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Abstract

This paper proposes XAL, an XML ALgebra. Its novelty is
based on the simplicity of its data model and its well-defined
logical operators, which makes it suitable for composability,
optimizability, and semantics definition of a query language
for XML data. At the heart of the algebra resides the notion
of collection, a concept similar to the mathematician’s monad
or functional programmer’s comprehension. The operators are
classified in three clusters: extraction operators retrieve the
needed information from XML documents, meta-operators con-
trol the evaluation of expressions, and construction operators
build new XML documents from the extracted data. The re-
sulting algebra has optimization laws similar to the known laws
for transforming relational queries. As a consequence, we pro-
pose a heuristic optimization algorithm similar to its relational
algebra counterpart.

Keywords: XML, query language, query algebra,
query optimization

1 Introduction

The Web is the major platform for information ex-
change. It is a huge database supported by the-
ories and technologies in their infancy. In order
to contribute to the formal foundation of the Web,
the database theory has embarked upon a fascinat-
ing journey of rediscovery (Vianu 2001). One of
the spawned Web technologies is XML, a popular
standard to encode Web data. A query language
that exploits the structure of XML is a hot research
topic. An XML algebra provides a solid ground to
define the semantics of a query language, to analyze
its power of expression, and to perform query opti-
mizations. There are a lot of proposals for XML
query languages (e.g. W3C XQuery, XSLT, XMAS,
XQuery, Quilt, XML-GL, XML-QL, XQL, YATL,
Lore, UnQL, XDuce, YAXQL etc.) and a few for
XML query algebras (e.g. W3C query algebra, XOM
algebra, SAL algebra, Beech et al. algebra, OPAL al-
gebra, YATL algebra, Lore algebra etc.).

This paper proposes XAL (XML ALgebra), an
algebra that does one step further compared with
the existing algebras by providing a heuristic XML
query optimization algorithm. The simplicity of its
data model and its well-defined logical operators fa-
cilitate the definition of optimization laws. The pro-
posed query optimization laws are inspired by rela-
tional algebra optimization laws, monad applications
to nested relational algebra optimization laws, and
object-oriented query optimization.
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The remainder of the paper is organized as follows.
Section 2 gives an overview of some XML query al-
gebras. Section 3 provides the data model. Section 4
contains the algebra operators. Section 5 presents
the equivalence laws and a heuristic algorithm for
query optimization. An example illustrating how to
apply the proposed heuristic algorithm for a query
expressed in XQuery is given in Section 6. Finally,
Section 7 concludes the paper.

2 Related Work

The industry and research communities developed al-
gebras for XML queries. We briefly present a few of
them underlining their support for optimization.

The Lore algebra (McHugh & Widom 1999), de-
veloped at Stanford, has an idiosyncratic set of log-
ical and physical operators. It uses cost based opti-
mization to efficiently evaluate path expressions. The
specific nature of the logical operators (built for the
defined physical operators) makes it difficult to apply
them to a different system.

The algebra from (Beech, Malhotra & Rys 1999)
provides a logical model without considering physical
operators. Unfortunately no optimization strategies
are presented. Its simplicity and genericity inspired
us in building XAL.

From data integration research emerged the
YATL (Yet Another Tree-based Language) algebra
(Christophides, Cluet & Simeon 2000), inspired by
relational algebra (Ullman 1989) and object algebra
(Cluet & Moerkotte 1994). Despite the optimization
techniques proposed for its operators it is difficult to
use it in the XML query context as it is using an id-
iosyncratic data model, different than the one from
W3C (Fernandez & Robie 2001).

The W3C XQuery 1.0 Formal Semantics
(Fankhauser, Fernandez, Malhotra, Rys, Simeon
& Wadler 2001) (based on the algebra from
(Fernandez, Simeon & Wadler 2001)) is a set of
well-defined operators and optimization rules. It
defines an unorder operator on forests (to make joins
commute), but doesn’t provide any details how to
use it in an optimization algorithm.

The XOM (eXtensible Object Model) algebra
(Zhang & Dong 1999) is a complete and closed al-
gebra composed of six object operators. It does not
provide any optimization support. The OPAL (Or-
dered list Processing ALgebra) algebra (Liefke 1999)
proposes an XML data model based on lists. Finite
state automata are used for processing and optimizing
queries. The SAL (Semistructured ALgebra) (Beeri
& Tzaban 1999) algebra has logical operators with
a limited expressive power and support for optimiza-
tions.

In (Buneman, Fan, Simeon & Weinstein 2001)
path constraints implications can be used for query
optimizations. As an example, path constraints ex-



pressing inverse relationships between two elements
reduce two consequent iterations to just one it-
eration. The algebra of (Christophides, Cluet &
Moerkotte 1996) has optimization techniques based
on regular (or generalized) path expressions.

Most of the algebras appear to be a mix of use-
ful but rather ad-hoc features. In the quest for
the expressibility of complex queries some of them
have operators not even closed under composition
(Vianu 2001). In XAL the mismatching between
XML and databases is reduced by accommodating a
mix of ordered and unordered operators that supports
query optimization.

3 Data Model

Each XML document (Bray, Paoli, Sperberg-
McQueen & Maler 2000) can be represented as a
rooted connected directed graph both cyclic or acyclic
with a partial order relation defined on its edges. The
vertices and edges are characterized by specific prop-
erties.

Formally, the data model is

(V,E,O,root), root € V

= EFpUFE4UFERUED
= U ((v1,v2,...0p)|v; €V, parent(v;) = p)
peV

=@
|

The set V represents the element and value ver-
tices. Vertices are of type element or simple (int,
string, ID, IDREF, ...) (Fallside 2001). There is
exactly one vertex that represents the top element.
As each element vertex has a parent in our model we
introduce an external (fictitious) vertex called root.
The root vertex has as its unique child the top ele-
ment vertex. The edge that connects the root with
the top element vertex is labeled with the top ele-
ment’s name.

Each vertex has two basic properties as shown in
Table 1. Derived properties are obtained using edge
properties. Table 2 presents the derived properties
of vertices. The name of a vertex is the same as the
incoming element containment edge name, i.e. the
name of the element that it represents.

basic property [ result for result for
element vertex | simple vertex

value vertex identifier | value

type element type of value

Table 1: Basic properties for vertices

derived property | result

name name of the vertex

parent parent vertex (via E edge)
parentedge incoming F edge
childelements outgoing E edges
attributes outgoing A edges
references outgoing R edges

data outgoing D edge

Table 2: Derived properties for element vertices

The set E corresponds to the directed edges.
There are four types of edges: FE, for element con-
tainment edges, A for attribute edges, R for reference
edges, and D for text data edges. Element contain-
ment edges model element aggregation relationships,
attribute edges represent the relationships between
element and its attributes, and data edges stand for

‘/element U V;nt U V:string U VID U VIDREF U...

pointers to text data included in an element. Ref-
erence edges do not have an equivalent XML struc-
ture, they are virtual edges that keep the semantics of
the internal reference relationship between elements
(based on matching IDREF(S) with ID attribute
values). One could define a lexical view of the docu-
ment in which id-related values are treated as textual
strings, and a semantic view that defines explicitly the
reference edges between matching elements (Zhang &
Dong 1999). The rooted graph defined by the lexical
view of the document is acyclic, i.e. a tree.

Each edge has four basic properties as shown in
Table 3. Derived properties are obtained using the
order relationship inherited from the implementation.
Only for element containment and data edges the or-
der is meaningful in the data model. Table 4 presents
the derived properties of edges.

basic property | result

name name of the edge

type E A R,D

parent source vertex of the edge
child target vertex of the edge

Table 3: Basic properties for edges

derived property | result
next following sibling edge
previous preceding sibling edge

Table 4: Derived properties for £ and D edges

The name of the edge is the element name (edge of
type E), the attribute name (edge of type A), the ID
attribute name (edge of type R), or the string “data”
(edge of type D) that it represents.

F and D edges having the same parent are ordered
in a list by the position in which they appear in the
XML document. The set O is the union of these lists,
one for each parent element. For A and R edges the
order is not defined in the data model, even so there is
always an implementation order (the order in which
they appear in the document).

In the data model we neglect comments, process-
ing instructions, and namespaces. The XML docu-
ment is modeled after the entities are resolved, so we
also do not consider them. XML fragments have sim-
ilar structure as XML documents, thus they fit well
in the same model.

4 XAL

XAL defines logical operators suitable for compos-
ability, optimizability, and semantics definition of an
XML query language. The operators are indepen-
dent of the underlying storage representation. There
are three kinds of operators: extraction operators
that retrieve the needed information from XML doc-
uments, meta-operators that control the evaluation
of expressions, and construction operators that build
new XML documents from the extracted data.

The chosen operators are powerful enough to for-
mally define the semantics of a large class of queries
expressed in XQuery (Chamberlin, Florescu, Robie,
Simeon & Stefanescu 2001). A query optimization
algorithm for XAL will have immediate benefits for
the optimization of XQuery expressions. Section 6
exemplifies XQuery to XAL translation and the ap-
plication of a heuristic query optimization algorithm
on the resulted XAL expression.

The general form of the operators is

o[fl(x1,xa, ...z, : expression)



For binary operators we also use the infix notation
(x : expression) o[f] (y : expression)

The unary operators evaluate the input to a col-
lection of vertices and use an implicit map operator
to compute the result. This means that the variable x
is bound to each vertex in the input collection and for
each such binding f(z) is evaluated (f is a function
operating on vertices). The semantics of the oper-
ator o defines how the partial result (result for one
variable z binding) is computed from f(z). The op-
erator result is built by concatenating all the partial
results. In the operators general form, f is not al-
ways present, there are operators that do not define
f but use directly z (instead of f(z)) in computing
the result. In this case the implicit map is absent. An
n-ary operator can be transformed into a unary one
by considering its input of sequence type.

An important feature of the extraction operator
algebra is its closedness. All the extraction operators
take as input collections and they return collections.
As a consequence extraction operators can be com-
posed with each other providing a rich power of ex-
pression. Compared with relational algebra the pro-
posed one is more flexible: there are operations (e.g.
union) working on collections containing elements of
different types, a feature that is not present in rela-
tional algebra.

Collections are characterized by the order prop-
erty. They represent a generalization of the concepts
of lists, sets, and bags. The collection concept is
similar to the mathematician’s monad (Moggi 1989)
or functional programmer’s comprehension (Wadler
1987). While the monad is defined over a certain
type M, we do allow for collections of arbitrary
types of elements. The monad triplet of functions
(mapM™ , unitM , join™) can be defined for any of the
considered collections. XAL has a map operator and
a join (concatenate) operator called union. In XAL
we do not have a unit operator as a vertex is written
in the same way as a collection containing only this
vertex. Monads and comprehensions are equivalent,
one can produce a comprehension out of a monad
and a vice-versa (Wadler 1992). Viewing collections
as monads enables the application of monad laws for
query optimization.

4.1 Extraction Operators

The extraction operators retrieve the needed informa-
tion from the input XML documents. They return
collection of vertices from the original XML graphs.

As the binary extraction operators use vertex com-
parison the notion of vertex equality has to be defined.
Two vertices are equal if they have the same wvalue.
The binary extraction operators are defined in a sim-
ilar way as their relational counterparts but taking in
account the collection order in their operands.

For optimization purposes all binary extraction
operators have set-like variants that work on un-
ordered input collections and result in an unordered
collection. In Section 5, we use this set-like variants
in order to exploit their commutativity property for
query optimization.

4.1.1 Projection

The projection operator is similar to the path navi-
gation in XPath (Clark & DeRose 1999). The input
is a collection of vertices and the operator follows the
edges of a given type and name. It produces a col-
lection of vertices that represent the targets of the
followed edges. The order of the output collection
depends on the order of the input collection.

The general form of the projection operator is
w[type, name](e : expression)

For type one can use: E, A, R, D or combinations
of these separated by disjunction |. A regular expres-
sion over strings is used for name. The string that
matches all names is denoted #.

FEzxample 1

7[E, (P|p)ainter|[s]#](e) produces all the target
nodes of element containment edges that have
names starting with Painter, painter, Painters, or
painters, and that originate from the vertices in e.

4.1.2 Selection

The selection operator is defined in a similar way as

its corresponding relational operator. It takes as in-

put a collection of vertices and checks for each vertex

if the condition is valid. The vertices that fulfill the

condition are gathered in the result. The output col-

lection maintains the order of the input collection.
The general form of the selection operator is

ocondition](e : expression)

In the condition (boolean function) one can use
projection operators and constants as operands, com-
parison operators (=, >=, <=, <,>, <>), and logical
operators (and, or, not).

Example 2

o|n[A,name] = “Dali’](e) selects all element ver-
tices that have an attribute called name with the
value “Dali”. The quotes are used to indicate that
we perform a string comparison. For numbers the
quotes are absent. By 7[A, name] we mean in fact
value(r[A, namel(e)).

4.1.3 Unorder

The unorder operator transforms a collection into an

unordered one. Duplicates from the original collec-

tion are preserved. Unorder collections enables the

definition of set-like (commutative) binary operators.
The general form of the unorder operator is

x(e : expression)

4.1.4 Distinct

The distinct operator removes duplicates from a col-
lection. The output collection maintains the order of
the input collection if present.

The general form of the distinct operator is

d(e : expression)

4.1.5 Sort

The sort operator sorts a collection based on a given
value expression. The value expression is applied for
each vertex in the input collection and the original
vertices are ordered based on the computed value ver-
tices.

The general form of the sort operator is

Y [value_expression(e)](e : expression)

If the elements to be sorted are value vertices, they
can be sorted according to their values by not speci-
fying the value_expression.

FEzample 3
X[n[A, name]](e) orders alphabetically the input ele-
ment vertices by the value of their name attribute.



4.1.6 Join

The join operator takes as input two collections on
which it performs a cartesian product. The cartesian
product is defined as two loops: the external loop tra-
verses the left input collection and the internal loop
traverses the right input collection. The pairs that
fulfill the join condition form virtual vertices that
have as outgoing edges, first the outgoing edges of
the vertex from the left input collection, and then the
outgoing edges of the vertex from the right input col-
lection edges preserving the original edge order. In
case that an input vertex is a value, a data edge is
added between the virtual vertex and the value. Vir-
tual vertices do not have the parent defined, which
is a natural consequence of gluing vertices together.
They are element vertices built by the system using
the vertexr operator described in Section 4.3.1. The
result of the join operator is a collection of virtual
vertices. The output collection is ordered if the input
collections are also ordered.

The general form of the join operator and its equiv-
alent expression are

(x : expression) X [condition] (y : expression) =
ocondition](x X y)

All the operands and operators used in the con-
dition of selection can be used also here. The join
condition uses two variables compared with the selec-
tion condition that uses only one variable because the
join operator is binary and the selection operator is
unary.

Example J

(z : m[E, person](people)) < [w[A, id](x) = 7w [A,
namel(y)|(y : w|E, painter](painters)) pairs person
and painter vertices in virtual vertices based on the
equality of the id attribute value of a person and the
name attribute value of a painter.

4.1.7 Cartesian Product

The cartesian product is a particular case of the join
operator where the join condition is true.
The general form of the cartesian product operator
is
(z : expression) X (y : expression)

4.1.8 Union

The union operator combines two input collections
into a single collection. The result is a collection that
contains first the left input collection, then the right
input collection preserving the original vertex order.
The union operator can be easily generalized to an
n-ary one.

The general form of the union operator is

(x : expression) U (y : expression)

In the definition of union, difference, and intersec-
tion operators we do not impose the “union compat-
ible” constraint from relational algebra, feature that
enables flexible XAL expressions.

4.1.9 Difference

The difference operator returns the vertices that exist
in one collection but do not occur in the second col-
lection. The result is a collection that preserves the
vertex order from the first input collection.

The general form of the difference operator is

(z : expression) — (y : expression)

4.1.10 Intersection

The intersection operator returns the vertices that ex-
ist in both collections. The result is a collection that
preserves the vertex order from the first input collec-
tion.

The general form of the intersection operator is

(x : expression) N (y : expression)

4.2 Meta-operators

The meta-operators control the evaluation of expres-
sions. They are not real operators in the sense that
they extract or construct some data elements. They
are used to express repetition at input or operator
level.

4.2.1 Map

The map operator applies a given function to each
element of the input collection. The function results
are concatenated in the output collection.

The general form of the map operator and its
equivalent expression are

map|f](e : expression) = union(f(e1), f(ea),...f(en))

where the expression e is evaluated to the collection
(617 €2, -0y en)‘

As explained at the beginning of this section, all
unary extraction operators (with f defined) have an
inherent map operator associated to them

op[f](e) = map[f](e : expression)

In the construction phase, the map operator is
used explicitly to iterate not just over collection of
vertices but also collection of edges.

4.2.2 Kleene Star

The Kleene star operator repeats a given function
possibly infinite times starting with a given input. At
each iteration the results of the function are added to
the next function input. Compared to the map op-
erator the Kleene star operator includes in the result
the input collection.

The general form of the Kleene star operator and
its equivalent expression are

x[f](e : expression) =

e+ fle)+ ..+ F(F(.(f(f(e)))) + -

In the equation above the + operator is a set
union. If after an iteration the output is the same
as the input, a fix point is reached and there is no
need to continue the repetition. A simple rule to en-
force termination is that f gets descendants from an
input element. Since every element has a finite num-
ber of subelements we avoid in this way infinite loops.
The order of the result collection depends on the or-
der of the input collection and the order implied by
applying recursively the function.

A variant of the Kleene star operator specifies the
exact number of times, n, the function should be ap-
plied. If n = 0 the output is the same as the input.

The general form of the Kleene star variant that
specifies the number of repetitions is

x[f,n](e : expression)

FEzxample 5

Suppose there is an XML document that gives
in a hierarchical way the “influenced by” rela-
tionship between painters. We assume that there



are no loops in the graph given by the “influ-
enced by” relation. A painter has as subelements
painters that influenced him, these child painters have
as subelements painters that influenced them etc.
w[A, name](x[r[E, painter]](root)) gives the names of
all painters linked by the “influenced by” relationship.

As shown in the Example 5 the Kleene Star op-
erator is able to compute the transitive closure of a
relation (or graph). Enabling recursion XAL uses the
full XML power, going beyond the well known lim-
its (not powerful enough to compute the transitive
closure) of relational algebra.

4.3 Construction Operators

In querying XML data, we construct an XML docu-
ment from given XML documents. With the extrac-
tion operators we can extract vertices from the given
XML documents. In order to express the resulting
XML document, we need operators to construct the
structure of that XML document. The so called con-
struction operators are applied on the collections of
vertices retrieved in the extraction phase, and they
create new vertices and edges that together express
the new XML document. Note that there is no need
to create reference edges as they are implicitly built
by adding attribute edges for ID and IDREF(S) val-
ues that reference each other.

4.3.1 Create Vertex

The create vertex operator adds a new vertex to the
graph. It takes as input the type and value of the
new node. The operation returns the newly created
vertex.

The general form of the create vertex operator is

vertex[type](value)

For element vertices the value of the new node
is the input of the system’s new id generator (nig)
skolem function which will create a unique new object
id for a given input id. The function nig is injective,
i.e. an existing id is always mapped to the same id.
A null input value will result always in the creation
of a new vertex.

FExample 6

vertex|element]|(null) creates a vertex of type
element which has a new value (id) given by the sys-
tem, and vertex[string](“Dali”) creates a vertex of
type string and value “Dali”.

4.3.2 Create Edge

The create edge operator adds an edge to the graph.
It takes as input the vertices parent and child which
the edge connects and the type and name of the new
edge. The operation returns the child vertex.

The general form of the create edge operator is

edgeltype, name, parent|(child)

Before inserting a new edge of type E, the resulting
graph is checked if it maintains the XML constraints
(e.g. absence of loops defined just by element contain-
ment edges). If the XML constraints are not fulfilled,
the create operation is unsuccessful.

FExample 7

edge|E, painter, vertex|element](null)](vertex
[string](“Dali”)) creates an edge of type E (element
containment edge) with name painter between the
vertices defined in Example 6.

FExample 8

mapledge|E, result, root]](e) where root = vertex
[element](null) groups in a new tree previously se-
lected vertices (nodes) from collection e.

4.3.3 Copy Examples

Copying vertices, edges, and complete graphs are use-
ful construction examples.

FEzxzample 9

Copying a vertex v means creating a new vertex
with the type and value of the original vertex:
vertez[type(v)](value(v)).

Ezxample 10

Copying an edge e, involves copying also the parent
and children vertices: edgeltype(e), name(e), vp](vc)
where v, = vertezx[type(parent(e))](value(parent(e)),
and v, = vertex[type(child(e))](value(child(e))).

FEzxample 11

Copying a complete graph starting from the vertex v

can be done by copying all the graph edges and their

child vertices:

mapledgeltype(e), name(e),
vertex[type(parent(e))](value(parent(e)))
|(vertex|type(child(e))](value(child(e))

e

where e = x[parentedge(n[E|A|D, #](child(z)))]
(x: parentedge(x[B[AID, #](0)))}.

5 Query Optimization

The main factor in the execution cost of algebra ex-
pressions is the iteration (explicit or implicit map op-
erator) over collections. The proposed set of opti-
mization laws aims at reducing iterations size for the
data extraction expressions. The proposed laws are
based on monad laws (Fankhauser et al. 2001) and re-
lational algebraic optimizations rules (Ullman 1989)
which have a natural extension to the collection con-
text. In (Beeri & Kornatzky 1993) the known laws
for transforming relational queries were successfully
generalized in an object algebra context. Query pro-
cessing heuristics enable the qualitative justification
of the proposed laws. A cost model is outside the
scope of this paper.

In the sequel we denote by e(v), an expression that
uses in its formula the variable v. The symbol o rep-
resents the expression composition. The empty col-
lection is denoted by ().

Law 1 (Left unit)
If ey is of unit type (singleton collection), then

ealer) = e(v)
Law 2 (Right unit)
If ey is the identity function, i.e. ex(v) = v, then
ealer) = e
Law 8 (Associativity)
e1 0 (ex0e3)=(e1 0ea)0es

Law 4 (Empty collection)
If ey is the empty function, i.e. ex(v) = (), then

e2(e1) = ()



Law 5 (Decomposition of 1)
e1 X [condition] es = ocondition](e; X e2)

Law 6 (Decomposition of )

If name is a regular expression that can be de-
composed in several reqular expressions namey, ...
name,, and e is an unordered collection, then

w[name](e) = w[name;](e) U ...m[name,](e)
Law 7 (Cascading of o)

oler A ...ep](e) = ale](...(alen](€))-..))

Law 8 (Commutativity of o)
ole](olez](e)) = olca](oc1](e))

Law 9 (Commutativity of o with )

If the condition c involves solely vertices that have in-
coming edges named by the reqular expression name,
then

w[name](o[c(mname])](e)) = oc](w[name](e))

Law 10 (Commutativity of o with X )
If the condition c involves solely vertices from ey, then

olc](e1 x e2) = oc|(e1) x e

Law 11 (Commutativity of o with U, N, —)
If 0 is one of the set operators: U, N, and —, then

olc(er 0 e2) = olcl(e1) 0 olc](e2)

Law 12 (Commutativity of U, N, X )
If 0 is one of the set operators: U, N, and X, and e;
and ey are unordered collections, then

€1 0 €y = €3 0 €1

Law 18 (Commutativity of m with x)

If name is a reqular expression that can be decom-
posed in two regular expressions name; and names,
namey involves solely vertices in ey, and names in-
volves solely vertices in e, then

m[name](e; X ex) = w[name;](e1) X w[names](ez)

Law 14 (Commutativity of © with U)

m[namel](e; U ex) = w[name](e1) U m[name](ez)

Now, we can outline the steps of a heuristic algo-
rithm that uses the above equivalence laws to trans-
form a query tree into an optimized tree. The opti-
mized tree is in general more efficient to execute than
the initial one.

1. Eliminate unnecessary iterations (use Laws 1, 2,
and 4).

2. Unorder collections (use unorder operator). Col-
lections for which order is not relevant are un-
ordered.

3. Decompose joins (use Law 5).

4. Decompose selections (use Law 7). Break down
selections into a cascade of selections. It enables
moving select operations down in the query tree.
Eliminate unnecessary iterations using Step 1.

5. Move selections down as far as possible (use Laws
8, 9, 10, and 11). Based on the commutativity
of selection with other operators, move selection
down in the query tree as far as it is permitted by
the selection condition. Eliminate unnecessary
iterations using Step 1.

6. Apply the most restrictive selections first (use
Laws 3 and 12). Based on the commutativity and
associativity of binary operators, rearrange the
leaf vertices so that the most restrictive selections
apply first. As a selectivity criterion one can use
the size of the collection. The most restrictive
selections are the selections that produce collec-
tions with the fewest elements. Eliminate unnec-
essary iterations using Step 1.

7. Decompose projections (use Law 6). Break down
projections into a union of projections. It en-
ables moving the project operations down in the
query tree. Eliminate unnecessary iterations us-
ing Step 1.

8. Move projections down as far as possible (use
Laws 9, 13, and 14). Based on the commutativity
of projection with other operators, move projec-
tion down in the query tree as far as possible.
Eliminate unnecessary iterations using Step 1.

9. Identify combined operations (use composition
laws). Identify subtrees that group operations
that can be executed by a single algorithm.

6 Query Optimization Example

We illustrate the usefulness of the heuristic optimiza-
tion algorithm presented in the previous section us-
ing an example. The example is based on an XML
database formed from three documents:

1. A document named "painters.xml" that con-
tains many <painter> elements; each <painter>
element in turn contains <id>, <name>, and
<description> subelements.

2. A document named "paintings.xml" that
contains many <painting> elements; each
<painting> element in turn contains <id>,
<name>, and <author> subelements.

3. A document named "catalogue.xml" that con-
tains information about the price of paintings.
This document contains many <item> elements,
each of which in turn contains <paintingid> and
<price> subelements.
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Consider the following query Q: “Return in alpha-
betical order the names of the painters that have a
painting over $ 1,000,000”. The painter names will
appear in the <result> element as many times as
the number of their paintings that fulfill the above
condition.

In XQuery 1.0 (Chamberlin et al. 2001) the query
Q can be formulated as follows:

<result>
{
FOR $i IN document("painters.xml")/painter,
$j IN document("paintings.xml")/painting
[author = $i/name],
$k IN document ("catalogue.xml")/item
[paintingid = $j/id]
WHERE $k/price/data() > 1000000
RETURN $i/name
SORTBY ./data()
}
</result>



Q is composed from two parts: an extraction part
which gets the right painter names and a construction
part which groups the resulted painter names in the
<result> element. Both the input and the output
of the given query are XML documents. From query
optimization point of view the contruction part is not
interesting. For Q the contruction part is the same as
in Example 8 where e represents the collection of ex-
tracted painter names. In the previous section we pro-
posed a heuristic query optimization algorithm that
can be used to transform the extraction part of the
query in a more efficient one to execute. For the rest
of this section we will use the term query for the query
extraction part.

The semantics of the query is captured in the ini-
tial query tree from Figure 1. In order to identify un-
ambiguously the edge names (after a joint), we prefix
them by the name of the original parent vertex.

Tdata

Tpainter.name

Oitem.price>1000000

Opainter.name=painting.authorApainting.id=item.paintingid

X

/N

X item

painter painting

Figure 1: Initial query tree

The part of the translation scheme used to con-
vert XQuery to XAL for our example is depicted in
Table 5.

XQuery | XAL
FOR T, 0, X
WHERE o
SORTBY | X

Table 5: Translation scheme XQuery to XAL for the
example

Executing the initial query tree directly gives
a very large cartesian product of all painters,
paintings, and items. But this query needs only
painters that match with paintings that have a price
higher than $ 1,000,000. The original element order
(given by the input files) is not significant for our
query as we do sort the results alphabetically at the
end. As a consequence we can use the x (unorder)
operator to transform the input collections into un-
ordered ones and benefit from the commutativity of
the XAL binary operators. First by applying Steps 2,
4, and 5 from the optimization algorithm one can get
the query tree from Figure 2.

A further improvement can be realized by switch-
ing the positions of painter and item in the query tree
(together with their associated selections) so that we
apply the most restrictive selections first as in Step 6

Tdata

Tpainter.name

Opainting.id=item.paintingid

A\

Opainter.name=painting.author OPrice>1000000
x X
A
X X item
painter  painting

Figure 2: Query tree after first optimization

of the algorithm. The resulting query tree after this
second query optimization is given in Figure 3.

Tdata

Tpainter.name

Opainter.name=painting.author

N\

Opainting.id=item.paintingid X
X painter
Oprice>1000000 X
X painting
item

Figure 3: Query tree after second optimization

All the three query trees are equivalent. To get a
better feeling why it is more efficient to execute the
last query tree instead of the first and second ones
we will give a quantitative dimension to our exam-
ple. Suppose there are three painters: the first one
has 100 paintings, the second one 150 paintings, and
the last one 100 paintings. Only the first one has 20



paintings which are more expensive than $ 1,000,000.
If we use the first query tree we will need to compute
for the cartesian product 3 x 350 x 350 = 367,500
elements, for the second query tree 3 x 350 (painters
are matched to their paintings) + 350 x 20 = 8,050
elements, and for the last query tree 20 x 350 (ex-
pensive paintings are matched to their descriptiong +
20 x 3 = 7,060 elements. One can notice that the
last query tree is the most effective one to execute as
it needs less computations compared to the first two
queries.

7 Conclusion

Compared with existing XML algebras, XAL provides
operators similar to the relational algebra ones which
are familiar to the relational database world. It also
lifts the known heuristic optimization algorithm for
relational queries to the XML context providing an
elegant way of doing so. XAL and its optimization
laws can be used by a query optimizer for choosing
efficient transformation alternatives. It can also be
used for defining the semantics of an XML query lan-
guage and as a comparison framework in terms of
power of expression and flexibility of such query lan-
guages. As future work we will further explore XAL
properties and applications. We plan also to inves-
tigate new optimizations laws that take advantage of
the XML specific features (e.g. tree structure, internal
references).
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