without specifying a position, and solve a packing problem after each assignment using a graph
representation to find the optimal packing for the container. A branch & bound tree search procedure is also at the
basis of the study in [20], that considers a non-guillotine cutting problem (NGCP). Cutting problems focus on input
minimisation, their objective is to allocate all items to a selection of large objects such that the value, number, or total
size of these objects is minimized [4]. Non-guillotine cutting means that cutting is not performed from edge-to-edge
of the object, like is done in guillotine cuts [21].

Other solutions are based on heuristics for solving the cutting and packing problems. The two-dimensional single
knapsack problem is solved in [22] by using a local search procedure controlled by simulated annealing. In [23],
the authors present an efficient heuristic for solving the 2DKP. Their approach consists of solving a sequence of
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one-dimensional knapsack problems, such that the obtained optimal subsets create a near-optimal solution for the
two-dimensional knapsack problem. The authors also derive an approximation algorithm from the heuristic. In [24],
the authors present heuristic algorithms for the multiple-choice multidimensional knapsack problem. In this variant of
the knapsack problem, there are several classes of items, with the goal to pick one item from each class such that the
revenue is maximized. Their approach consists of a constructive heuristic that builds an initial solution, and a local
search improvement heuristic that tries to improve the solution by replacing and swapping items.

For the 2D-OPP, a hybrid metaheuristic approach is presented in [25], combining a genetic algorithm to decide on
the packing order, and a constructive placement heuristic. The two-dimensional packing problem is used to refer to
both the two-dimensional bin packing problem (2D-BPP) and the two-dimensional strip packing problem (2D-SPP).
In [26], the authors present heuristic algorithms for four cases of the 2D-BPP, and a unified tabu search approach.
An extensive survey on both the 2D-BPP and 2D-SPP is available in [27]. Heuristic approaches for the NGCP are
presented in [28] and [29], that use evolutionary algorithms, and in [30] using simulated annealing. Furthermore, in
[31] the authors use a greedy randomized adaptive search procedure (GRASP) to find the solution to the problem.
GRASP algorithms consist of a greedy randomized constructive phase, and a local search-based improvement phase.
The same authors also present a tabu search algorithm for solving the problem in [32].

3. Problem definition and optimal solution

The purpose of this section is to specify the problem that we try to solve, and to discuss the process of finding the
optimal solution. First, we give the formal problem definition together with an integer programming formulation in
Section 3.1. Second, we elaborate upon the optimal solution and present a brute force search algorithm for finding the
optimal solution in Section 3.2.

3.1. Problem definition

The formal definition of the problem to be solved is as follows. We have a set A with a fixed number of ad-
vertisements |A| to allocate in a banner. We assume we have more ads in A than would fit on the banner, thus not
every advertisement is placed. Each advertisement ai ∈ A has a width wi, height hi, and a price per pixel ppi, with
i ∈ {1, . . . , |A|}. The banner has widthW and heightH . The advertisements fromA should be allocated on the banner
such that the total value of the set of allocated advertisementsA′ (subset ofA) is maximized. Each advertisement ai

inA′ has its top-left corner at position (x, y) on the banner, starting from (0, 0) which represents the top-left corner of
the banner. The value of an allocated advertisement inA′ is defined by vi, where vi = ppi × wi × hi. Our objective is
to maximize the total value of allocated advertisements inA′.

We can formulate the problem as a 0-1 integer programming problem, which is a simplification of the problem
formulation from [5]. The possibility of having replicates has been removed from the original formulation in [5],
since our problem assumes every advertisement can be allocated only once. In order to make sure that advertisements
do not overlap on the banner we have reused a constraint from [20]. Let

Xi = {x | 0 ≤ x ≤ W − wi}, ∀ i ∈ {1, . . . , |A|}

be the set of all possible points x along the width of the banner such that an advertisement ai from A can be placed
on the banner with its top-left corner at x-position x, x ∈ Xi. Similarly we define

Yi = {y | 0 ≤ y ≤ H − hi}, ∀ i ∈ {1, . . . , |A|}

as the set of all possible allocation points y along the height of the banner. We define

xip =

1 if ai is assigned to the banner with its top-left corner at x-position p where p ∈ Xi

0 otherwise
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Figure 2: Visualization of xip, yiq, and bipqrs

yiq =

1 if ai is assigned to the banner with its top-left corner at y-position q where q ∈ Yi

0 otherwise

and let

bipqrs =

1 if advertisement i, when placed with its top-left corner at position (p, q) , cuts out point (r, s) of the banner
0 otherwise

which can be restated as

bipqrs =

1 if 0 ≤ p ≤ r ≤ p + wi − 1 ≤ W − 1 and 0 ≤ q ≤ s ≤ q + hi − 1 ≤ H − 1
0 otherwise

Figure 2 visualizes xip, yip, and bipqrs with respect to the banner. Now, the integer programming formulation can be
stated as follows:

max
|A|∑
i=1

vi

∑
p∈Xi

xip (1)

subject to

|A|∑
i=1

∑
p∈Xi

∑
q∈Yi

bipqrsxipyiq ≤ 1, ∀ r ∈ {0, . . .W− 1}, ∀ s ∈ {0, . . .H − 1} (2)

∑
p∈Xi

xip ≤ 1, ∀i ∈ {1, . . . , |A|} (3)
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∑
p∈Xi

xip =
∑
q∈Yi

yiq, ∀i ∈ {1, . . . , |A|} (4)

xip, yiq ∈ {0, 1}, ∀ i ∈ {1, . . . , |A|}, ∀ p ∈ Xi, ∀ q ∈ Yi (5)

In Eq. (1) the objective function maximizes the total value of the allocated advertisements. Constraint (2) ensures
that any banner point is used by at most one advertisement. Constraints (3) and (4) ensure that any advertisement
is allocated at most once on the whole banner. The ranges of p and q, i.e., Xi and Yi, respectively, ensure that
advertisements are always placed inside the banner. (5) is the integrality constraint. The model can be linearized by
replacing variables xip and yiq with a variable zipq as shown in [20].

3.2. Optimal solution
We have seen that our problem can be best described by a two-dimensional, single, orthogonal, knapsack problem.

The knapsack problem, just like other cutting and packing problems, is a combinatorial optimization problem that can
be formulated as an integer program.

To obtain the optimal solution, search algorithms may be used. These algorithms investigate the search space, i.e.,
the set of all feasible solutions to a problem, and look for the best one. Search algorithms can be either uninformed
or informed. Uninformed search algorithms try all possible solutions in the search space, while informed search
algorithms use heuristics to apply knowledge about the structure of the search space to reduce the execution time.

We use a standard uninformed brute force search to obtain the optimal solution. Brute force search, also referred
to as exhaustive search, is a problem-solving technique in which all possible candidate solutions are checked in order
to find the optimal solution. It is a search algorithm that uses no information other than the initial state, the operators
of the space, and a test for a solution [34]. The algorithm is used in many problems, all with a slightly different
implementation to fit the problem specifics. Our algorithm is presented in Algorithm 1. The algorithm is recursive;
on every location of the banner we try to place every advertisement once. The recursion makes sure we generate all
possible allocation patterns. Every new optimal allocation pattern is stored, eventually yielding one or more solutions
which maximize profit.

Finding the optimal solution by exhaustive search for a realistic problem size, like we present in Section 5, is
extremely time consuming. With possible Web use in mind, we want the maximum execution time of the allocation
process to be under 30 seconds. Therefore we propose in Section 4 a few heuristic algorithms that compute solutions
close to the optimal one in a relatively small amount of time. To give an indication of the differences in effectiveness
and efficiency between the exhaustive search algorithm and heuristic-based search algorithms, we compare their per-
formance on a problem of decreased size (for computational reasons), which is presented together with the comparison
results in Section 6.

4. Four heuristic-based algorithms

In this section we present four heuristic-based algorithms for the multiple advertisement allocation problem. First
we give the initialization for our heuristic algorithms. Then, we present the left justified algorithm, the orthogonal
algorithm, the GRASP constructive algorithm, and the greedy stripping algorithm.

4.1. Initialization
The initialization step considers the sorting of the set of advertisements A, and is identical for all heuristic algo-

rithms. We use a sorted list of advertisements, since the order in which the advertisements are processed influences
the pattern generated by the heuristic algorithms. Apart from a random order, we propose several sorting criteria
based on advertisement specifics, like price per pixel and total area. We sort the set of advertisements according to a
primary and secondary sort, s1 and s2. Their values may be either positive or negative depending on an ascending or
descending sorting order. The primary and secondary sort may not apply the same criteria, and we also avoid duplicate
sorting in the opposite direction. SortingA according to s1 and s2 yieldsA0, the list of advertisements through which
is iterated with variable i.
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Algorithm 1 Brute force search algorithm

This algorithm is recursive. Every recursion step keeps track of its own parameters. During a recursion call, parameters are given to the next
level. Before the first cycle, the parameters have to be initialized. Parameters q and p are cursor-variables, corresponding to the row and column
position in the banner, respectively, when the banner is seen as a matrix. The variable wi represents the width of an advertisement, hi is the
height of the advertisement, and |A| is the number of advertisements in the setA.

function brute-force-search(A, banner,W,H , q, p, maxpro f it)
{

while p <W do
while q < H do

if bannerq,p = 0 then
{Location is free}
i := 1;
while i ≤ |A| do

Get ai fromA;
if ai has not been allocated already then

if ai fits in bannerq,p then
Allocate ai in bannerq,p;
Mark ai inA as allocated;
Compute total pro f it of banner;
if pro f it ≥ maxpro f it then

maxpro f it := pro f it;
Store allocation pattern;

end if

brute-force-search(A, banner,W,H , q, p, maxpro f it);

Remove advertisement ai from banner;
Unmark ai inA as allocated;

end if
end if
i := i + 1;

end while
end if
q := q + 1;

end while
p := p + 1;
q := 0;

end while
}

4.2. Left justified algorithm

The left justified algorithm iterates through the list of advertisements A0. For each advertisement ai it scans
through the columns of the banner from top to bottom. If the end of a column is reached the iterator continues at
the next column on the first row, and so on. When an available field is found and ai fits on the empty location, the
advertisement is placed in the banner with the top left corner at the cursor position. If ai goes horizontally out of
bounds for a specific cursor position, we are unable to get it allocated and continue with the next advertisement. In
contrast, if ai goes vertically out of bounds we move the cursor to the first row of the next column. When we have
iterated through all advertisements from listA0, the algorithm stops and the allocation pattern is returned. The details
of this algorithm are shown in Algorithm 2.

4.3. Orthogonal algorithm

The orthogonal algorithm iterates through the list of advertisements A0 and places advertisements as close as
possible to the top left corner. The algorithm looks for free locations for the current advertisement by moving diago-
nally from the top left corner (q, p) = (0, 0) of the banner. At each step, the algorithm searches at location (q, p′) with
p′ ∈ {0 . . . p} and (q′, p) with q′ ∈ {0 . . . q} for the first free space where the advertisement can be allocated. We store
the first free location from the borders to (q, p) in variables verticalplace and horizontalplace. After that we compare
these variables with respect to the sum of the distances to the top and to the left and allocate ai on the position that
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Algorithm 2 Left justified algorithm
Run heuristic algorithm initialization;
for i := 1 to |A| do

Get ai fromA0;
f inished := f alse;
q := 0; {Current row in banner}
p := 0; {Current column in banner}
while f inished = f alse do

if ai fits in bannerq,p then
Allocate ai in bannerq,p;
f inished := true;

else if q + hi > H then
{ai goes vertically out of bounds}
if p <W− 1 then

p := p + 1;
q := 0;

else
f inished := true;

end if
else if p + wi >W then
{ai goes horizontally out of bounds}
f inished := true;

else
{Pixels needed for placement ai are already occupied}
if q < H − 1 then

q := q + 1;
else

if p <W− 1 then
p := p + 1;
q := 0;

else
f inished := true;

end if
end if

end if
end while

end for
return banner;

yields the smallest sum. When there is a tie we choose the one on the vertical search path. When ai is allocated, we
start again in the top-left corner of the banner, trying to allocate ai+1.

When we fail to allocate an advertisement for a certain location (q, p) we continue to walk diagonally down-right
by increasing both q and p variables by one. When the final row is reached, but there are still columns left, we only
increase column cursor p. When the final column is reached, but there are still rows left, we only increase row cursor
q. This means that after we start walking diagonally, we will eventually switch to walking either right or down, except
for the situation in which the banner is a square.

When the final row and column are reached and we still failed to allocate advertisement ai, we start again in
the top left corner of the banner and try to allocate the next advertisement from A0. When we iterated through all
advertisements inA0 the algorithm stops. The details of this algorithm are shown in Algorithm 3.

4.4. The GRASP constructive algorithm

The GRASP constructive algorithm is based on the greedy randomized adaptive search procedure (GRASP) for
the constrained two-dimensional non-guillotine cutting problem [31]. In GRASP, an iterative procedure combines a
constructive phase and an improvement phase. In the constructive phase, a solution is built using a greedy heuristic. In
the improvement phase, a local search procedure tries to improve the solution. The algorithm was originally produced
for the cutting stock problem, but with some modifications it fits our problem as well.

It has a different approach than the algorithms discussed previously, the only thing they have in common is the
initialization based on the sorting of advertisements. Sorting the advertisements to certain criteria makes the algorithm
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Algorithm 3 Orthogonal algorithm
Run heuristic algorithm initialization;
for i := 1 to |A| do

Get ai fromA0;
f inished := f alse; {To stop searching locations for this ai}

q := 0; {Current row in banner}
p := 0; {Current column in banner}
rowscompleted := f alse; colscompleted := f alse;
vertical f ound := f alse; horizontal f ound := f alse;
verticalplace := (0, 0); horizontalplace := (0, 0); {To store candidate locations}
rowposition := 0; colposition := 0; {To store chosen location}
while f inished = f alse or (rowscompleted and colscompleted) = f alse do

if colscomplete = f alse then
{Search column from top border to cursor for candidate location}
for q′ := 0 to q do

if ai fits in bannerq′ ,p then
verticalplace := (q′, p); vertical f ound := true; Break out of for-loop;

end if
end for

end if
if rowscomplete = f alse then
{Search row from left border to cursor for candidate location}
for p′ := 0 to p do

if ai fits in bannerq,p′ then
horizontalplace := (q, p′); horizontal f ound := true; Break out of for-loop;

end if
end for

end if
if horizontal f ound = true or vertical f ound = true then

if horizontal f ound = true and vertical f ound = true then
{Select location closest to left or top border}
if q′ + p (verticalplace) ≤ q + p′ (horizontalplace) then

rowposition := q′; colposition := p;
else

rowposition := q; colposition := p′;
end if

else if vertical f ound = true then
rowposition := q′; colposition := p;

else if horizontal f ound = true then
rowposition := q; colposition := p′;

end if
Allocate ai in bannerrowposition,colposition;
f inished := true;

else
if q < H − 1 then

q := q + 1;
else

rowscompleted := true;
end if
if p <W− 1 then

p := p + 1;
else

colscompleted := true;
end if

end if
end while

end for
return banner;

greedy. The main difference with the other algorithms is that we don’t search the banner for free space, but store
rectangles of free space in set L. Free rectangles are parts of the banner where no advertisement is allocated yet.
Initially, set L contains only the full banner.
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Algorithm 4 GRASP constructive algorithm
Run heuristic algorithm initialization;
f inished := f alse; {Boolean variable to stop the algorithm}
while f inished = f alse do
L j := smallest rectangle from L not marked as used;
ad placed := f alse;
i := 1;
while (ad placed = f alse) and (i ≤ |A0 |) do

Get ai fromA0;
if ai fits in L j then

Allocate ai in the banner in L j;
Remove ai fromA0;
ad placed := true;
if L j is not completely filled by ai then

Cut new rectangles;
Add new rectangles to L;

end if
Remove rectangle L j from L;

else
i := i + 1;

end if
end while
if ad placed = true then

nrectangles := number of rectangles in L;
if nrectangles ≥ 2 then

rectangleA := 1;
while rectangleA ≤ nrectangles − 1 do

rectangleB := rectangleA + 1;
while rectangleB ≤ nrectangles do

if rectangleA and rectangleB are adjacent then
Merge rectangleA and rectangleB;
Add new rectangle to L;
Remove rectangleA and rectangleB from L;
nrectangles := nrectangles − 1;
rectangleA := 1;
Break out of while-loop;

end if
rectangleB := rectangleA + 1;

end while
rectangleA := rectangleA + 1;

end while
end if

end if
Mark L j as used;
if all rectangles in L are marked as used then

f inished := true;
end if

end while
return banner;

To allocate advertisements, the following procedure is followed. First, we take the smallest rectangle of L in
which an advertisement from list A0 can fit. Then, we place an advertisement ai from list A0 that fits in the free
rectangle. Whenever an advertisement is placed in a rectangle, new free rectangles are formed and added to L, while
the original rectangle is removed from L. We always place the advertisement in a corner of the rectangle which is
closest to a corner of the banner, and cut the free space left in such a way that it yields optimal new free rectangles.
In Figure 3 the free rectangles 1, 2, and 3 are formed by placing an advertisement. In order to obtain the optimal new
free rectangles we merge either rectangles 1 and 2, or 2 and 3. We choose the merge for which the largest rectangle
can accommodate the first advertisement from list A0. If there is a tie, we just choose the merge which yields a new
free rectangle with the largest area. Whenever we fail to allocate any advertisement from A0 in a rectangle from L,
we mark the rectangle as used. This allows us to eventually stop the algorithm.
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Figure 3: Free rectangles in GRASP algorithm

The GRASP constructive algorithm differs from the original GRASP approach, since we integrate the constructive
phase and improvement phase to decrease the execution time. To enlarge the chance for free rectangles to be allocated
by an advertisement, we directly merge adjacent free rectangles after they appear in L. The new free rectangle is
then added to L and the merged rectangles are removed from L. In the original approach, this is only done in the
improvement phase. This means you settle for a weak solution from the constructive phase hoping to improve it in the
improvement phase using a local search procedure. An example of this procedure is to start by removing a number of
advertisements from the solution, merging and shifting free rectangles, and finally adding new advertisements to the
solution. This process is repeated until the solution does not improve any more. For our application, merging empty
rectangles “on the go” is more efficient than introducing a local search procedure to improve the solution.

After we have processed a rectangle we continue with the next smallest rectangle from L not used before. When
there are no free rectangles left (L is empty, the full banner is allocated) or no advertisements from listA0 that fit any
of the remaining rectangles, the algorithm stops. A brief overview of this algorithm is shown in Algorithm 4.

4.5. Greedy stripping algorithm

In the greedy stripping algorithm, advertisements are allocated in strips. These strips are filled from left to right
or top to bottom, depending on the shape of the banner. If the banner is tall we create horizontal strips and if the
banner is flat we create vertical strips. We start by placing the first advertisement ai from A0, and its width wi or
height hi, depending on the shape of the banner, determines the width or height of the strip. Then we search A0 for
advertisements that fit inside the strip and place them in a subset Asub, which contains |Asub| advertisements. The
subset is then ordered according to width or height in descending order, depending on the shape of the banner, flat
or tall, respectively. After that, we iterate through Asub trying to place the advertisements in the strip. Whenever
an advertisement ai from Asub is allocated, we remove it from original list A0. If we reached the end of the strip
or Asub is empty we create a new strip. Since A0 has changed after filling a strip, we start the next strip with the
first advertisement from A0. We continue doing this until we iterated through all advertisements from A0, then the
algorithm stops. The details of this algorithm are shown in Algorithm 5, where we present the case for which the
banner is tall. When the banner is flat or a square, an analogue procedure can be followed exchanging the row and
height-variables with the col and width-variables.

5. Experimental design

We run two simulations in which algorithms for multiple advertisement allocation are compared. First, we show
that finding the optimal solution is extremely time-consuming by benchmarking the heuristic algorithms against the
brute force search algorithm. Second, we run a large simulation for comparing the heuristic algorithms.

In the heuristics simulation, every simulation cycle has a different configuration of its parameters. We distinguish
the following three configuration parameters of which one is changed in every simulation cycle.

• Size of the banner;

• Sorting of the advertisements;

• Algorithm.

All possible combinations of values from these parameters are considered in the simulation in order to obtain
unbiased results. The order in which the configuration parameters are given specifies the setup of the simulation.
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Algorithm 5 Greedy stripping algorithm
Run heuristic algorithm initialization;
i := 1;
q := 0; {Current row in banner}
p := 0; {Current column in banner}
if W < H then
{banner is a tall banner, we create horizontal strips}
next strip top location := 0; {Keeps track of next strip location}
whileA0 , ∅ do

Get ai fromA0;
f ound ad := f alse;
q := next strip top location;
if next strip top location + hi > H then

if i ≥ |A| then
Break out of while-loop; {All ads have been checked, stop algorithm}

end if
i := i + 1; {Try next advertisement}

else
f ound ad := true; {We start a new strip with this ai}

next strip top location := next strip top location + hi;
end if
if f ound ad = true then

Create subsetAsub ofA0 with advertisements that have same or lower height hi;
SortAsub according to descending hi;
for k := 1 to |Asub | do

Get ak fromAsub;
if ak fits in bannerq,p then

Allocate ak in bannerq,p;
Remove ak fromA0;
if p + wk < W then

p := p + wk; {Next free location}
else

p := 0; {Start with new strip}
i := 1; {A0 has changed, start on top}
Break out of for-loop;

end if
i := 1; {A0 has changed, start on top}

end if
end for
p := 0; {We have iterated through all ads inAsub, start with new strip}

end if
end while

else
Do the same as above for the flat or square banner, but this time with vertical strips instead of horizontal strips;
{This part of the code is analogue to the part above, except now all width-variables are exchanged with height-variables}

end if
return banner;

For every banner size we simulate all considered sorts of the set of advertisements, and for every sort we run all
algorithms. During each cycle of the simulation we register the configuration parameters, the execution time, the
number of advertisements placed, and calculate the total profit of the generated allocation pattern. The experiment is
implemented in Matlab R2008b and run on an Intel Core 2 Quad CPU at 2.40 GHz with 4GB RAM. We discuss the
simulation parameters in the next subsections.

5.1. Size of the banner

Five standard banner sizes that are commonly used in Web advertising [33] have been selected to be used for each
of the simulation cycles. Table 1 shows the width W and the height H of the banners. During the simulation the
widths and the heights of the banners are also reverted to avoid bias towards a particular shape of the banner. In total
this amounts to 9 different banners, since the square banner is not reverted.
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5.2. Sorting of the advertisements

For every allocation process we have a list of advertisements, through which it is iterated sequentially. Therefore,
the order of the elements in the list influences the generated pattern. We distinguish between a random order, and
an order that is obtained by sorting according to specific criteria. We created the following sorting criteria from
advertisement parameters: price per advertisement pixel (pp), width (w), height (h), total area (w × h), flatness (w/h),
and proportionality ( | log(w/h)| ). For the sorting criteria, we allow the sorting of the advertisements in both ascending
and descending order. The flatness specifies whether the advertisement is flat (width > height) or tall (height > width).
The proportionality refers to how much the rectangle resembles a square. A value of 0 for this attribute means that
the rectangle is a square (log(1) = 0), any higher value in the positive or negative direction signifies that the rectangle
is flat or tall. For advertisements ranked the same by the first sorting we use a secondary sort, based on one of the
remaining criteria. Altogether the list of advertisements is sorted in 12!

10! − 12 + 1 = 121 different ways, with two
directions (ascending and descending), excluding the situations where the primary sort equals the secondary sort, and
adding one random order.

Table 1: Standard banner sizes

W×H Banner
728 × 90 Leader board
234 × 60 Half banner
125 × 125 Square button
120 × 600 Skyscraper
336 × 280 Large rectangle 0 50 100 150 200 250
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Figure 4: Distribution of advertisement widths
for 336 × 280 banner

5.3. Size of the advertisements

For our simulation the advertisements are pseudo-randomly generated. Since the size of the advertisements is
related to the size of the banner, we change it for every banner size. In order to achieve the right balance between
randomness and using a realistic dataset for allocation during the simulation, we used a specific formula to generate
the width and height of the ads independently from each other. The most important constraint was that on the “Million
Dollar Homepage” all pixels were sold to advertisers in blocks of 10 × 10 pixels. Also, the dimensions of the pixel
advertisements that were displayed on this webpage were not uniformly distributed but leaned towards a normal
distribution with a mean equal to the minimal advertisement size of 10×10 pixels. Naturally, we also do not want any
ads that exceed the dimensions of the banner itself. For the generation of the width and height of the ads, we used the
formula in Eq. (6), where the random number is drawn from the standard normal distribution.

wi, hi = max
(
10,min

(
W,H ,

⌈
(min (W,H) /40) × |random number|

⌉
× 10

))
(6)

To illustrate the distribution this formula generates, a histogram with the widths of a set of 500 ads for a 336 × 280
banner is displayed in Figure 4. The heights of the ads in this particular example are distributed in the same manner.
The set of 500 ads is an example, note that for our simulations we create a number of advertisements such that the
total size of the advertisements is approximately twice the size of the banner.

5.4. Price of the advertisements

We measure the price for advertisements in price per pixel, this means the prices of the advertisements are propor-
tional to their dimensions. The price per pixel can differ between advertisements due to negotiations with the owner
of the banner. The price per pixel for an advertisement is set to 10 added with a random one decimal value uniformly
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distributed between −1 and 1 (−1.0,−0.9,−0.8, ..., 0.8, 0.9, 1.0), resulting in a uniform distribution between 9.0 and
11.0 with a step of 0.1 (9.0, 9.1, 9.2, ..., 10.8, 10.9, 11.0). The price of the advertisement is calculated by multiplying
this price per pixel with its total area. The larger the total area of the advertisement, the higher the revenue for the
owner of the banner.

6. Simulation results

In this section we present and analyse the results of our simulations. First, we present the results of the simulations
focused on finding the optimal solution in Section 6.1. These simulations are run on a decreased problem size.
Second, we present the results of the heuristic algorithm benchmark in Section 6.2, that uses the experimental design
as presented in Section 5.

6.1. Optimal solution benchmark

In this benchmark, we simulate the heuristic algorithms and the brute force search algorithm, with the purpose to
gain insight into the effectiveness and efficiency of these algorithms. The enumerative brute force search algorithm
always finds the optimal solution, yet finding the optimal solution is extremely time consuming. To overcome this
problem, we decrease the problem size for this particular benchmark and use four instances based on the following
variables. Instead of the banner sizes present in Table 1, we use only two small banners ofW = 4 and H = 4, and
W = 5 and H = 4. Instead of the advertisements generated by Eq. 6, we use two small sets of advertisements, A1
and A2, which are presented in Table 2 and Table 3, respectively. We provide these four instances to emphasize the
enormous increase in computation time when using a larger set of advertisements or an increased banner size.

Table 2: A1 advertisements

i wi hi ppi
1 1 1 9.1
2 2 3 9.3
3 1 2 9.5
4 1 1 9.7
5 3 2 9.9
6 2 1 10.1
7 1 1 10.3
8 2 2 10.5
9 3 1 10.7
10 1 3 10.9

Table 3: A2 advertisements

i wi hi ppi
1 1 1 9.0
2 2 3 9.2
3 1 2 9.4
4 1 1 9.6
5 3 2 9.8
6 2 1 10.0
7 1 1 10.2
8 2 2 10.4
9 3 1 10.6

10 1 3 10.8
11 1 1 11.0

For the heuristics we simulated all possible combinations of the sorting criteria. The brute force search algorithm
does not use sorting criteria for the advertisements. In Table 4, the best price per pixel profits for each algorithm
per instance are shown, wherein A represents the set of advertisements, s1 represents the primary sorting criteria, s2
represents the secondary sorting criteria, Asc. means ascending, and Desc. means a descending sorting order. One
of the optimal solutions for each instance corresponding to the brute force search simulations are showed in Figure
5. Despite the decreased problem size, the brute force search algorithm finished with the smallest instance after
3 minutes, while the largest instance finished after 7 hours on an Intel Core 2 Quad CPU at 2.40 GHz with 4GB
RAM. As the results show, increasing the problem size increases the execution time of finding the optimal solution
exponentially. This emphasizes the difficulty in finding the optimal solution in a relatively small amount of time.
Running the brute force search algorithm for a banner size from Table 1 takes too much time, and justifies the use of
heuristic algorithms for multiple advertisement allocation, especially for application on the Web.

For most instances, the heuristic algorithms are able to find the optimal or a near-optimal solution, except for the
greedy stripping algorithm. The latter algorithm is the only one that creates waste, i.e., non-allocated space, due to
the nature of how the algorithm builds a solution. The results show that, apart from their impressive efficiency, the
effectiveness of the left justified algorithm, the orthogonal algorithm, and the GRASP constructive algorithm is high
as well. However, the problem size is too small to draw generally valid conclusions with respect to the effectiveness.
Nevertheless, the previous experiment – despite being performed on a small data set – gives an idea of the results
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(quality of the solution and the execution time required to find the solution) obtained with brute force search, and the
differences with respect to the results obtained using heuristics.

Table 4: Best profits per pixel for each algorithm per instance

Instance W×H A Algorithm s1 s2 Pro f it Waste Exec. time (s)
(a) 4 × 4 A1 Brute force search − − 166.00 0% 186.963732

Left justified Proportionality Desc. Price/pixel Desc. 166.00 0% 0.000200
Orthogonal Proportionality Desc. Price/pixel Desc. 166.00 0% 0.000374
Orthogonal Price/pixel Desc. − 166.00 0% 0.000434
GRASP con. Proportionality Desc. Price/pixel Desc. 166.00 0% 0.001007
Greedy str. Width Desc. Price/pixel Desc. 120.80 25% 0.000353
Greedy str. Total area Desc. Price/pixel Desc. 120.80 25% 0.000396

(b) A2 Brute force search − − 165.80 0% 1285.800622
Left justified Price/pixel Desc. − 165.60 0% 0.000211
Orthogonal Price/pixel Desc. − 165.60 0% 0.000451
GRASP con. Proportionality Desc. Price/pixel Desc. 165.80 0% 0.001217
Greedy str. Width Desc. Price/pixel Desc. 120.40 25% 0.000344
Greedy str. Total area Desc. Price/pixel Desc. 120.40 25% 0.000364

(c) 5 × 4 A1 Brute force search − − 206.40 0% 2496.981999
Left justified Shape Desc. ∗ 201.80 0% 0.000197
Orthogonal Shape Desc. ∗ 201.80 0% 0.000440
GRASP con. Height Desc. Price/pixel Desc. 202.80 0% 0.000990
Greedy str. Height Desc. ∗ 156.80 20% 0.000480
Greedy str. Price/pixel Asc. ∗ 156.80 20% 0.000432
Greedy str. Shape Asc. ∗ 156.80 20% 0.000444

(d) A2 Brute force search − − 205.80 0% 21533.128504
Left justified Width Desc. Price/pixel Desc. 201.80 0% 0.000279
Orthogonal Width Desc. Price/pixel Desc. 201.80 0% 0.000511
GRASP con. Height Desc. Price/pixel Desc. 202.20 0% 0.001342
Greedy str. Height Desc. Price/pixel Desc. 157.20 20% 0.000468
Greedy str. Shape Asc. Price/pixel Desc. 157.20 20% 0.000458

− = sorting doesn’t influence order
∗ = any sorting
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Figure 5: Optimal solution per instance

6.2. Heuristic algorithms benchmark
In this simulation we compare the heuristics presented in Section 4 with respect to effectiveness and efficiency.

The configuration of this simulation is set out in Section 5. To summarize, the configuration parameters consist of 9
different banner sizes, 121 different sorts of the set of advertisements, and 4 algorithms, which altogether result in 4356
simulation cycles. We run the full experiment 10 times to rule out bias following from the set of advertisements. The
results presented in this section are, unless stated differently, averaged over the ten instances. To avoid bias towards
particular banner sizes, we normalize the profit of the banner. We define the profit per banner pixel PP = Ptotal

W×H
,

wherein Ptotal is the total profit of the allocated pattern. Similarly, we define the execution time per banner pixel
T P = Ttotal

W×H
, wherein Ttotal is the total execution time for the allocated pattern.
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Since the same set of advertisements is used for all heuristic algorithms within an instance, we can evaluate
their performance by comparing the averaged normalized profits and execution times. We first discuss the overall
performance, and then cover the performance for specific sorting criteria and banner sizes.

6.2.1. Overall performance
For the overall performance we consider the full data set that was obtained from all instances, without prespecify-

ing any banner size or sorting criteria. The profits per banner pixel are aggregated – average for different banner sizes
and sorting criteria – per algorithm. The mean and a five point summary of the distribution of PP for each algorithm
is shown in Table 5.

Table 5: Five point summary and mean of the profit per banner pixel (PP), waste rate, and execution time (Ttotal)

Profit per banner pixel (PP) per algorithm
Algorithm Minimum Q1 Median Mean Q3 Maximum
Left justified 6.6328 9.0131 9.5442 9.3510 9.8518 10.5070
Orthogonal 6.6041 9.1042 9.6028 9.3774 9.8686 10.5150
GRASP con. 5.4448 8.6981 9.4207 9.1317 9.8205 10.4700
Greedy str. 5.2888 8.7402 9.3102 9.0821 9.6949 10.3820

Waste rate per algorithm
Algorithm Minimum Q1 Median Mean Q3 Maximum
Left justified 0.00000 0.01633 0.03460 0.06586 0.09805 0.33955
Orthogonal 0.00000 0.01462 0.02902 0.06323 0.09007 0.33843
GRASP con. 0.00000 0.01709 0.05467 0.08778 0.13029 0.45663
Greedy str. 0.01099 0.02760 0.06660 0.09299 0.12789 0.47696

Execution time (Ttotal) per algorithm in seconds
Algorithm Minimum Q1 Median Mean Q3 Maximum
Left justified 0.04568 0.17968 1.46220 2.07490 2.86220 14.02800
Orthogonal 0.04939 0.19310 1.82130 2.05550 2.99550 10.90480
GRASP con. 0.00565 0.01508 0.05819 0.08005 0.13044 0.31949
Greedy str. 0.00129 0.00277 0.00363 0.00613 0.00879 0.02787

We can note that overall, the orthogonal algorithm most often yields the highest profit per banner pixel, followed
by the left justified algorithm. The greedy stripping algorithm is the least effective. We define the waste rate as the
ratio of unallocated pixels to the total number of pixels in the banner. As expected there is a strong negative correlation
between the waste rate and the profit per banner pixel. The obtained correlation value of −0.9767 shows that a lower
waste rate will result in a higher profit per banner pixel. This is confirmed by the distribution of the waste rate per
algorithm, which is also presented in Table 5. The orthogonal algorithm produces the least waste, whereas the greedy
stripping algorithm on average produces the most waste.

The efficiency of the algorithms, i.e., the execution time in seconds, is also presented in Table 5. With respect to
efficiency, the left justified algorithm and the orthogonal algorithm perform the worst. The greedy stripping algorithm
is the most efficient of all algorithms. The GRASP constructive algorithm is slower, but still much more efficient than
both the left justified and orthogonal algorithm. The latter two algorithms loose a lot of time by iterating through the
banner for every advertisement.

To determine whether the results are significant we performed one-tailed paired t-tests for the profit per banner
pixel and the execution time, based on the means of the ten instances given in Table 6. The significance tests are
performed with α = 0.05. The orthogonal algorithm is significantly more effective than the left justified algorithm.
Furthermore, the left justified algorithm is significantly more effective than the GRASP constructive algorithm. Last,
the GRASP constructive algorithm is significantly more effective than the greedy stripping algorithm. With respect
to the effectiveness, the greedy stripping algorithm was significantly more efficient than the GRASP constructive
algorithm. The GRASP constructive algorithm is more efficient than the left justified algorithm and the orthogonal
algorithm, also statistically significant. The mean execution time of the orthogonal algorithm is lower than the left
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justified algorithm, but this difference is not significant. Therefore, we can conclude that the left justified algorithm
and the orthogonal algorithm perform similarly with respect to efficiency.

Table 6: Mean profit per banner pixel (PP) and execution time (Ttotal) per algorithm per instance

Mean profit per banner pixel (PP) per algorithm per instance
Algorithm 1 2 3 4 5 6 7 8 9 10
Left justified 9.339 9.370 9.416 9.345 9.386 9.352 9.287 9.329 9.334 9.352
Orthogonal 9.383 9.398 9.452 9.367 9.382 9.398 9.334 9.344 9.350 9.366
GRASP con. 9.077 9.136 9.233 9.151 9.177 9.155 9.085 9.098 9.102 9.103
Greedy str. 9.079 9.098 9.111 9.082 9.138 9.107 9.036 9.081 9.047 9.042

Mean execution time (Ttotal) per algorithm per instance in seconds
Algorithm 1 2 3 4 5 6 7 8 9 10
Left justified 2.16700 1.98400 2.12200 2.01200 2.22300 1.89300 2.27100 1.95800 2.12000 1.99900
Orthogonal 2.09400 1.97100 2.06200 2.04900 2.30800 1.96500 2.20800 2.00000 1.92000 1.97800
GRASP con. 0.07871 0.07800 0.08096 0.07914 0.08242 0.08196 0.08176 0.07591 0.08385 0.07779
Greedy str. 0.00615 0.00611 0.00618 0.00597 0.00640 0.00604 0.00613 0.00586 0.00639 0.00601

Table 7: Execution time and profit per banner pixel for all primary sorts for each algorithm

Algorithm Primary sort Ttotal (s) PP
Orthogonal Price/pixel Desc. 1.75 10.03
Left justified Price/pixel Desc. 1.83 10.02
Orthogonal Total area Desc. 2.30 9.80
Left justified Total area Desc. 2.10 9.79
GRASP con. Total area Desc. 0.05 9.76
Left justified Width Desc. 1.23 9.75
GRASP con. Price/pixel Desc. 0.07 9.74
Orthogonal Height Desc. 1.22 9.71
Orthogonal Width Desc. 1.29 9.70
Greedy str. Price/pixel Desc. 0.01 9.70
Left justified Height Desc. 1.53 9.68
GRASP con. Height Desc. 0.07 9.65
GRASP con. Width Desc. 0.06 9.63
Orthogonal Random order 1.63 9.62
Left justified Random order 1.82 9.61
Left justified Proportionality Asc. 1.93 9.59
Orthogonal Proportionality Asc. 2.03 9.58
GRASP con. Proportionality Asc. 0.08 9.48
Greedy str. Proportionality Asc. 0.01 9.46
Left justified Flatness Desc. 2.14 9.43
Greedy str. Total area Desc. 0.00 9.42
Orthogonal Flatness Asc. 1.98 9.42
Orthogonal Proportionality Desc. 1.97 9.39
Orthogonal Flatness Desc. 2.07 9.38
Greedy str. Random order 0.01 9.36
GRASP con. Random order 0.07 9.34

Algorithm Primary sort Ttotal (s) PP
Greedy str. Width Desc. 0.00 9.34
Left justified Proportionality Desc. 2.26 9.33
Left justified Flatness Asc. 1.54 9.31
GRASP con. Flatness Asc. 0.09 9.23
Greedy str. Height Desc. 0.00 9.22
GRASP con. Flatness Desc. 0.08 9.14
Left justified Price/pixel Asc. 1.87 9.12
Greedy str. Flatness Desc. 0.01 9.11
Orthogonal Price/pixel Asc. 1.79 9.10
Greedy str. Flatness Asc. 0.01 9.07
Greedy str. Proportionality Desc. 0.01 9.03
Greedy str. Price/pixel Asc. 0.01 8.99
GRASP con. Proportionality Desc. 0.09 8.97
GRASP con. Price/pixel Asc. 0.08 8.91
Orthogonal Height Asc. 2.67 8.89
Orthogonal Width Asc. 2.66 8.87
Left justified Height Asc. 3.66 8.82
Left justified Width Asc. 1.75 8.74
Orthogonal Total area Asc. 2.99 8.65
Greedy str. Total area Asc. 0.01 8.62
Left justified Total area Asc. 3.10 8.61
Greedy str. Width Asc. 0.01 8.51
Greedy str. Height Asc. 0.01 8.50
GRASP con. Height Asc. 0.09 8.43
GRASP con. Width Asc. 0.10 8.38
GRASP con. Total area Asc. 0.11 8.23

6.2.2. Sorting
The preliminary sorting of the advertisements influences the final allocation pattern, since all heuristic algorithms

iterate through the sorted list of advertisements. In Table 7, the price per pixel and execution time is given for all 12
primary sorting criteria, for each algorithm. Note that we still have aggregated the banner sizes and secondary sorting
criteria, nevertheless, the influence of the secondary sort on the effectiveness is relatively small. From these figures we
can conclude that the orthogonal algorithm using a descending price per pixel is the best overall choice with respect
to effectiveness, directly followed by the left justified algorithm with the same primary sorting criteria. After that,
sorting the set of advertisements descending according to total area, yields the best profit per banner pixel for the
orthogonal algorithm and left justified algorithm. Moreover, the GRASP constructive algorithm is most effective with
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the descending total area sorting criteria. Based on these results, we can assume that in general it is better to place
larger advertisements first, and then filling up the empty spaces with smaller ones. Apart from the sorting criteria,
we also considered a random sorting order. From the results we can conclude that the random sorting order has a
moderate performance with respect to the profit per banner pixel. This justifies the use of specific sorting criteria to
increase the effectiveness.

In the previous subsection we already noticed the greedy stripping algorithm outperforming the other algorithms
when it comes to execution time. The left justified algorithm and orthogonal algorithm have the lowest efficiency,
and the GRASP constructive algorithm is somewhere in the middle. An interesting observation is that sorting the set
of advertisements according to the descending dimension criteria, i.e., total area, width, height, is more efficient than
sorting them in an ascending way. An explanation is that placing larger advertisements first yields a lower number of
allocated ads, and shortens the execution time. Although the orthogonal algorithm is most effective, it is least efficient,
together with the left justified algorithm. For our purposes of using the algorithm on the Web, these algorithms are still
far below the specified maximum execution time of 30 seconds. In this case, we prefer effectiveness over efficiency,
but in other cases the need for efficiency might be higher, and the greedy stripping and GRASP constructive algorithm
are more suitable.

6.2.3. Banner size
In this section we specify for each banner size, for every algorithm, the best setting for the sorting criteria in order

to maximize revenue. Recall that we considered the five standard banner sizes ‘leader board’, ‘half banner’, ‘square
button’, ‘skyscraper’ and, ‘large rectangle’ [33]. The most effective algorithm settings per banner size are given in
Table 8.

Table 8: Most effective algorithm settings per banner size

Banner size Algorithm Primary sort S econdary sort T P (s) PP
728 × 90 Left justified Price/pixel Desc. Total area Desc. 0.00002644 10.4004
(Leader board) Orthogonal Price/pixel Desc. Total area Desc. 0.00002510 10.3997

Greedy str. Price/pixel Desc. Flatness Asc. 0.00000016 10.2806
GRASP con. Price/pixel Desc. Width Desc. 0.00000253 10.0986

234 × 60 Left justified Price/pixel Desc. Total area Desc. 0.00000880 10.3150
(Hal f banner) Orthogonal Price/pixel Desc. Height Desc. 0.00000966 10.3145

GRASP con. Price/pixel Desc. Width Desc. 0.00000101 10.2446
Greedy str. Price/pixel Desc. Height Desc. 0.00000020 10.1122

125 × 125 Left justified Price/pixel Desc. Total area Desc. 0.00001133 9.5060
(S quare button) GRASP con. Price/pixel Desc. Width Desc. 0.00000060 9.4337

Orthogonal Price/pixel Desc. Flatness Asc. 0.00001008 9.3644
Greedy str. Width Desc. Price/pixel Desc. 0.00000012 9.0669

120 × 600 Orthogonal Price/pixel Desc. Total area Desc. 0.00003000 10.4337
(S kyscraper) GRASP con. Price/pixel Desc. Total area Desc. 0.00000136 10.4151

Left justified Price/pixel Desc. Total area Desc. 0.00001948 10.3181
Greedy str. Price/pixel Desc. Width Desc. 0.00000011 10.0265

336 × 280 Left justified Total area Desc. Price/pixel Desc. 0.00002650 9.6746
(Large rectangle) Orthogonal Total area Desc. Proportionality Asc. 0.00002482 9.6636

GRASP con. Total area Desc. Price/pixel Desc. 0.00000032 9.5713
Greedy str. Height Desc. Proportionality Asc. 0.00000003 9.1050

Leader board 728 x 90. All algorithms are most effective using a descending price per pixel as the primary sorting
criteria. The left justified algorithm performs best on the leader board, followed by the orthogonal algorithm, with the
same secondary sorting criteria, i.e., a descending total area. The two algorithms perform almost similar with respect
to both effectiveness and efficiency. The greedy stripping algorithm outperforms the GRASP constructive algorithm.
The latter algorithm performs best when sorting according to a descending width, but is the least effective for this
banner size.

Half banner 234 x 60. Again, the most effective primary sorting order is a descending price per pixel for all algo-
rithms. The left justified algorithm performs best, using a descending total area as secondary sorting criteria. The
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orthogonal algorithm performs almost similar, but with a descending height as secondary sort. For the half banner,
the GRASP constructive algorithm outperforms the greedy stripping algorithm.

Square button 125 x 125. For this square shaped banner the left justified algorithm is most effective, again using a
descending total area as secondary sorting criteria. The GRASP constructive algorithm outperforms the orthogonal
algorithm, which performs very poor with this banner size. The greedy stripping algorithm performs best when using
a descending width as primary sorting criteria.

Skyscraper 120 x 600. All algorithms perform best when using a descending price per pixel primary sorting. The
orthogonal algorithm with a descending total area secondary sorting is most effective for the skyscraper. For this
banner size, the GRASP constructive algorithm beats the left justified algorithm. The three algorithms perform best
using the same secondary sorting criteria.

Large rectangle 336 x 280. For the large rectangle, the left justified algorithm is most effective, using a descending
total area primary sorting and a descending price per pixel secondary sorting. The orthogonal algorithm performs best
when using the ascending proportionality secondary sorting criteria. The greedy stripping algorithm performs best
with the descending height primary sorting criteria.

Overall, the skyscraper yields the most profit per banner pixel, followed by the leader board and half banner.
Note that similar conclusions cannot be drawn about the total revenue the banner creates, since the banners have
different sizes. Of course, using the large rectangle banner creates more revenue than the other banners. Regarding
the execution times per banner pixel we observe that the half banner, followed by the square button banner are the most
efficient. Again similar conclusions cannot be be drawn about the total execution time for a banner, as the banners
have different sizes.

7. Conclusions and future work

In this paper, we have presented heuristic-based solutions for a modified version of the pixel advertisement prob-
lem. We focused on allocating multiple advertisements on a banner and proposed several heuristic algorithms that
provide adequate solutions for the problem. Our experiments give insight into the effectiveness and efficiency of these
algorithms. The orthogonal algorithm is the most effective, followed by the left justified algorithm. In contrast, the
greedy stripping algorithm is the most efficient, followed by the GRASP constructive algorithm. When we introduce
a specific primary sorting for the set of advertisements, the orthogonal algorithm using a descending price per pixel is
the most effective. Moreover, sorting the set of advertisements according to a descending price per pixel also yields
the best profit per banner pixel for the left justified and the greedy stripping algorithm. Sorting by a descending total
area is the best for the GRASP constructive algorithm. The descending total area primary sorting order performs
second best after the descending price per pixel for the orthogonal algorithm and the left justified algorithm. Based
on these results, we can assume that in general it is better to place larger advertisements first, and then filling up the
empty spaces with smaller ones. We also specified the most effective settings for each algorithm for every banner type
used. Overall, the skyscraper yields the most profit per banner pixel, followed by the leader board and half banner.

This research also uncovers directions for future work. At the current moment our research is limited to the
allocation algorithms that we have defined, while other heuristics may yield a better effectiveness-efficiency tradeoff.
First, the left justified and orthogonal algorithm can be improved. These algorithms are quite straightforward in that
they iterate through the banner every time, revisiting places that are known to be occupied. Saving this information
and thereby preventing revisits could make the algorithms more efficient. Second, the heuristic algorithms might be
extended. An idea is to reshuffle the placed advertisements in the banner with the purpose to create more contiguous
empty space, or in such a way that the next advertisement can be placed while obeying the previous constraint. Third,
besides the use of heuristic algorithms as we present in the paper, one could apply metaheuristics, e.g., a genetic
algorithm, to optimally place advertisements in the banner.

It might be more realistic to assign different prices to particular positions on the banner. In our research, we have
a predefined set of advertisements with predefined prices, regardless of the position they are placed. The Eyetrack III
[35] research investigates the movements of the human eye when looking at Web pages. More frequently watched
areas in the banner may be assigned a higher price per pixel.
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Another idea to explore is to incorporate the semantics of advertisements into our problem definition. We could
add semantic constraints to the banner to prevent certain advertisements to be placed side by side. An example is to
prevent a Coca-cola advertisement to be allocated besides a Pepsi advertisement. Semantics can also be used to match
the advertisements on the banner to the content of the Web page, similar to what Google AdSense [36] does with
normal banners.

Furthermore, the multiple advertisement allocation problem can be extended to a scheduling problem. Until
now, related work only focused on scheduling advertisements side-by-side, instead of banners that allocate in a two-
dimensional way. Scheduling makes the banner content dynamic by adding time slots and thus increases user attention.
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