
Sentiment Lexicon Creation from Lexical
Resources

Bas Heerschop, Alexander Hogenboom, and Flavius Frasincar

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR, Rotterdam, The Netherlands

basheerschop@gmail.com,{hogenboom,frasincar}@ese.eur.nl

Abstract. Today’s business information systems face the challenge of
analyzing sentiment in massive data sets for supporting, e.g., reputation
management. Many approaches rely on lexical resources containing words
and their associated sentiment. We perform a corpus-based evaluation
of several automated methods for creating such lexicons, exploiting vast
lexical resources. We consider propagating the sentiment of a seed set of
words through semantic relations or through PageRank-based similari-
ties. We also consider a machine learning approach using an ensemble
of classifiers. The latter approach turns out to outperform the others.
However, PageRank-based propagation appears to yield a more robust
sentiment classifier.

Key words: sentiment analysis, sentiment lexicon creation, sentiment
propagation, page rank, machine learning

1 Introduction

Sentiment analysis, also referred to as opinion mining, encompasses a broad area
of natural language processing, computational linguistics, and text mining. In
general, the aim is to determine the attitude of the author with respect to the
subject of the text, which is typically quantified in a polarity. Recent develop-
ments on the Web – enabling users to produce an ever-growing amount of virtual
utterances of opinions or sentiment through, e.g., messages on Twitter, blogs,
or on-line reviews – advocate an array of possibilities for business information
systems. Mining sentiment in the vast amount of data on the Web has many
interesting applications, such as in the analysis of on-line customer reviews, rep-
utation management, or marketing. Proper tools for sentiment mining can enable
businesses to monitor the public sentiment with respect to particular products
or brands, which can yield invaluable input for their marketing strategies.

In recent work, we assessed the state-of-the-art in sentiment analysis [1]. We
showed that many approaches essentially rely on a lexicon containing words or
phrases and their associated sentiment scores. Such lexicons often need to be
created first. Automated methods include supervised learning on a set of manu-
ally rated documents and learning through related word expansion – expanding
a small, manually created set of words by exploiting word relationships such

2 Bas Heerschop, Alexander Hogenboom, Flavius Frasincar

as synonyms, antonyms, and hypernyms. Several lexicon creation methods have
been proposed, yet their performance has typically been evaluated by means of
comparing generated lexicons with manually created golden lexicons. However,
we argue that assessing lexicon creation methods in terms of their performance
in the actual sentiment analysis process would be very insightful as well, as
sentiment lexicons are typically developed for this process and should hence be
evaluated as such.

Therefore, we propose to perform a corpus-based evaluation of sentiment
lexicon creation methods. In this paper, we compare the performance of two
commonly used variants of a sentiment propagating word expansion algorithm
and a commonly used machine learning approach based on classifiers. Our fo-
cus here is on algorithms exploiting vast, readily available lexical resources like
WordNet [2].

The remainder of this paper is organized as follows. First, Sect. 2 expands
on WordNet and how this lexical resource can be exploited for sentiment lexicon
creation. We then provide the specifics of our sentiment analysis framework as
well as the considered sentiment lexicon creation approaches in Sect. 3. Sub-
sequently, the evaluation of these methods is described in Sect. 4. Finally, we
conclude in Sect. 5.

2 Related Work

When automatically creating a sentiment lexicon, a good starting point may be
an existing lexical resource, the contents of which can subsequently be associ-
ated with a sentiment score. A widely used on-line (semantic) lexical resource
is WordNet, the design of which is inspired by psycholinguistic theories of hu-
man lexical memory. WordNet is designed to be used under program control
and enables the distinction between different word forms and word meanings.
WordNet is organized into sets of synonyms – synsets – which can be differenti-
ated based on their Part-of-Speech (POS) type. Each synset expresses a distinct
concept and is linked to other synsets through different kinds of relations (e.g.,
synonymy, antonymy, hyponymy, or meronymy).

WordNet contains four main POS types: verbs, nouns, adjectives, and ad-
verbs. The semantic network of English verbs in WordNet is typically consider-
ably more complex than the network of nouns, which suggests that verb mean-
ings are more flexible in usage than noun meanings [3]. Nouns in WordNet are
grouped in a hierarchical way based on distinguishing features (i.e., modifica-
tion, hyponymy, meronymy, and predication). This hierarchy seldomly exceeds
more than a dozen levels. Adjectives in WordNet are divided into two classes:
descriptive (e.g., “big” or “interesting”) and relational (e.g, “presidential” or
“nuclear”) and may have several types of relations. Adverbs have the least com-
plex structure of all POS types. Adverbs not derived from an adjective only
have occasional antonym relations and derived adverbs are semantically related
to their base adjectives.

Sentiment Lexicon Creation from Lexical Resources 3

The semantic relations expressed in WordNet can be exploited to generate a
sentiment lexicon. A typical approach is to start with a seed set of words and
their associated sentiment and to subsequently traverse the WordNet relations,
while propagating the sentiment [4, 5, 6]. Rather than by traversing WordNet
relations, sentiment can also be propagated to synsets that are similar to positive
or negative synsets. One way of accomplishing this is by using an algorithm
inspired by Google’s PageRank algorithm [7], which uses the link structure of
the Web to calculate a quality ranking for each Web page. Esuli and Sebastiani
argue that this algorithm can also be employed to create a ranking of how closely
synsets relate to positive or negative synsets by using the semantic structure of
WordNet [8]. Their application uses eXtended WordNet1, a publicly available
version of WordNet in which each word occurring in a gloss of a synset is mapped
to the synset to which it belongs.

Another way of creating a sentiment lexicon based on WordNet synsets and
their associated sentiment is to iterate over WordNet synsets and assign senti-
ment scores to these synsets by means of a classifier which analyzes the glosses
associated with the individual synsets. An example of a sentiment lexicon thus
generated is SentiWordNet [9], where eight classifiers (trained using a semi-
supervised method on different seed sets of glosses annotated with their associ-
ated synsets’ sentiment) have been used to analyze the gloss of each WordNet
synset σ in order to assign scores quantifying how objective Obj(σ), positive
Pos(σ), and negative Neg(σ) each synset is. Each score is determined by the
(normalized) proportion of the eight classifiers that have assigned the corre-
sponding label to it and the sum of the three scores is constrained to equal 1 for
each synset.

3 Framework

In order to assess the performance of different sentiment lexicon creation ap-
proaches, we propose to test the performance of a simple sentiment analysis
framework on a corpus, while using lexicons created with our considered ap-
proaches. The sentiment classification is further detailed in Sect. 3.1. Our consid-
ered sentiment lexicon creation methods are discussed in Sects. 3.2, 3.3, and 3.4.

3.1 Sentiment Classification

We propose a simple lexicon-based sentiment classifier for investigating the per-
formance of sentiment lexicons created by means of our considered methods. This
classifier focuses on adjectives, adverbs, verbs, and nouns. The sentiment score of
a document d is computed by aggregating the scores for each sentence s, which
in turn are computed by aggregating sentiment scores for each non-stopword w
in the sentences. The score eval (d) of a document d is thus computed as

1 http://xwn.hlt.utdallas.edu

4 Bas Heerschop, Alexander Hogenboom, Flavius Frasincar

Algorithm 1: Document scoring.
input : A document d
output: The sentiment score of document d
docScore = 0;1

docScoreSentenceCount = 0;2

foreach sentence in d do3

sentenceScore = 0;4

foreach word in sentence do5

pos = getPOS(word, sentence);6

lemma = getLemma(word, pos);7

sense = getWordSense(word, sentence, pos);8

score = getWordScore(lemma, sense, pos);9

sentenceScore = sentenceScore + score;10

end11

docScore = docScore + sentenceScore;12

end13

return docScore;14

eval (d) =
∑
s∈d

∑
w∈s

score (w) , (1)

after which the classification class (d) of a document d can be determined as

class (d) =
{

1 if eval (d) ≥ 0,
−1 if eval (d) < 0. (2)

In this process, documents are first split into sentences, after which the words
in each sentence are tagged by a POS tagger. In order to subsequently assign
sentiment scores to the individual words, we need to first retrieve the lemma and
then disambiguate the word sense before we can extract the associated sentiment
from our lexicon, as detailed in Algorithm 1.

For the word sense disambiguation process, we propose to use a Lesk algo-
rithm [10], as it has a freely available implementation for WordNet [11], which
has proven to yield satisfactory results (50–70% accuracy). The algorithm, de-
scribed in Algorithm 2, selects the word sense that is semantically most similar
to the words in the context (i.e., the other words in the sentence). This similarity
is measured in terms of the overlap of an ambiguous word’s gloss and glosses of
its context.

3.2 Traversing WordNet Relations

The sentiment classification process described in Sect. 3.1 requires a lexicon in
order to find the sentiment scores associated with words. A typical approach to
create such a lexicon is to start with a manually created seed set of words and
their associated sentiment [4, 5, 6]. Such a seed set may for example contain
the positive words “beautiful”, “proud”, “security”, “good”, and “success” and

Sentiment Lexicon Creation from Lexical Resources 5

Algorithm 2: Word Sense Disambiguation.
input : The to be disambiguated word w and the sentence s that contains the

word
output: The sense sense of w with the highest semantic similarity to the words

in the context
targetSenses = ∅; // Senses of the target word w1

targetGlosses = ∅; // Glosses of the word senses for w2

senseScores = ∅; // Scores of the word senses for w3

bestSense = ∅; // Best sense for w4

bestScore = −1; // Score for best sense for w5

k = 8; // Considered context around w6

// Retrieve the sequence of words starting k/2 words to the left of7

// w and ending k/2 words to the right of w, excluding w8

context = getContext(s, w, k);9

// Look up and add all senses of POS noun and verb for w10

targetSenses = getSenses(w);11

foreach sense in targetSenses do12

// Retrieve the gloss of the sense and the glosses connected to13

// it through hypernym, hyponym, meronym, and troponym relations14

targetGlosses = {targetGlosses, getRelGlosses(sense)};15

end16

foreach word in context do17

// Look up and add all senses of POS noun and verb for word18

senses = getSenses(word);19

foreach sense in senses do20

// Retrieve the gloss of the sense and the glosses connected21

// to it through hypernymy, hyponymy, meronymy, and troponymy22

glosses = getRelGlosses(sense);23

foreach gloss in glosses do24

foreach targetGloss in targetGlosses do25

// Each overlap which contains N consecutive words26

// contributes N2 to the gloss sense combination score27

senseScores[targetGloss] += overlap(gloss, targetGloss);28

end29

end30

end31

end32

foreach sense in targetSenses do33

if senseScores[getGloss(sense)] > bestScore then34

bestScore = senseScores[getGloss(sense)];35

bestSense = sense;36

end37

end38

return bestSense;39

6 Bas Heerschop, Alexander Hogenboom, Flavius Frasincar

Algorithm 3: Propagating WordNet from a seed set.
input : The WordNet files, a list seedWords of the words to propagate, their

associated scores ξ, an integer K denoting the maximum number of
iterations, and a double limit which defines the score given to words in
the last iteration

output: A sentLexicon containing all propagated words with their computed
sentiment scores

sentLexicon = ∅;1

synsets = retrieveSynsets(); // Retrieve all synsets in WordNet2

δ = limit
1
K ;3

foreach word in seedWords do4

ξ = score(word);5

propWord(synsets, sentLexicon, word, ξ, δ, 1, K); // See Algorithm 46

end7

return sentLexicon;8

the negative words “unfortunate”, “distressed”, “sad”, “hate”, and “bad”. The
scores of the seed words equal 1 for positive words and −1 for negative words.

For each word in the seed set, WordNet relations (hyponym, hypernym, and
antonym relations) can then be traversed and each encountered word w can
be stored with a computed word score based on the score of the seed word, a
diminishing factor, and an iteration step (i.e., the number of relations between
the word and the seed word). The word score must be multiplied by −1 when
traversing an antonym relation. We thus define the word scoring function as

score (w, ξ, τ, δ, k) = ξτδk, τ ∈ {−1, 1}, k ∈ {1, . . . ,K},
− 1 ≤ ξ ≤ 1, 0 < δ < 1, (3)

with ξ the score of the seed word, τ indicating whether to inverse (−1) the score
or not (1), δ the diminishing factor, and k the iteration step with a constraint
of a maximum number of iterations denoted as K. The word score function
weights each word encountered with a confidence measure that represents how
likely it is that the given word has the designated positive or negative sentiment
of the seed word. We define an iteration as traversing a relation between two
synsets. On every iteration of the algorithm, words in the graph that are closely
related to a seed word will get a higher score than those that are less related to
a seed word. Thus, a word that is not a seed word, but is a neighbor to at least
one seed word, will obtain a sentiment score similar to that of its adjacent seed
words. At each iteration this will then propagate to other words. If a word is
reached through a different path, then the word is assigned the score obtained
from the shortest path between the considered paths between a word and any
of the seeds (i.e., the score of the lowest iteration step). This process, yielding
a lexicon containing word, word sense, POS tag, and a computed sentiment
score, is detailed in Algorithm 3. This algorithm in turn utilizes a recursive word
propagation function detailed in Algorithm 4.

Sentiment Lexicon Creation from Lexical Resources 7

Algorithm 4: Propagating a single word in WordNet (propWord).
input: A set containing the parsed WordNet synsets, a sentLxicon for storing

the propagated words with their computed scores, a word to propagate,
the score ξ of the word, a diminishing factor δ, an integer k denoting the
current iteration step, and an integer K denoting the maximum number
of iterations

if k ≤ K then1

if word.ReachedInIteration > k then2

// If this word has not been reached through another, shorter3

// path (default path length equals ∞), proceed propagation4

synsetsWithWord = getSynsets(synsets, word);5

foreach synset in synsetsWithWord do6

pos = getPOS(synset);7

foreach syn in synset.Synonyms do8

addToLexicon(syn,pos,ξ);9

end10

foreach relation in synset.Relations do11

τ = 1;12

if relation.typeOf(antonym) then τ = −1;13

foreach syn in relation.Synonyms do14

propWord(synsets, sentLexicon, syn, ξτδk, δ, k + 1, K);15

end16

end17

end18

word.ReachedInIteration = k;19

end20

end21

3.3 PageRank-Based Propagation

Rather than by traversing semantic relations in WordNet, sentiment can also
be propagated to synsets that are similar to predefined positive and negative
synsets. Google’s PageRank algorithm [7] can be used to exploit the semantic
structure of WordNet to create a ranking of how closely synsets relate to positive
or negative synsets [8].

The input to PageRank is the parsed set of synsets, and its output is a vector
a = (a1, . . . , aN) with sentiment scores for all N (117,659) synsets in WordNet,
where ai represents the score for synset σi. PageRank iteratively computes vector
a using

ak
i = α

∑
j∈B(i)

ak−1
j

|F (j)|
+ (1− α)ei, (4)

where ak
i denotes the sentiment score of the i-th entry of a at the k-th iteration,

B represents backward links, F represents forward links, ei is an element of the

8 Bas Heerschop, Alexander Hogenboom, Flavius Frasincar

constants vector e = (e1, . . . , eN) with a constraint such that
|N |∑
i=1

ei = 1, and α

is a control parameter with a range of [0, 1].
When creating a sentiment sentiment lexicon with PageRank, we first need

to retrieve all N synsets (glosses) from eXtended WordNet and store their for-
ward links. We subsequently loop over each synset and set its forward links as
backward links of the synsets to which the synset points. After parsing eXtended
WordNet, e is initialized, such that all elements other than the seed synsets are
assigned a value of 0, while seed synsets are assigned proportional values such
that the sum of elements in e equals 1. Alternatively, elements in e can be as-
signed values based on their scores in SentiWordNet, i.e., by dividing synsets’
positivity (negativity) scores greater than 0 by the sum of positivity (negativ-
ity) scores and by assigning other synsets a score of 0. Sentiment scores in a
are initialized at 1

N . The PageRank algorithm iteratively updates the sentiment
scores a and stops when the cosine of the angle between ak and ak−1 exceeds χ.
Following Esuli and Sebastiani [8], we use χ = 1− 10−9 and α = 0.85.

To create both a ranking for positivity and negativity, the PageRank algo-
rithm must be run twice; one time where the elements of e are set for a positive
seed of synsets and second time for negative ones. When the algorithm – de-
scribed in Algorithm 5 – is completed, each extracted synset contains both a
positive and a negative score. The sentiment associated with a synset is the sum
of the positive and negative scores, which results in a real number in the interval
[−1, 1].

3.4 SentiWordNet

Besides creating sentiment lexicons by exploiting the WordNet relations or sim-
ilarities, one could also create sentiment lexicons by iterating over WordNet
synsets and their associated glosses and assign sentiment scores to these synsets
by means of a classifier. SentiWordNet [9] has been created in such a way and
would thus be a convenient resource to use in order to assess the performance
of such a sentiment lexicon creation method.

In SentiWordNet, each WordNet synset σ has been assigned scores on ob-
jectivity Obj(σ), positivity Pos(σ), and negativity Neg(σ). The sum of these
scores always equals 1 for each WordNet synset. A score Obj(σ) > 0 means a
less subjective word and thus weaker sentiment scores in terms of Pos(σ) and
Neg(σ).

The objectivity, positivity, and negativity scores for all 117,659 WordNet
synsets have been computed by an ensemble of eight ternary classifiers. Each
classifier has classified a synset as either objective, positive, or negative, based on
a vectorial representation of the associated gloss. The overall scores for a synset
have then been determined by the (normalized) proportion of classifiers that
have assigned the corresponding labels to the synset. The scores thus obtained
have been evaluated on a set of 1,105 WordNet synsets which have been scored
in a similar fashion by five human annotators.

Sentiment Lexicon Creation from Lexical Resources 9

Algorithm 5: PageRank-based propagation in WordNet.
input : The eXtendedWordNet files, a list posSeedSynsets and negSeedSets

of the positive and negative seed synsets and their sentiment scores
(respectively), a double χ denoting the termination condition, and a
double α which defines the control parameter

output: A sentLexicon containing all ranked words with their computed scores
sentLexicon = ∅;1

synsets = retrieveSynsets(); // Retrieve all eXtendedWordNet synsets2

foreach synset in synsets do setBackwardLinks(synset);3

foreach seedSet in {posSeedSynsets, negSeedSynsets} do4

e = initializeE(seedSet);5

ak = initializeA();6

ak−1 = initializeA();7

θ = 0;8

while θ < χ do9

foreach ak
i in ak do ak

i = calculateAi(ak−1);10

θ = calculateCosAngle(ak,ak−1);11

ak−1 = ak;12

end13

synsets = assignScores(synsets);14

end15

sentLexicon = buildLexicon(synsets);16

The classifiers used by SentiWordNet differ from one another in their training
data as well as in their implemented machine learning approaches. Training sets
have been generated from a seed set of positive and negative synsets, which have
been expanded by traversing WordNet relations such as see-also and antonymy.
The considered number of expansion steps varies amongst the classifiers be-
tween 0, 2, 4, and 6. Neutral synsets in the training data have been determined
as synsets which are neither positive nor negative in both the expanded seed
sets and the General Inquirer lexicon [12]. The considered machine learning ap-
proaches are Support Vector Machines (SVMs) and Rocchio classifiers.

The sentiment scores generated by an ensemble of these classifiers can, com-
bined with their associated synsets σ, easily be utilized as a sentiment lexicon.
However, in our approach, we ignore the objectivity scores, as they implicitly
influence the positive and negative scores. Instead, we define our own sentiment
score for σ as a single real number computed by subtractingNeg(σ) from Pos(σ),
which results in a real number in the interval [−1, 1].

4 Evaluation

We have implemented the framework presented in Sect. 3 in order to be able
to assess the performance of our considered sentiment lexicon approaches on
a corpus. The implementation was done in C#.Net in combination with a Mi-

10 Bas Heerschop, Alexander Hogenboom, Flavius Frasincar

crosoft SQL Server database. For lemmatization and word sense disambiguation,
we used functionalities provided by the open-source C# WordNet.Net WordNet
API 2. Our POS tagger – with an accuracy of 98.7% [13] – is based on SharpNLP3

and is provided to us by Teezir4.
The performance of our considered sentiment lexicon approaches was evalu-

ated on a collection of 1,000 positive and 1,000 negative English movie reviews5,
which have been extracted from movie review web sites by Pang and Lee [14].
The review classifications have been derived from the accompanying numerical
review scores. On this corpus, we have evaluated the performance of our simple
sentiment analysis framework when using sentiment lexicons created by uti-
lizing our discussed algorithm for traversing WordNet relations (WordNetRel),
two PageRank-based propagation methods, and SentiWordNet. The considered
PageRank-based methods differ in their values for e; in our first variant, we
distribute the weights equally amongst the synsets that are part of our seed
sets (PageRankSeed), whereas our second variant is bootstrapped based on the
SentiWordNet scores of all synsets (PageRankSWN).

In our evaluation, several performance measures have been taken into ac-
count. For both the positive documents and the negative documents, we report
precision, recall, and the F1 measure. Precision is the percentage of the positively
(negatively) classified documents which have an actual classification of positive
(negative). Recall is the percentage of the actual positive (negative) documents
which is also classified as such. The F1 measure is a weighted average of preci-
sion and recall. We also report some statistics on our full corpus. We report the
macro-level F1 measure, which is the average of the F1 scores of the two classi-
fications, and the accuracy, which is the total percentage of correctly classified
documents. Our results are reported in Table 1.

Creating a sentiment lexicon when propagating sentiment by exploiting
WordNet relations (WordNetRel) yields an overall F1 measure of 41.3%. This
approach also classifies relatively more documents as positive than as negative
and provides a correct classification in over 50% of the time. Conversely, both
PageRank-based algorithms appear to misclassify more than half of the docu-
ments in our test corpus, albeit in different ways. PageRankSeed exhibits a high
recall on positive documents, whereas PageRankSWN’s recall on positive docu-
ments is relatively low. Conversely, PageRankSeed has a low recall on negative
documents, whereas PageRankSWN exhibits a high recall on negative docu-
ments. This renders the performance of PageRankSWN more stable over all
documents. Like most other considered approaches, sentiment lexicon creation
based on machine learning techniques (SentiWordNet) turns out to exhibit a
slightly biased performance on our corpus; relatively more documents appear
to be classified as positive than as negative. Yet, the SentiWordNet approach
yields a macro F1 measure of 56.8% and moreover correctly classifies a similar
2 http://opensource.ebswift.com/WordNet.Net/
3 http://sharpnlp.codeplex.com/
4 http://www.teezir.com/
5 http://www.cs.cornell.edu/People/pabo/movie-review-data/

Sentiment Lexicon Creation from Lexical Resources 11

Table 1. Experimental Results.

Positive Negative Overall

Method Precision Recall F1 Precision Recall F1 Accuracy Macro F1

WordNetRel 51.0% 94.3% 66.2% 62.3% 9.4% 16.3% 51.9% 41.3%
PageRankSeed 49.8% 86.8% 63.3% 48.6% 12.5% 19.9% 49.7% 41.6%

PageRankSWN 49.6% 43.0% 46.1% 49.7% 56.3% 52.8% 49.7% 49.4%
SentiWordNet 56.3% 84.3% 67.5% 68.8% 34.6% 46.0% 59.5% 56.8%

percentage of all documents in our corpus. The observation of many of the ap-
proaches typically being biased towards positive documents may be explained by
people tending to avoid negative words when expressing negative opinions, thus
rendering purely lexicon-based sentiment classification more difficult [15, 16, 17].

Our results show that in terms of accuracy, the SentiWordNet approach out-
performs all other considered approaches. Conversely, the PageRank-based sen-
timent propagation method bootstrapped using SentiWordNet scores appears
to be the most robust approach in that the difference between its F1 measures
for positive and negative documents is smaller than is the case for the other
considered approaches.

5 Conclusions and Future Work

In order for today’s businesses to, e.g., keep a close eye on how their brands or
products are perceived by the market, recent developments in the field of senti-
ment analysis may prove to be crucial for business information systems facing the
challenge of extracting relevant information from the massive amount of data
available through the Web. Many existing sentiment analysis approaches rely
on lexical resources containing words and their associated sentiment. Creating
such resources may be a cumbersome task, yet several methods for automated
sentiment lexicon creation have already been proposed.

In this paper, we have performed a corpus-based evaluation of a number of
distinct automated sentiment lexicon creation methods exploiting vast, readily
available lexical resources. We have considered an algorithm exploiting semantic
relations in a lexical resource in order to propagate the sentiment of a seed set
of words, as well as a PageRank-based algorithm propagating the sentiment of a
seed set of words to related words. We have also considered a machine learning
approach based on Support Vector Machines. The latter approach turns out to
outperform the others in terms of accuracy and macro F1 measure. However, cre-
ating a sentiment lexicon with a PageRank-based propagation algorithm appears
to result in the most robust sentiment classifier.

In future work, we would like to consider in our comparisons different lan-
guages (e.g., Dutch, Romanian, etcetera). Other possible directions for future
work include the development and analysis of novel sentiment lexicon creation
methods, focusing not only on existing lexical resources, but on, e.g., texts an-
notated for sentiment as well.

12 Bas Heerschop, Alexander Hogenboom, Flavius Frasincar

References

1. Heerschop, B., van Iterson, P., Hogenboom, A., Frasincar, F., Kaymak, U.: Ana-
lyzing Sentiment in a Large Set of Web Data while Accounting for Negation. In:
7th Atlantic Web Intelligence Conference (AWIC 2011), Springer (2011) 195–205

2. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)
3. Fellbaum, C.: English Verbs as a Semantic Net. International Journal of Lexicog-

raphy 3(1) (1993) 259–280
4. Kim, S., Hovy, E.: Determining the Sentiment of Opinions. In: 20th International

Conference on Computational Linguistics (COLING 2004), ACL (2004) 1367
5. Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: 10th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2004), ACM (2004) 168–177

6. Lerman, K., Blair-Goldensohn, S., McDonald, R.: Sentiment summarization: Eval-
uating and learning user preferences. In: 12th Conference of the European Chapter
of the ACL (EACL 2009), ACL (2009) 514–522

7. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
In: 7th International World-Wide Web Conference (WWW 1998), Elsevier (1998)
107–117

8. Esuli, A., Sebastiani, F.: PageRanking WordNet Synsets: An Application to Opin-
ion Mining. In: 45th Annual Meeting of the Association of Computational Lin-
guistics (ACL 2007), ACL (2007) 424–431

9. Esuli, A., Sebastiani, F.: SENTIWORDNET: A Publicly Available Lexical Re-
source for Opinion Mining. In: 5th Conference on Language Resources and Eval-
uation (LREC 2006), European Language Resources Association (ELRA) (2006)
417–422

10. Lesk, M.: Automatic Sense Disambiguation Using Machine Readable Dictionaries:
How to Tell a Pine Cone from an Ice Cream Cone. In: 5th Annual International
Conference on Systems Documentation (SIGDOC 1986), ACM (1986) 24–26

11. Dao, T., Simpson, T.: Measuring Similarity between Sentences. Technical report,
WordNet.Net (2005) Available online, http://wordnetdotnet.googlecode.com/

svn/trunk/Projects/Thanh/Paper/WordNetDotNet_Semantic_Similarity.pdf.
12. Stone, P., Dunphy, D., Smith, M., Ogilvie, D.: The General Inquirer: A Computer

Approach to Content Analysis. MIT Press (1966)
13. Buyko, E., Wermter, J., Poprat, M., Hahn, U.: Automatically adapting an NLP

Core Engine to the Biology Domain. In: 9th Bio-Ontologies Meeting and the Joint
Linking Literature Information and Knowledge for Biology (ISMB 2006), Oxford
University Press (2006) 65–68

14. Pang, B., Lee, L.: A Sentimental Education: Sentiment Analysis using Subjec-
tivity Summarization based on Minimum Cuts. In: 42nd Annual Meeting of the
Association for Computational Linguistics (ACL 2004), ACL (2004) 271–280

15. Dave, K., Lawrence, S., Pennock, D.: Mining the Peanut Gallery: Opinion Extrac-
tion and Semantic Classification of Product Reviews. In: 12th International World
Wide Web Conference (WWW 2003), ACM (2003) 519–528

16. Taboada, M., Voll, K.: Extracting Sentiment as a Function of Discourse Structure
and Topicality. Technical Report 20, Simon Fraser University (2008)

17. Turney, P.: Thumbs up or Thumbs down? Semantic Orientation Applied to Un-
supervised Classification of Reviews. In: 40th Annual Meeting of the Association
for Computational Linguistics (ACL 2002), ACL (2002) 417–424

