A Hybrid Model Words-Driven Approach for Web Product Duplicate Detection

Marnix de Bakker, Flavius Frasincar, and Damir Vandic

vandic@ese.eur.nl Erasmus University Rotterdam

Introduction

- Duplicate detection of products
- Aggregation of Web product offerings
- Type of data (title vs attributes)
- Example of two titles referring to same product:
 - Samsung 40" Class / LCD / 1080p / 60Hz / HDTV
 - Samsung 40" 1080p 60Hz LCD HDTV LN40D503

Algorithms

We investigate three algorithms:

- <u>Title Model Words Method</u>
 D. Vandic et. al. Faceted Product Search
 Powered by the Semantic Web Decision
 Support Systems, 53(3):425–437, 2012.
- Hybrid Similarity Method (proposed)
- TF-IDF Duplicate Detection

Title model words method

The main steps (high-level):

- First, perform a word-based cosine similarity check
- 2. Search for a model word pair where the nonnumeric parts are *approximately* the same, but the numeric parts are different
- 3. Otherwise, compute alternative average weighted similarity between title names

Title model words method

Example I

Samsung - 46" Class/ LED / 1080p /
 120Hz / HDTV'

VS.

Samsung - 46" Class/ LED / 1080p /
 200Hz / HDTV'

Title model words method

Example 2

- Samsung 55" Class/ LED / 1080p / 120Hz / HDTV'
 vs.
- Samsung 46" Class/ LED / 1080p / 120Hz / HDTV'

- Extends the Title Model Words Method
- Deals effectively with product attributes, stored as key/value pairs (KVP's)
 - e.g. ('Weight', '20.5 lbs.')
- Designed for:
 - title and product attributes (KVP's)
 - two sources of product descriptions

- Assumption: no duplicates within one Web shop
- Main idea:
 - Put each product from Web shop I in own cluster
 - Try to match each product from Web shop 2 to a cluster
 - Considers only clusters with size I

- First try to find a match using Title Model
 Words Method
- If this fails:
 - compute the hybrid similarity and cluster the two products if its higher than a threshold

Hybrid Similarity (I)

Part I: similarity between <u>values for matching</u> <u>keys</u>

- Consider all pairs of KVP's, if keys match update running average with similarity between values
- We experimented with cosine similarity and the Jaro-Winkler similarity measure

Hybrid Similarity (2)

Part II: use model words from values

For all non-matching pairs of KVP's:

- compute percentage of matching model words (extracted from the values)
- ignore keys in this computation

Final similarity:

 $hybridSim = \theta \times avgSim + (1 - \theta) \times mwPerc$ where

- θ is a weighting factor
- avgSim is the average similarity based on the matching keys (the first part)
- mwPerc is the matching model words percentage (the second part).

Example differently structured data

- TV from Bestbuy.com has the KVP:

 'Product Weight',
 '19.1 lbs. with stand (16.9 lbs. without)'

 1
- Same TV on NewEgg.com:
 ['Weight Without Stand', '16.9 lbs.']
 ['Weight With Stand', '19.1 lbs.']

TF-IDF Method

- Employs TF-IDF,
 - TF is the number of times that a term occurs in the attribute values
 - IDF is the logarithm of the total number of products divided by the number of products containing the term.
- Cosine similarity with a threshold

Evaluation setup

- Data set of 282 TV's from two Web shops
 - BestBuy.com and NewEgg.com
- There are 82 pairs (164 products) that are duplicates
- 20 random test sets (10% of total size)
- Wilcoxon signed rank test

Evaluation results

Method	Average FI- measure	Average precision	Average recall
Title model words	0.357	0.556	0.279
TF-IDF	0.201	0.433	0.133
Hybrid Similarity	0.656	0.741	0.647

Evaluation results

H0: row < col

p-values	Title model words	TF-IDF	Hybrid Similarity
Title model words	X	0.989	0.000
TF-IDF	0.049	X	0.000
Hybrid Similarity	1.000	1.000	X

Conclusions and future work

- Proposed a duplicate detection method that uses also key/value pairs
- Benchmarked against existing approaches
- Hybrid Similarity method is best performing on FI
- TF-IDF is performing surprisingly well

Conclusions and future work

Future work

- Experiment with more similarity measures
- Use semantics of product attributes/values
- Focus on efficiency (scalability)

Questions?