
A Hybrid Model Words-Driven Approach
for Web Product Duplicate Detection

Marnix de Bakker, Flavius Frasincar, and Damir Vandic

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, the Netherlands

marnixdebakker@zeelandnet.nl, {frasincar,vandic}@ese.eur.nl

Abstract. The detection of product duplicates is one of the challenges
that Web shop aggregators are currently facing. In this paper, we focus
on solving the problem of product duplicate detection on the Web. Our
proposed method extends a state-of-the-art solution that uses the model
words in product titles to find duplicate products. First, we employ the
aforementioned algorithm in order to find matching product titles. If no
matching title is found, our method continues by computing similarities
between the two product descriptions. These similarities are based on
the product attribute keys and on the product attribute values. Further-
more, instead of only extracting model words from the title, our method
also extracts model words from the product attribute values. Based on
our experimental results on real-world data gathered from two existing
Web shops, we show that the proposed method, in terms of F1-measure,
significantly outperforms the existing state-of-the-art title model words
method and the well-known TF-IDF method.

Keywords: entity resolution, model words, attribute distance, products

1 Introduction

In recent years, the amount of products sold through on-line shops has grown
rapidly, as a result of the convenience the Web offers to consumers [9]. Although
many Web shops sell the same products, the information about these products
can differ greatly from Web shop to Web shop. For example, one Web shop might
only have information about the weight and accessories, while others might also
have information about the manufacturer and the dimensions of the product.
Some Web shops only present general information, while others show a vast
amount of specific information on a certain product. As these examples show,
rather than being in one place, product information is often distributed across
many Web shops.

The product information distribution on the Web forces consumers to spend
considerable effort in order to find all their desired product information. Con-
sumers can benefit greatly if data from different Web shops could be aggre-
gated to form a more complete set of product information. However, aggregating



product data from different Web shops is a difficult task. The vast amount of
products, product information, and Web shops makes it infeasible to perform
product integration manually, therefore, this process has to be automated. To
automatically aggregate data from various websites, it is necessary to perform
duplicate detection, i.e., to determine, using data from Web shops, which product
descriptions refer to the very same product. The scope of this paper does not
encompass other product integration challenges such as product merging and
product schema alignment.

Due to the diversity of names used for products by Web shops, duplicate
detection is not as trivial as finding product names that exactly match. For in-
stance, Bestbuy.com names a TV from LG as ‘LG - 32” Class / LED / 720p
/ 60Hz / HDTV’, while Newegg.com gives the very same product the name
‘LG 32” Class (31.5” Measured) 720p 60Hz LED-LCD HDTV 32LV2400’. This
example shows that in order to be able to determine whether two product de-
scriptions (or titles) refer to the same product, one has to carefully analyze the
syntax and semantics of the description. This makes product duplicate detection
a challenging problem.

Several methods to perform duplicate detection are presented in this paper.
The first one is the title model words method [10], which is a state-of-the-art Web
product duplicate detection method that extracts the so-called model words from
product names and compares these in order to detect duplicates. Model words
are words that contain both numeric and alphabetic/punctuation characters.
These type of words often give valuable information for the process of duplicate
detection, as they usually represent some unique aspect of a product (e.g., a
product code, the model number, etc.).

The method proposed in this paper extends the title model words method
and uses it as a baseline. We also compare the results of our proposed method
against the results of a method that uses the well-known TF-IDF approach [8]
for duplicate detection. Our proposed method first uses the model words method
for product names, then uses similarities between product attributes, and sub-
sequently employs model words for the values of product properties.

The paper is organized as follows. In Sect. 2, we discuss related work on
(product) duplicate detection. Sect. 3 discusses the proposed method for dupli-
cate detection. We evaluate our method against the state-of-the-art title model
words method and a TF-IDF-based method in Sect. 4. Last, Sect. 5 concludes
the paper and suggests possible future work.

2 Related Work

In literature, we can find several duplicate detection algorithms. Some of these
algorithms are used in our experiments as baseline methods, against which we
benchmark our approach. The state-of-the-art method described in [10] is the
first baseline method that we consider. This approach uses model words ex-
tracted from the names of products to perform product duplicate detection on
the Web. For this purpose, an algorithm is used that starts by calculating the



word-based cosine similarity between two product names. If this similarity ex-
ceeds a predefined threshold α, the algorithm stops and the two products are
considered duplicates. If the similarity is lower than the threshold, the algorithm
continues by extracting model words from the two product names. Subsequently,
the algorithm determines if it can immediately conclude that the products are
not duplicates by looking for specific model word pairs (one from each prod-
uct description). For these specific word pairs, the non-numeric parts have to
be approximately the same (based on Levenshtein distance), but the numeric
parts should be different. Finding such a model word pair gives support for the
conclusion that we are dealing with two different products. Consider the two
product names ‘LG - 32” Class / LED / 720p / 60Hz / HDTV’ and ‘LG - 40”
Class / LED / 720p / 60Hz / HDTV’. In this example we identified the pair of
model words 32” and 40”. Based on the fact that their non-numeric parts are
the same and their numerical parts are not, we conclude that these two names
represent two different products.

If no word pairs meeting the previously described condition are found, the
algorithm proceeds by computing a new similarity between the two product
names. This similarity value is a weighted average of the average Levenshtein
similarity between the two sets of words in the product titles and the word-
based cosine similarity between the product names (product titles). After this
similarity is computed, the algorithm checks if there are model word pairs that
are likely to be the same, i.e., model word pairs that have approximately the
same non-numeric parts and the same numeric parts. If there are such pairs, the
aforementioned cosine/Levenshtein similarity value is updated with the model
word pair similarity. After completing this step, the final step is to check if the
final similarity value exceeds a predetermined threshold (β). If that is the case,
the products are considered to be duplicates. The method proposed in this paper
extends this method, using additional information from the product attributes
to improve the duplicate detection process. Furthermore, in our approach we
also use the similarity between pairs of product attribute names and pairs of
their corresponding values. As a specific feature, it uses model words not only
in the title, but also in the product attribute values.

The second baseline method that we use in our experiments is based on the
the Term Frequency-Inverse Document Frequency (TF-IDF) method [8]. In such
an approach, the term frequency is defined as the number of times that a word
occurs in the attribute values of a product. Here, IDF is defined as the logarithm
of the total number of products divided by the number of products in which the
word occurs. The TF-IDF method uses the parameter δ, which is the minimum
TF-IDF value in order for two products to be considered the same. These type
of duplicate detection approaches are often used in offline duplicate detection
areas [5], e.g, the approach presented in [3].

There are several other works that we can find in literature that aim for
goals similar to ours. In [6], a method for duplicate detection using (model)
words in the product titles is presented. The algorithm for this method detects
duplicates using the similarity between product titles. An important aspect of



this method is that it extracts product codes from the product titles. These
codes are numbers that are designated to products by their manufacturer and
are unique for each product. The first step for extracting the product code from a
product title is to remove common features such as weight, color, and dimensions
from the title. Subsequently, the algorithm removes stop words and words that
appear frequently in product offers of various manufacturers from the product
title. The next step is to generate candidates, which often consist of up to three
model words, for product codes. For this task, a manually created list of regular
expressions that capture knowledge on the syntactical structure of product codes
is used. The final step is based on Web verification to check the correctness of
the extracted candidates. For this purpose, a query is submitted to a Web search
engine for a candidate; the fraction of the results containing the corresponding
manufacturer, with respect to all results, is used to check the correctness of each
candidate.

The method presented in [6] is less flexible than our proposed method, since
our method does not need product codes to be contained in the title (actually,
the majority of product titles in the TV data set used in our experiments does
not contain a product code). Also, our proposed method is fully automated,
while in [6] the authors assume a manually generated list of regular expressions
that capture knowledge on the syntactical structure of product codes. Like the
title model words method, the method from [6] only uses information from the
product titles, while our proposed method also uses information from the product
attributes. By employing this extra information, we are better equipped to solve
the problem of duplicate detection on the Web.

In literature we can also find entity resolution methods that focus on the
textual similarity measures. For example, one of the methods proposed by the
authors of [2], employs an extended variant of the learnable string edit distance.
We have also encountered approaches where a vector-space based method with
a support vector machine [4] is used for the training. These methods are applied
to databases and they can identify both duplicate records and duplicate fields,
which corresponds to detecting duplicate products and attributes, respectively, in
our setup. A disadvantage of these methods is that they require the information
in all records to be stored in the same way, i.e., the names of the fields are
required to be the same for all records. Our proposed method does not have this
strict requirement. In fact, between different Web shops in the data set we use,
there is a great deal of variation in product attribute keys (which correspond to
field names) that represent the same information. This is a critical issue on the
Web; it is addressed by our proposed method, but not by the database methods
from [2].

Last, there are approaches that focus on the scalability of the duplicate de-
tection process, instead of the effectiveness. This is the case for the work done
in [12]. These methods focus on increasing the efficiency, while other methods
focus on improving the effectiveness of duplicate detection. Most methods for
duplicate detection compare each field from the first record to each field of the
second record during the process of assessing if two records are duplicates. This



can be a problem when working with large datasets, because it can cause the
execution times to become very large. By reducing the amount of data that is
considered, the methods in [12] aim to lower these execution times. The first step
towards this objective is canonicalizing each record: ordering the tokens (fields)
within the record according to some global ordering. After this is done, during
the duplicate detection phase, it suffices to only consider part of each of the
tokens, for example the suffix: the last p tokens. The two records are taken as
candidates to be duplicates if there is sufficient overlap in these parts of the two
records. If that is not the case, then it is no longer necessary for the algorithm to
consider this record pair as potential duplicates. A similarity measure is used to
determine which of the candidate pairs are classified as duplicates. As the focus
of this algorithm is on improving the efficiency of duplicate detection, while the
objective of our proposed method is to improve the effectiveness of duplicate
detection, we have not used this approach as a reference method. Nevertheless,
optimizing the efficiency of our algorithm, as suggested by this approach, is part
of our future work.

3 The Hybrid Similarity Method

As previously mentioned, our proposed method, the hybrid similarity method,
extends the title model words method [10]. While the title model words method
only uses information from the product titles, our method also exploits informa-
tion from the product attributes. Intuitively, this extra information should lead
to duplicate detection results superior to those of the title model words method.
All product attributes are stored in key-value pairs (KVP’s). An example of a
key-value pair is: (‘Weight’, ‘20.5 lbs.’).

We assume that there are no duplicate products from the same Web shop,
an assumption that is also made for the other methods. This assumption is
based on the belief that Web shops do not list their products more than once.
Furthermore, data integration within a Web shop is out of the scope of this
paper, as the context in which the duplicate detection is performed is not the
same (i.e., in these cases, there are varying details about the structure of product
descriptions).

The pseudocode of the hybrid similarity method applied to two different Web
shops is given in Algorithm 1. The method starts by assigning each product
from the first Web shop to its own cluster, in order to prevent products from
being grouped with products from the same Web shop. After this, it loops over
every product from the second Web shop and searches for duplicates among the
clustered products. If such a duplicate is found, the product is clustered with
the found duplicate.

To find an appropriate cluster for a product, the algorithm first loops over
all clusters. For each product in these clusters, the algorithm then checks if the
cluster is not ‘full’, which in this case means that it already contains a product
from the second Web shop. If the cluster is full, it is not considered any more. If
the cluster is not full, the title model words method (the baseline) is used to check



if the title of the current product matches with the title of the clustered product.
If such a title match is found, the two products are considered duplicates and
are clustered. The algorithm then continues with the next unclustered product.
If no title match is found, the algorithm proceeds to use information from the
product attributes to detect if the two products are duplicates.

To use the information from the product attributes, a similarity measure is
constructed. This measure is based on two different methods. The first method
loops over all combinations of KVP’s from both products. If it finds a pair
of matching keys, the similarity between the corresponding attribute values is
calculated. The similarity measure can be any text similarity measure; in this
paper we have performed tests using the cosine similarity and the Jaro-Winkler
similarity measure. When the loop has ended, the average of all these value simi-
larities is computed. This average similarity forms the first part of the similarity
measure.

The second part of the similarity measure starts by analyzing all KVP’s in
which no matching keys were found. Then, it extracts all model words from the
values of these attributes and combines them in two sets (one for each product).
Here, we use a broader definition of model words, i.e., a definition that also
includes purely numeric words in addition to the mixed numeric/non-numeric
words. Subsequently, the percentage of matching model words between the two
sets is calculated. This matching model words percentage forms the second part
of the similarity measure.

We should stress that for this part of similarity measure we only use the
product attribute values and disregards the keys. The reason for this is that
data from various Web shops can be structured in very different ways; only
investigating the values when their corresponding keys match, could (unneces-

Algorithm 1 Hybrid similarity method

Require: The input: Sets A and B contain all products from two Web shops
Require: γ is the threshold similarity for two keys to be considered equal, δ is the

product distance threshold that determines whether two products are identified as
duplicates

Require: calcSim(q, r,measure) calculates the similarity between strings q and r us-
ing similarity measure measure

Require: clusterFull(b, j) returns true if cluster j already contains a product from the
same Web shop as product b; otherwise, returns false

Require: key(q) returns the key from key-value pair (KVP) q; value(q) returns the
value from KVP q

Require: matchingTitle(b, j) uses model words to check if the title of the current
product b matches the title of a clustered product j (using the method from [10]);
if so, returns true; otherwise, returns false

Require: exMW(p) returns all model words from the values of the attributes (except
for those where a key match was found) from product p

Require: mw(C,D) returns the percentage of matching model words from two sets
of model words



1: Assign each product from the first Web shop (set A) to its own cluster, obtaining
a set of clusters J

2: for all b ∈ B do
3: bestSimilarity = −1
4: for all j ∈ J do
5: if not clusterFull(j) then
6: if matchingTitle(b, j) then
7: Assign product b to cluster j
8: else
9: sim = 0

10: avgSim = 0
11: m = 0 {number of matches}
12: for all KVP’s q in b do
13: for all KVP’s r in j do
14: keySim = calcSim(key(q), key(r),measure)
15: if keySim > γ then
16: sim = sim+ calcSim(value(q), value(r),measure)
17: m = m+ 1
18: end if
19: end for
20: end for
21: if m > 0 then

22: avgSim =
sim

m
23: end if
24: mwPerc = mw(exMW (b), exMW (j))
25: hSim = θ ∗ avgSim+ (1− θ) ∗mwPerc
26: if hSim > bSim then
27: bSim = hSim
28: bestCluster = j
29: end if
30: end if
31: end if
32: end for
33: if bSim > δ then
34: Add current product to cluster bestCluster
35: else
36: Assign current product to a new cluster in J
37: end if
38: end for
39: return J

sarily) limit the amount of information from the attributes that can be used
to detect duplicates. For example, a particular TV from Bestbuy.com has the
KVP: (‘Product Weight’, ‘19.1lbs. with stand (16.9lbs. without)’). Newegg.com
has information about this TV as well, only here, the information is structured
in two different KVP’s: (‘Weight Without Stand’, ‘16.9lbs.’) and (‘Weight With
Stand’, ‘19.1lbs.’). In this case, the first part of the similarity measure would



gain no information from these KVP’s, because the keys do not match. The
second part, however, would find two matching model words here (the model
word ‘16.9lbs’ and the model word ‘19.1lbs’), which would aid the algorithm to
determine whether the two names represent the same product.

The last element required for the similarity measure is θ, which is the weight
given to the first part of the similarity measure. This weight is based on the
number of key matches: it is calculated by dividing the number of key matches
by the number of KVP’s in the product with the smallest amount of KVP’s.
Intuitively, the higher the number of matching keys, the greater the importance
of the key-based similarity measure. The formula for the similarity measure is
defined as:

hybridSimilarity = θ ∗ avgSim+ (1 − θ) ∗mwPerc (1)

where avgSim is the average similarity based on the matching keys (the first
part) and mwPerc is the matching model words percentage (the second part).

When the algorithm has looped over all clustered products, it has to decide
to which cluster the current product will be added. The algorithm identifies the
closest clustered product, i.e., the clustered product for which the value of the
hybrid similarity measure is the highest. If this value is higher than the threshold
value δ, the current product is clustered with this closest product. If this value
is less than δ, the algorithm concludes that the product has no duplicates and a
new cluster that contains only this product is created.

4 Evaluation

In this section, the results of the investigated approaches are evaluated. Our
proposed method is compared against the basic title model words method and
the TF-IDF method. To assess the performance of these methods, we use them
to detect duplicates in a data set of TV’s that is obtained from Best Buy [1]
and Newegg [7]. As evaluation measures we use the F1-measure, precision, and
recall from the experiment results. The data set contains 282 TV’s, 200 from
Bestbuy.com and 82 from Newegg.com. Each TV from Newegg.com has a dupli-
cate in the data from Bestbuy.com. This means there are 82 pairs of duplicate
TV’s (so 164 TV’s belonging to a duplicate pair) and 118 products that do not
have a duplicate in the data set. To assess whether or not one method is better
than another, we run the algorithms on 20 random test sets of approximately
10% of all products. We make sure that there is a proportional (with respect
to size) amount of duplicates in these datasets, to ascertain that these smaller
datasets are still representative. We have used the remaining 90% of each data
set as the training set to determine the method parameters. Then, we calculate
the F1-measures and use a Wilcoxon signed rank test [11] to assess whether
or not one method significantly outperforms the other. This section starts by
evaluating each method separately. The title model words method, the TF-IDF
method, and the hybrid similarity method are discussed in Sect. 4.1, 4.2, and 4.3,
respectively. In Sect. 4.4 we compare the results from all three methods.



4.1 The Title Model Words Method

The title model words method uses the two parameters α and β. Both of these
parameters are thresholds that can range from 0 to 1 and both affect how similar
two titles have to be for their products to be considered the same: the higher α
and β are, the more similar titles have to be for their products to be clustered
together. Training the algorithm on the 20 training sets showed that high values
(0.8 and 0.9) for both parameters tend to provide the best results. The training
was performed by letting each parameter range from 0 to 1 with steps of 0.1.
Table 1 summarizes the findings of these runs. A somewhat surprising result
is that the F1-measure is almost always 0 when both α and β are 0.9, while
the best F1-measures are observed when these parameters take values close to,
but smaller than 0.9. The cause of this is that when both parameters are 0.9,
the similarity requirement for titles is so strict that no products are clustered
together any more.

Table 1. Means and standard deviations of the best values for each parameter over
the 20 training sets for the title model words method

Mean Standard deviation

α 0.815 0.059
β 0.845 0.051

The title model words algorithm was run on the 20 test sets described earlier,
with the corresponding (training set) optimized parameters. The average value
of the F1-measure over these 20 runs was 0.357. The corresponding average
precision and recall are 0.556 and 0.279, respectively.

4.2 The TF-IDF method

The TF-IDF method has only the parameter δ, which represents the minimum
TF-IDF value for two products to be identified as equal. The TF-IDF algorithm
was trained using values ranging from 0.1 to 0.9 for the parameter δ (with steps
of 0.1). In all training sets, the best value for δ was found to be 0.1.

The TF-IDF method was also run on the 20 test sets described previously.
The average value of the F1-measure was 0.201, the average precision was 0.433,
and the average recall was 0.133. When comparing these results to the corre-
sponding value from the title model words methods, we notice that they are all
lower than those of the title model words method.

4.3 The Hybrid Similarity Method

The hybrid similarity method uses 5 parameters. The first two parameters are
α and β. These are used in the process of finding matching titles and as such,
they are the same as in the title model words method. For these parameters,



we have used the same ranges as before for the training process (0.1 to 0.9 with
a 0.1 step size). Similar to the title model words method, the hybrid similarity
method achieves the best results with high values for α and β: in the 20 test
runs, none of the values for these two parameters were lower than 0.8, in fact,
the best values for α proved to be 0.9 in all test runs. The third parameter is
γ, the threshold that determines when two keys are considered equal. Like the
other thresholds, the optimal value for this parameter is also quite high: 0.825 on
average. The fourth parameter is the used similarity measure, which determines
the similarity between a pair of keys or values. In our tests, we have used the
cosine similarity measure and the Jaro-Winkler similarity value. The reported
results were obtained using the cosine similarity, as the results obtained using the
cosine similarity value were better than those obtained with the Jaro-Winkler
similarity measure. The fifth and final parameter is δ, which is the threshold
similarity that determines whether two products are considered equal. Like with
the other parameters, the training was performed by letting the values range
from 0.1 to 0.9 with a step size of 0.1. The best values of δ from the 20 test
runs were either 0.2 or 0.3. The average of these optimal values was 0.276. The
means and standard deviations of the four numerical parameters of this method
are shown in Table 2.

Table 2. Means and standard deviations of the best values for each numerical param-
eter over the 20 training sets for the attribute distance method

Mean Standard deviation

α 0.9 0
β 0.88 0.041
γ 0.825 0.125
δ 0.267 0.044

The average F1-measure obtained by running the hybrid similarity algorithm
over the previously described 20 test sets was 0.656. The corresponding average
values of the precision and recall were 0.741 and 0.647, respectively. All three of
these performance measures are clearly higher than the corresponding values for
the other two methods. In the next section we analyze whether the measured
differences are statistically significant.

4.4 Comparison of All Methods

The main metric we use to compare the performance of the three considered
methods is the F1-measure. The precision and recall will also be stated. As
mentioned previously, these tests are performed on the 20 test sets mentioned
before. The average values of these three performance measures are shown in
Table 3. This table shows that all three performance measures of the title model
words method are higher than those of the TF-IDF method. The hybrid similar-



ity method has higher average values than both other methods for all of these
performance measures.

Table 3. Average F1-value, precision and recall over the 20 test sets for each method

Average Average Average
Method F1-measure precision recall

Title model words 0.357 0.556 0.279
TF-IDF 0.201 0.433 0.133
Hybrid Similarity 0.656 0.741 0.647

Wilcoxon signed rank tests are performed to check whether or not these dif-
ferences are significant. For these tests, we use a significance level of 0.05. Table 4
shows the p-values for the performed comparisons, along with the corresponding
hypothesis. What stands out about these test results is that several of these
p-values are equal to zero or one, indicating that there are some very clear sig-
nificance results. For instance, the tests to determine whether or not the title
model words method and the TF-IDF method outperform the hybrid similarity
method both result in a p-value of one. This means that these two methods do
not significantly outperform the hybrid similarity method. The table also shows
that the TF-IDF method does not significantly outperform the title model words
method, with a p-value of 0.989. The title model words method does significantly
outperform the TF-IDF method, with a p-value of 0.049. The table shows very
clearly that the hybrid similarity method outperforms the other two methods, as
both p-values are 0 (these values are rounded to three decimals; without round-
ing, these p-values are 0.0001 for the title model words method and 0.000002 for
the TF-IDF method).

Table 4. The one-sided p-values for the Wilcoxon signed rank test, calculated to
determine whether or not a method outperforms the others (H0 : µrow = µcolumn, HA :
µrow < µcolumn)

p-values Title TF-IDF Hybrid
model words similarity

Title model words X 0.989 0
TF-IDF 0.049 X 0
Hybrid similarity 1 1 X

The means and standard deviations of the execution times of the three meth-
ods are presented in Table 5. To obtain these results, the three methods were
run on the 20 test sets, using the parameters which provided the best perfor-
mance (in terms of F1-measure) on the training set. The title model words is the
fastest, with an average of 109 ms. This finding is in line with our expectations,
since this method only uses the product titles. As a result, it does not spend any



Table 5. Means and standard deviations of the execution times (in milliseconds) over
the 20 test sets for each method

Method Mean Standard deviation

Title model words 109 26
TF-IDF 233 34
Hybrid similarity 3108 613

time on the product attributes. Also, the hybrid similarity method extends this
method, so the execution times of that method can not be smaller than those of
the title model words method. The TF-IDF method has larger execution times
than the title model words method, with an average of 233 ms. However, the
hybrid similarity method has by far the largest execution times: 3108 ms on av-
erage. The fact that the execution times of this method are so much larger than
those of the TF-IDF method are most likely caused by the fact that the TF-IDF
method only looks at the product attribute values, while the hybrid similarity
method uses the product title, the product attribute names, and the product
attribute values.

5 Conclusions and Future Work

This paper proposes a new hybrid similarity method in order to solve the chal-
lenging problem of product duplicate detection on the Web. Our approach ex-
tends the state-of-the-art title model words method for duplicate detection, pre-
sented in [10]. The title model words algorithm only uses information from the
product titles, but our hybrid similarity method also exploits product attribute
information. In this way, the detection of duplicate products is made possible
for the cases where the title model words method may have missed some of the
true model words. In our proposed method, the product attributes are used to
construct a weighted similarity, consisting of two parts. The first part is obtained
by first detecting pairs of matching product keys from the two products and then
computing the average similarity between the attribute values corresponding to
these matching keys. For the second part we extract the model words from all
key-value pairs where no matching keys were found and use the percentage of
matching model words from the two products as the similarity. We compare our
proposed method against both the title model words method and the well-known
TF-IDF method.

To assess the performance of the three duplicate detection methods, we use
a real-world dataset of televisions from two Web shops. This dataset contains
both duplicate and non-duplicate products. We use the F1-measure to assess
the performance of the three methods. From the results that we obtained, we
can conclude that the title model words method significantly outperforms the
TF-IDF method. More importantly, we can conclude that the hybrid similarity
method significantly outperforms the other two methods. The reason for this
result is that the hybrid similarity method uses more information, i.e., the title



model words method only uses information from the product titles, the TF-IDF
method only uses information from the product attribute values, but the hybrid
similarity method uses information from the product titles, the product attribute
values, and the product attribute keys.

As future work we would like to assess the performance of the hybrid similar-
ity method using additional string distance measures such as the Levenshtein or
Jaccard distance measures. Another research topic that we would like to pursue,
would be to use an ontology-based approach for duplicate detection, in which du-
plicate detection can be aided by domain background knowledge. For instance,
knowledge about the range of a property can support the key matching step.
Also, we would like to investigate the possibility of improving the efficiency of
our proposed method using optimization methods from existing work [12].

Acknowledgments

The authors of this paper are partially supported by an NWO Mozaiek scholar-
ship (project 017.007.142) and the Dutch national program COMMIT.

References

1. Best Buy Co., Inc.: http://www.bestbuy.com
2. Bilenko, M., Mooney, R.: Adaptive Duplicate Detection Using Learnable String

Similarity Measures. In: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2003). pp. 39–48
(2003)

3. Bilenko, M., Mooney, R.: Adaptive Name Matching in Information Integration.
IEEE Intelligent Systems 18(5), 16–23 (2003)

4. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3), 273–
297 (1995)

5. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate Record Detection: A Survey.
IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

6. Köpcke, H., Thor, A., Thomas, S., Rahm, E.: Tailoring Entity Resolution for
Matching Product Offers. In: Proceedings of the 15th International Conference
on Extending Database Technology (EDBT 2012). pp. 545–550 (2012)

7. Newegg Inc.: http://www.newegg.com
8. Salton, G., Fox, E., Wu, H.: Extended Boolean Information Retrieval. Communi-

cations of the ACM 26(11), 1022–1036 (1983)
9. Thomas, I., Davie, W., Weidenhamer, D.: Quarterly Retail e-commerce Sales 3rd

Quarter 2012. U.S. Census Bureau News (2012)
10. Vandic, D., van Dam, J., Frasincar, F.: Faceted Product Search Powered by the

Semantic Web. Decision Support Systems 53(3), 425–437 (2012)
11. Wilcoxon, F.: Individual Comparisons by Ranking Methods. Biometrics Bulletin

1(6), 80–83 (1945)
12. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Efficient Similarity Joins for Near

Duplicate Detection. ACM Transactions on Database Systems (TODS) 36(3), A:1–
A:40 (2011)


