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ABSTRACT
Most of the existing recommender systems are based only on
the rating data, and they ignore other sources of information
that might increase the quality of recommendations, such
as textual reviews, or user and item characteristics. More-
over, the majority of those systems are applicable only on
small datasets (with thousands of observations) and are un-
able to handle large datasets (with millions of observations).
We propose a recommender algorithm that combines a rat-
ing modeling technique (i.e., Latent Factor Model) with a
topic modeling method based on textual reviews (i.e., La-
tent Dirichlet Allocation), and we extend the algorithm such
that it allows adding extra user- and item-specific informa-
tion to the system. We evaluate the performance of the
algorithm using Amazon.com datasets with different sizes,
corresponding to 23 product categories. After comparing the
built model to four other models, we found that combining
textual reviews with ratings leads to better recommenda-
tions. Moreover, we found that adding extra user and item
features to the model increases its prediction accuracy, which
is especially true for medium and large datasets.

CCS Concepts
•Information systems → Recommender systems; •Personali-
zation → Retrieval tasks and goals;

Keywords
e-commerce, latent dirichlet allocation, latent factor model,
recommender systems, textual reviews

1. INTRODUCTION
Throughout the last decade, the importance of the Web as
a medium for business and electronic transactions has in-
creased drastically, forcing IT to rapidly develop as well,
making humans’ daily life much easier and more efficient.
On its turn, this large development in IT has increased
the popularity of online shopping and services. Making
purchases online instead of buying products from physical
shops, which can be very time-consuming, is one of the ma-
jor consequences of IT development. However, this large
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increase in online sales has not only led to an increase in
the number of customers but also an increase in the number
of products and variety of these products. Therefore, when
making purchase decisions, users are forced to process large
amounts of information. According to [11, 18, 22, 23] this
information overload has a big impact on the human deci-
sion process and quality. Hence, it affects people’s online
purchase experience significantly. Therefore, to overcome
this problem, one usually relies on suggestions from others,
who have more experience on the topic [32]. This idea is
used in the recommender systems aiming to employ various
sources of information to recommend products to the users
by inferring their interests. Besides solving the problem of
information overload, the use of recommender systems also
results in increased sales, customer satisfaction and loyalty
[31], which explains the increasing popularity of these sys-
tems. On the one hand, the information overload motivates
the use of recommender systems to make the users’ online
purchases more convenient. On the other hand, the increas-
ing variety of ways that users can discover, evaluate, and re-
view online products motivates companies and researchers to
create even more revealing recommender algorithms, which
will enable them to sell more products.

The Web enables users to provide their feedback about the
product that they have purchased in the form of ratings and
textual reviews. Assuming that the past interests and pref-
erences are often good identifiers of future choices, the pre-
vious interactions between items and users can be used for
predicting which items might be interesting for a user in the
future. Therefore, to correctly recommend the users their
desired products, one should predict how the user will re-
spond to a new product [1]. Recommender systems are usu-
ally categorized as: Collaborative Filtering systems based
on rating data [30], Content-Based systems based on tex-
tual data [21], and Hybrid systems that combine these two
types of systems [6]. Most of the existing recommender
systems are of the first type (based only on ratings), and
they ignore the enormous information incorporated in the
users’ review texts [37]. Ignoring such an important source
of information, that can potentially increase the accuracy
of recommendations, seems not optimal. Moreover, adding
extra user- and item-specific information, not included in
the ratings or textual reviews, to the recommender system,
might also increase the quality of its recommendations [5,
40, 12]. Figure 1 presents the percentage of items having
less than 10 ratings and more than 30 words in their review



text per product category in the datasets of the largest e-
commerce Amazon.com [26]. We observe that for almost all
product categories it holds that at least 80% of items have
very few ratings (less than 10), while over 40% of items have
long textual reviews (with more than 30 words per review).
Therefore, textual reviews can be considered as a potential
source of information that can be used to complement the
scarce ratings to increase the prediction accuracy of the rec-
ommender system.

Differently than in our previous work [2], for which this work
is an extension, we provide the pseudocode for the proposed
algorithm and details about the parameter optimization rep-
resented in the form of derivations in the appendix where
you can find the first and the second order derivatives of
the proposed objective function with respect to the model
parameters. In addition we provide the code of this work
including details about data collection, transformation and
preparation for the training and testing processes which can
be accessed in the featured Github repository1.

2. RELATED WORK
Although, there exist a large amount of literature regard-
ing recommender systems that are based on a single type
of data, such as ratings or textual reviews, there have been
only few attempts of combining user-item ratings and tex-
tual reviews to uncover the latent rating and latent review
dimensions [3, 25, 20, 35, 36]. [35] combined the predic-
tions of a Latent Factor Model (LFM) with the predictions
of the neighborhood model to generate more accurate rec-
ommendations. A similar approach was taken in case of
the recommender system of ‘Bellkor’s Pragmatic Chaos’, the
Netflix Prize contest winner [17]. This system compares the
watching and searching habits of similar users, and then rec-
ommends movies that share the characteristics with movies
that are highly rated by that user. Since then, LFM became
the most popular Collaborative Filtering techniques used for
both rating and item recommendations [29].

Latent Factor Models are faster to compute then neigh-
borhood models. [36] have developed an algorithm called
Collaborative Topic Modeling, combining CF and proba-
bilistic topic modeling, which recommends scientific papers
to an online community of users. Authors found that the
proposed recommender system, based on both contents of
articles and users’ ratings, performs better than the rec-
ommender system based on standard Matrix Factorization
methods. Among all the Hybrid recommender systems, one
of the most known systems combining ratings with textual
reviews for making recommendations is the Hidden Factors
and Topics (HFT) algorithm proposed in [25]. HFT com-
bines latent rating dimensions (learned by LFM) with latent
review topics (learned by topic modeling technique LDA) to
make rating predictions. [25] stated that, the HFT algo-
rithm results in highly interpretative textual labels for the
hidden rating dimensions helping to ’justify’ ratings with
review text, and in increased prediction accuracy of the rec-
ommender system.Another example of a recommender algo-

1https://github.com/TatevKaren/TatevKaren-
data-science-portfolio/blob/main/LDA-LFM-New-
Recommender/

rithm that combines ratings with textual reviews has been
introduced in [20], called Ratings Meet Reviews (RMR). The
proposed method is a probabilistic generative model combin-
ing the topic modeling technique LDA with a MF method for
ratings. The main difference between HFT and RMR is the
way the authors combine the two models. More specifically,
HFT uses the MF method to model the ratings, whereas
RMR uses a mixture of Gaussian distributions. [20] found
that RMR outperforms the standard Matrix Factorization
based approach and results in similar prediction accuracy
compared to HFT. The TopicMF algorithm introduced by
[3] is also an example of a recommender algorithm combining
ratings and reviews to make recommendations for the users.
TopicMF uses biased MF for modeling the ratings and uses
Non-negative Matrix Factorization (NMF) for modeling the
latent topics in the textual reviews. The main difference
between this algorithm and the earlier mentioned recom-
mender algorithms is that it uses NMF instead of the LDA
as the topic modeling approach. The final example related
to the model introduced in this study is the Rating-Boosted
Latent Topics (RBLT) algorithm introduced by [34]. RBLT
used LDA for extracting topics from the reviews like HFT
and RMR and it also uses the MF for modeling the ratings
like HFT. The main difference between RBLT and HFT
is that HFT uses item features in rating prediction and
topic-distributions as a regularization for these item fea-
tures, whereas the RBLT includes the topic-distributions in
the rating prediction procedure but not in the regulariza-
tion term. [34] found that adding textual reviews to the CF
system increases its prediction accuracy significantly.

One similarity that is shared by all the previously surveyed
papers is that they all propose to use textual reviews as well
as ratings to model item features and user preferences in
a shared topic space and consequently bring them into an
LFM to generate recommendations. Our research will also
be focused on utilizing recommender systems with the MF
approach by using product ratings as well as textual reviews
of customers.There have been also few attempts of building
a recommender system that allows adding user- or item-
specific characteristics, not present in the rating or review
data [5, 12, 40]. [5] and [12] introduced CF recommender
systems that also allow adding user- and item-specific fea-
tures on the top of the ratings. As extra item and user
information [12] used the browsing data. The CF system
extension in [12] has been done by adding extra rows and
columns to the user-item rating matrix. However, all these
extended recommenders that allow adding a user or item
features to the system, are all based only on ratings. To our
knowledge, there is no study of recommender systems com-
bining ratings and textual reviews that also allow adding
extra user or item information to the system. Another limi-
tation of the existing literature is that most of the proposed
recommender systems are modeled and implemented on a
dataset consisting of very few product categories or a small
number of observations.

To address the previously identified limitations we propose a
recommender algorithm called LDA-LFM, which combines
the topic-modeling technique LDA with the rating-modeling
method LFM and allows adding extra user- and item-specific
features to make recommendations. LDA-LFM is a gener-



Figure 1: Percentage of ratings and reviews per item. Brown
(dark grey for black and white print) bars represent the per-
centage of items with less than 10 ratings per category. Green
(light grey for black and white print) bars represent the per-
centage of items having on average more than 30 words per
product category.

alization of the HFT model proposed by [25], but also uses
an alternative approach for model regularization and allows
adding extra user- and item-specific features to the recom-
mender system. These extra features will behave as addi-
tional factors in the Matrix Factorization driving the ratings
following the approach proposed in [12], while these extra
features do not appear in the topic modeling method LDA.
This system is applicable on both small and large datasets
(consisting of millions of reviews), with or without a large
number of product categories.

3. RATING AND REVIEW MODELS
In this section, we introduce all models and techniques used
to build and evaluate the proposed LDA-LFM model. We
describe the technical details and optimization approach of
LFM and the topic modeling technique LDA used in this
study.

3.1 Latent Factor Model
In Collaborative Filtering recommender systems, Latent Fac-
tor Model (LFM), also called Matrix Factorization (MF),
have become very popular especially after the earlier men-
tioned Netflix Prize Contest [14, 15]. Usually, the rating
matrix contains lots of missing elements, thus suffers from a
sparsity problem. To overcome this problem, LFM uses the
idea of dimensionality reduction to estimate and fill in all
missing entries of the sparse user-item rating matrix. The
goal of dimensionality reduction is to rotate the axis system
such that the pairwise correlations between dimensions can
be removed and a large sparse matrix can be decomposed
into smaller and dense matrices. Accordingly, the reduced,
rotated, and complete data matrix representation can be ef-
ficiently estimated from a sparse data matrix. The key idea
of the Matrix Factorization method is that any m x n sparse
matrix R with rank k < min{m,n} can be approximated by

rank-k matrices in the following way [33]:

R ≈ PQT (1)

where P and Q are m x k and n x k matrices, respectively.
So, the user-item sparse matrix R is approximately equal to
the product of P and Q matrices, such that the vectors of R
can be represented by the rows of matrix P and columns of
matrix Q. Stated differently, in LFM, sparse rating matrix R
is decomposed into the product of two low-rank rectangular
matrices P, the user matrix, and Q, the item matrix, where
both P and Q have the same rank k. Each row of matrix P
and each column of matrix Q are referred to as latent factors.
Let us define by pu the uth row of user matrix P, the user
factor representing the affinity of user u towards the rat-
ing matrix R, and by qi the ith row of item matrix Q, the
item factor representing the affinity of ith item towards the
rating matrix R. Since, some users have a tendency to give
higher ratings while other users are more prone to provide
lower ratings, and that some products have a tendency to
be highly rated compared to other products, baseline predic-
tions (biases) should also be taken into account. [16] referred
to biases as the observed variation in rating values due to
the effects associated with either items or users independent
of any interactions. Correspondingly, estimate of each rat-
ing of the uth user about ith item, denoted by rui, can be
expressed as follows:

r̂ui = α+ bi + bu + qTi pu (2)

where α represents the global average of all ratings (an offset
parameter), bu and bi represent the user and item biases,
respectively. Accordingly, the error which arises in this esti-
mation is defined as eui = rui- r̂ui and in order to learn the
latent factors pu and qi the following optimization problem
should be solved, where we minimize the regularized squared
error [17]:

arg Θ̂

1

| T |
∑
u,i∈T

(eui)
2 + λΩ(Θ)

arg Θ̂

1

| T |
∑
u,i∈T

(rui − r̂ui)2 + λΩ(Θ)

arg Θ̂

1

| T |
∑
u,i∈T

(rui − (α+ bi + bu + qTi pu))2 + λΩ(Θ)

Ω(Θ) = ‖qi‖22 + ‖pu‖22 + ‖bi‖22 + ‖bu‖22
(3)

T represents the corpus of all ratings (in the training set),
Θ = {α, bu, bi, pu, qi} is the parameter space of the
model. The objective function in Equation 3 can be seen
as quadratic loss function which quantifies the loss of accu-
racy when the element of rating matrix R is approximated by
low-rank factorization. ‖.‖22 represents the squared Frobe-
nius, also called the L2 norm. We use regularization to pre-
vent model overfitting, which is required especially when
the dataset used for fitting the model contains a large num-
ber of features, like it is in our case. The constant λ from
Equation 3, which is often referred to as regularization con-
stant, determines the level of regularization and controls how
hard unnecessary features in the model are penalized. De-
termining the value of λ is a trade-off between prediction
variance and bias. One popular way of determining the op-
timal value is Grid Search. One of the most popular ways



of solving the optimization problem defined in Equation 3 is
Stochastic Gradient Descent (SGD) [16, 25, 38, 39]. Other
typical methods which can be considered as possible alterna-
tives to the SGD method, like the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) [41] or Orthant-Wise
Limited-Memory Quasi-Newton (OWL - QN) [7], work very
slowly when the model is fitted on a large training dataset
and performing it by one machine is sometimes intractable.
SGD addresses these issues because it scales well with both
big data and with the size of the model, therefore it is pre-
ferred in this analysis. However, even though the method
itself is simple and fast, it is known as a “bad optimizer”
because it is prone to finding a local optimum instead of a
global optimum. A popular technique designed to improve
the performance of the SGD method is the Adaptive Mo-
ment Estimation (Adam) introduced by [13]. Adam is the
extended version of the SGD (with momentum). The main
difference compared to the SGD (with momentum), which
uses a single learning rate for all parameter updates, is that
the Adam algorithm defines different learning rates for dif-
ferent parameters. The algorithm calculates the individual
adaptive learning rates for each parameter based on the es-
timates of the first two moments of the gradients.

3.2 Latent Dirichlet Allocation
Each text review provided by a user, represented as a bag of
words, contains valuable information, which can potentially
increase the prediction accuracy of the recommender system.
For this reason, the textual reviews should be modeled and
analyzed. Latent Dirichlet Allocation (LDA) introduced by
[4] is one of the most popular text mining methods in the
context of recommender systems. Therefore, we will use the
LDA as a topic modeling technique in this analysis to un-
cover the hidden dimensions in the user review texts.There
are three main entities defined in this method: words, doc-
uments, and corpora. The entity word is defined as a basic
unit of a discrete data from a vocabulary, wd,j where j =
{1,2,...,Nd}, which indicates the index of the word in docu-
ment d. These words are represented in the form of a vector
where the jth element of this vector takes value 1 and the
remaining all elements take value 0. The entity document
is a sequence of N words denoted by d ∈ T such that Nd

represents the number of words in document d. Finally, the
entity corpus is defined as a collection of documents denoted
by T = (d1,d2,...,dM ), where M is the number of all docu-
ments in the corpus.

LDA makes few important assumptions regarding the model.
Firstly, it assumes that words carry strong semantic infor-
mation and that documents discussing similar topics will
use similar words. Therefore, latent topics are discovered
by identifying a bag of words in a corpus that frequently
occur together in a document. Secondly, LDA assumes that
documents are probability distributions of latent topics and
topics are probability distributions of words. So, every doc-
ument consists of a certain amount of topics and each of
these topics is a distribution of words. Therefore, the model
assumes that there are in total K latent topics. Then, LDA
assigns to each document d a K-dimensional topic distri-
bution θd drawn from a Dirichlet distribution represented
in the form of a stochastic vector, such that the kth entry
of it, θd,k, represents the fraction of words in document d

which discuss kth topic. Stated differently, the likelihood
that words in document d will be about topic k is equal to
θd,k. Furthermore, each topic k is a distribution of words
represented by φk such that each word has a particular like-
lihood of being used in the topic k. Let us denote by zd,j
the topic assigned to the jth word in document d. Then the
LDA model is defined as follows:

• θd ∼ DIR(γ) with d ∈ {1,...,M}

• φk ∼ DIR(ν) with k ∈ {1,...,K}

• zd,j ∼ Multinomial(θd)

• wd,j ∼ Multinomial(φzd,j )

where γ represents the parameter of the Dirichlet distribu-
tion for document-topic distribution θd and ν is the param-
eter of the Dirichlet distribution for word-topic distribution
φk. zd,j represents the topic assigned to the j th word in
document d. We assume that the total number of words in
vocabulary is V. Moreover, we denote the likelihood func-
tion of zd,j conditional on topic mixture of document d, θd,
p(zd,j | θd) as follows:

p(zd,j | θd) = θd,zd,j (4)

Consequently, the probability of jth word in document d,
wd,j , conditional on the chosen topic zj denoted by p(wd,j |
zd,j , ν) is defined as follows:

p(wd,j | zd,j , ν) = φzd,j ,wd,j (5)

Furthermore, using the definition of the Dirichlet probability
distribution, the conditional topic distribution is defined as
follows:

p(θ | γ) =
Γ(
∑D
d=1 γd)∏D

d=1 Γ(γd)
θγ1−1

1 . . . θ
γd−1
d (6)

where θd > 0 and Γ(·) represents the Gamma function. Con-
sequently, the joint distribution of a topic θ, K topics z and
N words w is defined as follows:

p(θ, z, w | γ, ν) = p(θ | γ)

N∏
j=1

p(zj | θ)p(wj | zj , ν) (7)

where N =
∑M
d=1 Nd, Nd is the number of words in the

document d. Using the properties of discrete and continuous
random variables’ distributions, the marginal distribution of
document d is defined as follows:

p(w | γ, ν) =

∫
p(θ | γ)

N∏
j=1

∑
zj

p(zj | θd)p(wj | zj , ν)dθd

(8)
Consequently, using Equations 4, 5 and 8 the likelihood of a
text corpus T conditional on the word distribution φ, topic
distribution θd and topic assignments z is defined as follows:

p(T | γ, ν, z) =
∏
d∈T

(∫
p(θd | γ)

Nd∏
j=1

∑
zd,j

θd,zd,jφzd,j ,wd,j

)
dθd

(9)



This expression can also be rewritten in terms of the topic
distribution θd and word distribution and φ, in the following
way:

p(T | θ, φ, z) =
∏
d∈T

Nd∏
j=1

θd,zd,jφzd,j ,wd,j (10)

where parameters θ and φ should be estimated, which we de-
note by Φ, such that Φ = {θ, φ}. Then, the log-transformation
of the conditional corpus probability p(T | θ, φ, z) is defined
as follows:

l(T | θ, φ, z∗) =
∑
d∈T

Nd∑
j=1

log
(
θd,zd,jφzd,j ,wd,j

)
(11)

Typically, to estimate the LDA model parameters, Varia-
tional Bayesian (VB) methods or sampling approaches based
on Markov Chain Monte Carlo (MCMC) sampling are being
used [4, 8]. Figure 2 visualizes the dependencies among the
LDA model parameters. High γ indicates that it is likely
that each document contains a mixture of most of the top-
ics. Conversely, low γ indicates that each document contains
only a few of the topics. Furthermore, high ν indicates that
each topic contains most of the words of that topic, whereas
small ν means that each topic contains only a small amount
of words. The parameters γ and ν are at the corpus level
which are both assumed to be sampled once in the process
of corpus generation. The random variable θd is the only
variable at the document level, sampled once per document.
Finally, the variables zd,j and wd,j are at the word level sam-
pled once for each word per document.

Figure 2: LDA Visualization. K is the number of topics; M
is the number of documents; Nd is the length of document
d; θd represents the topic distribution of document d which
follows the Dirichlet distribution with parameter γ; ν is the
corresponding parameter of the word probability distribution
of the topic k; wd,j is a word in document d at position j and
zd,j is that word’s topic.

3.3 LDA-LFM Model
The model that we design, called ‘Latent Dirichlet Alloca-
tion - Latent Factor Model’ or shortly LDA-LFM, aims to
combine two main core ideas of two methods discussed in
Sections 3.1 and 3.2 to uncover both hidden dimensions in
ratings and textual reviews, respectively. As it was men-
tioned earlier, one of the three entities on which topic model-
ing is based is the document entity. Therefore, the concept of

‘document’ in the LDA-LFM model should be defined prop-
erly. There are different ways of defining this concept which
should be based on the textual reviews. One can simply con-
sider each text review of user u and item i as a document,
denoted by dui. On the other hand, one can define a docu-
ment as a set of all reviews corresponding to item i, denoted
by di. Finally, one can define the document as the set of
all reviews provided by a user u as a document, denoted by
du. [25] found that the second definition, where the concept
of a document is defined as the set of all reviews of item
i (di), leads to the best model performance. The motiva-
tion behind this choice is that when users provide feedback
about the products in terms of textual reviews, they discuss
more often the characteristics of the product rather than
discussing their personal preferences. Therefore, we will de-
fine the concept of documents in the LDA-LFM in a similar
way as in [25].

The idea behind the LDA-LFM model is to find the K-
dimensional topic distribution θi of each item using textual
reviews of item i which shows the extent to which each topic
k is discussed across all the reviews for item i. Consequently,
these topic distributions are used as item-factors in combi-
nation with user-factors in LFM to fully predict all user-item
ratings. In Section 3.1 we stated that parameter qi is the
rating factor possessing the properties of item i that can be
reviewed by users, whereas in Section 3.2 we stated that
parameter θi is the topic distribution of words that appear
in those reviews. Assuming that, if an item i has a certain
property, then it will correspond to a particular topic dis-
cussed in that item’s textual review, such that qi,k and θi,k
are positively correlated, we need to define the exact rela-
tion between these two parameters. However, qi,k and θi,k
cannot be considered as being equal since the topic distri-
bution θi is a stochastic vector describing topic probabilities
while latent item factor qi can take an arbitrary value in
RK . Stating that qi is a stochastic vector-like θi would re-
sult in a loss of power in the proposed model and changing
the structure of the topic distribution θi to make it more
similar to qi will lead to the loss of probabilistic power in
the model. In order to not encounter these problems, the
transformation of qi to θi should satisfy monotonicity, qi ∈
RK , and

∑
k θi,k = 1 assumptions.

The following transformation satisfies all these criteria:

θi,k =
exp(κqi,k)∑K

k′=1 exp(κqi,k′)
(12)

where the parameter κ controls for the reaching of the high-
est possible value of the transformation, often called ‘picki-
ness’ parameter. Large value of κ indicates that users discuss
only the most important topic, whereas small κ indicates
that users discuss all topics equally. We define the trans-
formation, in such a way that, when κ → ∞, θi → ι (unit
vector). Thus, when κ → 0, θi converges to a uniform dis-
tribution. To make sure that the word distribution for topic
k (φk) is a stochastic vector, the following transformation of
φk is defined with an introduction of a new variable ψ:

φk,w =
exp(ψk,w)∑
w′ exp(ψk,w′)

(13)

where ψk ∈ RV is used as a natural parameter for the topic
distribution φk ∈ RV , where V is the size of the vocabulary.



Correspondingly, it holds that
∑
nφk,n = 1. Then the ob-

jective function of the LDA-LFM model is defined as follows:

f(T | Θ,Φ, κ, z) =
∑
u,i∈T

(ru,i − r̂u,i)2 + λ(‖pu‖22 +

‖bi‖22 + ‖bu‖22)− µl(T | θ, φ, z)
(14)

where Θ = {α, bu, bi, pu, qi} and Φ = {θ, φ} represent
the set of parameters of LFM and LDA model, respectively.
The first term of Equation 14 represents the prediction er-
ror corresponding to the LFM, the second term represents
the regularization of model parameters bu, bi, pu and the
third term represents the log-likelihood of the corpus of rat-
ings and users from Equation 11. The parameter µ ∈ R+

trades-off the importance of these two effects. We observe
that in LDA-LFM model, the regularization of qi is differ-
ent compared to the standard Matrix Factorization case, the
standard regularization term does not contain the norm of
qi. More specifically, the third term of Equation 14 behaves
as a regularization for qi [25].

3.4 LDA-LFM with Extra Features
As it was mentioned earlier, the proposed recommender sys-
tem should allow adding extra user- and item-specific fea-
tures. A key aspect in adding extra features to the sys-
tem is to better describe users and items, to better predict
the preferences of those users for different items. Examples
of user features are user demographics such as age, living
area, gender, occupation, etc. [9]. If our goal is to build
a movie recommender, then the genre, year of its release,
name of the director, can all be interpreted as item char-
acteristics, which can be added to the system for making
better recommendations. [5], [12] and [40] introduced Col-
laborative Filtering recommender systems that allow adding
user- and item-specific features in addition to ratings. We
will follow the approach of [5] and [12], who proposed adding
extra rows and columns to the user-item rating matrix rep-
resenting the extra features added to the LFM. Figure 3

Figure 3: Matrix Factorization of User-Item Rating Matrix
with Extra Features. Matrix R is the rating matrix, where
the rows of R. Matrices P and Q are the user-factor and item-
factor matrices, respectively. To both matrices P and Q are
added by K* = 3 extra user-columns and item-rows. These
extra K∗ columns/rows do not appear in the LDA model while
the first K ones do.

visualizes an example of the Matrix Factorization model ex-

tended with three extra features. The main idea is to add
the same amount of both extra user- and item-specific fea-
tures. This assumption is necessary because LFM, which
is used as a rating modeling technique in the LDA-LFM
model, requires matrix multiplication of two matrices with
dimensions NUsers x K and K x NItems. This matrix mul-
tiplication is only possible when the number of columns in
user-factor matrix P is equal to the number of rows of item-
factor matrix Q. The extra features denoted by K∗ from
Figure 3 do not appear in the LDA model and represent
non-review factors that affect the review ratings.

3.5 LDA-LFM Model Fitting
Our goal is to find the solution to the optimization problem
of Equation 14, which is:

arg Θ,Φ,κ,zf(T | Θ,Φ, κ, z) (15)

where the corpus T is given. The LDA-LFM model defines
the following iterative stochastic optimization procedure of
two steps:

for i in Niter

Solve arg min Θ,Φ,κf(T | Θ,Φ, κ, z(t−1))

→ Update Θ(t),Φ(t), κ(t)

Sample z
(t)
d,j with p(z

(t)
d,j = k) = θd,kφ

(t)
k,wd,j

end for

(16)

where Niter is the number of iterations, d ≡ du,i represents
the review or set of reviews (document) of item i by user u.
In the first step of this optimization procedure from Equa-
tion 16 we fix the topic assignments for each word, i.e., the
value of latent variable z and we solve the objective function
with respect to Θ, Φ and κ. We use the Adam Optimizer
for learning the rating related model parameters Θ = {α,
bu, bi, pu, qi}, but also the review related parameters Φ
= {θ, φ }, and κ. As it was mentioned earlier, θ ∈ Φ and
q ∈ Θ are linked through Equation 12. So, we do not use
the textual reviews to fit the document-topic distribution θ
using the LDA approach. Instead, we determine θ using q,
since, we introduced a transformation of φ, to ensure that
it is a stochastic vector, instead of learning φ we learn the
parameter ψ. Once we learn ψ, by using the transformation
defined in Equation 13, the topic-word distribution φ can
be determined. Moreover, using the same optimization ap-
proach, we also learn the parameter κ.

In the second step of this iterative procedure, using the up-
dated parameter values Φ = {θ, φ } determined in the first
step by Adam Optimization, we randomly assign a topic k
to each word, with a probability that is proportional to the
likelihood of the occurrence of that topic with that partic-
ular word [36]. That is, the topic assignment probability of
assigning kth topic to a word wu,i,j for user u, item i and
in j th position p(zwu,i,j = k) is proportional to the prod-
uct of topic probability for user u, item i (θu,i,k), and word
probability used for that topic (φk,wu,i,j ). We assume that
the terms zwu,i,j and zu,i,j are equivalent (zwu,i,j ≡ zu,i,j).
We iterate through all documents and word positions, d,
and j, respectively, to update the corresponding topics as-
signed to those terms. Finally, we repeat these two steps



for Niter times and report the prediction accuracy of the
model corresponding to the last iteration. Following pseu-
docode describes the fitting process behind the LDA-LFM
which includes 2 main steps; initialization and model fitting.

Algorithm 1 LDA-LFM Recommender Algorithm

Input← K,K∗, V,M,Niter, λ, η, β1, β2, ε, µ
rating matrix R, documents, vocabulary

Output: Predicted Rating Matrix
Step 1:

• Determine number of words per document and topic
assignment dictionary: itemWords, topics

• Initialize ψ and the parameters in Θ = {α, bu, bi,
pu, qi}

Step 2:
for i in Niter do

for d in Ndocuments do
for k in K do

θd,k =
exp(κqd,k)∑
k′ exp(κqd,k′)

end for
end for
for k in K textbfdo

for w in nwords do

φk,w =
exp(ψk,w)∑
w′ exp(ψk,w′)

end for
end for
lk = 0
for d in Mdo

for j in documentd do
pz = θd,.φ.,j
zd,j ← sample from Multinomial(pz)
topics[d,j] = zd,j
lk+ = log(θd,zd,jφzd,j ,j)

end for
end for
for user, item, rating in R do

r̂user,item = α+ bitem + buser + puser,kq
T
item,k

euser,item = r̂user,item − rating
f = euser,item − µlk
for ωi in buser, bitem, puser,k, qitem,k, ψk,ω do

mi = β1mi−1 + (1− β1)
∂f

∂ωi−1

ri = β2ri−1 + (1− β2)
∂2f

∂ωi−1∂ωi−1

ωi = ωi−1 − η
mi−1√
ri−1 + ε

end for
end for

end for
close;

The algorithm requires as an input the number of topics
K, the number of extra latent factors for the LFM model
K∗, the size of the vocabulary V, the number of iterations
Niter, the hyperparameter µ, the regularization parameter

λ. Moreover, the parameters of the Adam Optimization
method (η, β1, β2, ε) should be initialized too. Finally, the
algorithm also requires the rating matrix R, the documents,
and the vocabulary, where the vocabulary is only used for
initializing the topics assigned to each word in a document.

In Step 1 of the LDA-LFM algorithm, the number of words
per document, where each document represents all reviews
corresponding to an item, is determined and stored in the
itemWords vector. The initial topic assignment of all words
in the dictionary is stored in topics. Moreover, all param-
eters of the LFM model and ψ of the LDA model are ini-
tialized. Finally, we randomly assign a set of topics to each
document in the corpus. In Step 2, the LDA-LFM algo-
rithm per iteration generates a document-topic vector θi,
which determines the topic-distribution, based on the value
of item-factors qi obtained from the MF procedure. Next,
the values of ψk,w are used to generate topic-word proba-
bilities φk,w. Correspondingly, the algorithm goes through
the entire corpus of all documents and randomly assigns
topics to all words in that document, using the conditional
probability pz given in Equation 16. Then, the generated
document-topic (θ) and topic-term (φ) probabilities are used
for calculating the corpus likelihood. Finally, all above ob-
tained values are used to predict ratings and update model
parameters bu, bi, pu, qi, ψ, and κ in each iteration. The
processes in Step 2 are repeated for Niter times and the pre-
diction accuracy of the last iteration is computed.

4. EVALUATION
As a prediction accuracy measure we use the Mean Squared
Error (MSE) determined as follows:

MSE =

∑
(u,i)∈T ∗(r̂u,i − ru,i)

2

| T ∗ | (17)

where T ∗ represents the corpus of all ratings in the test set,
ru,i represents the real rating from the test data for user u
and item i, and r̂u,i is corresponding predicted rating. MSE
can take only non-negative values. Moreover, a lower value
of MSE is an indication of better performing model. It is
worth mentioning that the analysis is performed on a com-
modity machine with a Cori7 processor, 2.2 GHz frequency,
and 252Gb memory space using the programming language
Python 3.7.

4.1 Data
In this research, we use a collection of datasets provided
corresponding to the 23 product categories supplied by one
of the largest e-commerce companies in the world, Ama-
zon.com. This data without duplicates was prepared by Ju-
lian McAuley. It consists of 142.8 million product reviews
and metadata for 9.4 million products, spanning a period of
18 years, from May 1996 to July 2014 [24, 26]. The chosen
dataset is of a 5-core type, that is, the data set excludes
all customers and products having less than 5 reviews. The
review dataset includes feedbacks of Amazon customers in
the form of ratings, textual reviews, and helpfulness scores.
Meanwhile, the metadata includes various characteristics of
the product: price, brand, descriptions, category informa-



tion, image features, and links of ‘also viewed’, ‘also bought’
products. The raw review data, after removing duplicates
and excluding users or items with less than 5 reviews, con-
sists of 42.13 million reviews. Table 1 presents the general
overview of the datasets of all product categories. We ob-
serve that all datasets are highly sparse and contain a very
large amount of missing ratings. For almost all datasets it
holds that the average star rating is approximately equal to
4. Moreover, the average number of words per review is at
least 18 and at most 67. Finally, the smallest dataset, Mu-
sical Instruments, consists of 0.5 million reviews, and the
largest dataset, Electronics, consists of approximately 8 mil-
lion reviews.

4.2 Data Preparation
In order to correctly evaluate the chosen model, we split
the data into three datasets: training, validation, and test
sets. We fit the model on the training data and find a set
of optimal model parameters (hyperparmeter tuning) using
the validation set. Finally, we use the test set for predicting
the ratings and calculating model accuracy measures using
the optimal set of parameters from the hyperparmeter tun-
ing. For data separation we use the common 80/20 splitting
rule. In order to have enough observations to correctly fit
the model, we put 80% of all observations in the training
set, while the remaining 20% we equally divided into the
test and validation sets. However, splitting the data into
training, test and validation sets, when some of the users
and items appear only in the test set and not in the train-
ing set, will result in a loss of information about those users
and items during the training of the model. Therefore, after
randomly splitting the data into train and test set, we make
sure that there is no user or item that is present in the test
set but not present in the training set.

For implementing the topic modeling technique LDA, the
review data should be cleaned. Therefore, we perform a few
Natural Language Processing (NLP) tasks on the textual
reviews in review tuples by using the Natural Language Tool
Kit (NLTK) library of the programming language Python.
Firstly, we apply tokenization to all review texts, which are
provided as a group of sentences, and transform them into a
group of words. Secondly, we transform them to lower case
words and remove from these tokenized reviews the common
English stop words and one-letter words. Subsequently, all
special characters, digits, punctuation and single or multiple
spaces are removed. Next, we apply lemmatization to the
processed review text, for removing inflectional endings and
holding the dictionary (base) form of a word only, known
as the lemma of the word. Finally, we combine all those
cleaned reviews corresponding to the same item and create
a corpus of documents, where each document contains all
reviews (represented in the form of a group of words) corre-
sponding to one item.

4.3 Model Selection
We introduced various parameters in the methodology sec-
tion which should be initialized. We initialize the offset α by
averaging over all ratings in the training set. Vectors bi, bu
and matrices P, Q are initialized using the random normal
distribution. The fitting procedure of all models have been

performed by Adam Optimization with the learning rate
0.01. As initial value for κ we take the value 1, which will
be updated by Adam Optimization while fitting the model.
For each model we run 35 iterations [3] (with 20 iterations),
[15] (with 20-35 iterations), [27] (with 30 iterations) while
updating model parameters in Θ, Φ, and κ in each iteration.
The prediction accuracy of the model is reported based on
the last model corresponding to 35 th iteration, assuming
that the last model, after all the updates, is the best per-
forming model. As a common practice, for the LDA model
we set both parameters γ and ν equal to 0.1. Following the
approach of [25] we perform the analysis with number of la-
tent factors in LFM model (K*) and number of topics in the
LDA model (L) equal to 5.

LDA-LFM contains two regularization parameters, λ and µ.
We tune this set of two parameters using the Grid-Search
method, which fits the model for every specified combination
of these two parameters and evaluates each of these models
using validation set. As a result, the most accurate model
specification, per product category, is then used in the main
model prediction applied to the test dataset. Following the
approach of [25], for λ we use values {0, 0.001, 0.01, 1, 10} as
a possible values in the Grid-Search, while for regularization
constant µ we use the values {1, 10, 100, 1000, 10,000}. As
it was mentioned in Section 3.3, we set the number of docu-
ments in the LDA model equal to the number of items in the
data, where each document represents all reviews of an item
in the training set. We set the size of the vocabulary equal
to 5000, by keeping the most 5000 frequent words from the
corpus of all documents built from the item reviews present
in train set. Table 2 presents the results of the Grid-Search
per dataset for the LDA-LFM model with both the num-
ber of topics and the number of latent factors being equal
to 5 (K = 5). For each dataset, the training set has been
used for fitting the model and corresponding validation set
has been used for calculating the prediction accuracy of the
model for each possible combination of parameters λ and µ.
Consequently, per dataset, the pair of parameters λ and µ
is chosen, which corresponds to the model with the smallest
MSE value. The first column of Table 2 represents the op-
timal value of regularization parameter λ denoted by λopt.
From the table we can see that for almost all datasets it
holds that the optimal regularization parameter is equal to
10. There is only one dataset, Amazon Instant Video, for
which λopt is equal to 1. The second column of Table 2
represents the optimal value of hyper-parameter µ denoted
by µopt. We observe that unlike the λopt, there is no single
value of µ which is optimal for the majority of all datasets.

4.4 Baseline Models
In order to test for the performance of the proposed LDA-
LFM model, we use 4 other recommender systems based on
different algorithms. Then we compare the prediction accu-
racy of the LDA-LFM model with the performance of the
following methods:

Offset Model : the predicted rating for all users is the same
and is equal to the global average α.

Baseline Rating Model : the predicted rating r̂ui = α +
r̄u + r̄i with α representing the global average rating, r̄u



Table 1: Overview of datasets. The following statistics per dataset are reported: number of users (NUsers), number of items
(NItems), number of reviews (NReviews), average number of words in textual reviews after removing the stopwords (A. W.),
average star rating (A. R.), and sparsity of the user-item rating matrix (Sparsity).

Dataset NUsers NItems NReviews A. W. A. R. Sparsity
Electronics 4,201,696 476,002 7,824,482 43 4.012 0.00039
Clothing, Shoes and Jewelry 3,117,268 1,136,004 5,748,920 26 4.145 0.00016
Movies and TV 2,088,620 200,941 4,607,047 58 4.187 0.00110
Home and Kitchen 2,511,610 410,243 4,253,926 36 4.099 0.00041
CDs and Vinyl 1,578,597 486,360 3,749,004 67 4.403 0.00049
Cell Phones and Accessories 2,261,045 319,678 3,447,249 30 3.811 0.00048
Sports and Outdoors 3,117,268 1,136,004 3,268,695 34 4.145 0.00034
Kindle Store 1,406,890 430,530 3,205,467 42 4.232 0.00050
Health and Personal Care 1,851,132 252,331 2,982,326 33 4.110 0.00063
Apps for Android 1,323,884 61,275 2,638,173 18 3.996 0.00325
Toys and Games 1,342,911 327,698 2,252,771 33 4.150 0.00051
Beauty 1,210,271 249,274 2,023,070 31 4.149 0.00067
Tools and Home improvement 1,212,468 260,659 1,926,047 36 4.130 0.00061
Automotive 851,418 320,112 1,373,768 30 4.185 0.00051
Video Games 826,767 50,210 1,324,753 58 3.979 0.00051
Grocery and Gourmet Food 768,438 166,049 1,297,156 31 4.255 0.00102
Office Products 909,314 130,006 1,243,186 36 3.979 0.00105
Pet Supplies 740,985 103,288 1,235,316 37 4.111 0.00161
Patio, Lawn and Garden 714,791 105,984 993,490 37 4.006 0.00130
Baby 531,890 64,426 915,446 41 4.118 0.00270
Digital Music 478,235 266,414 836,006 41 4.540 0.00066
Amazon Instant Video 426,922 23,965 583,933 28 4.316 0.00571
Musical Instruments 339,231 83,046 500,176 45 4.244 0.00178

the average difference between user ratings and the global
average α, r̄i represents the average difference between item
ratings and the global average α.

LFM : standard Latent Factor Model model corresponding
to Equation 2.

LDAFirst : in this model the user feedback in the form of
ratings will be used as an input for the standard LFM, while
the textual reviews will be used as an input for the LDA
model described in Section 3.2. The key difference between
this method and the proposed method LDA-LFM is that,
in LDAFirst the topic-distributions θi are sampled from a
Dirichlet distribution, where each document is treated as
the set of all reviews corresponding to item i, and they are
used to set the qi values, which stay constant while mod-
eling the ratings. Thus we do not learn the qi parameter
of the LFM during the iterative optimization procedure and
we only update the parameters bi, bu, and pu using the
Adam Optimization. In the LDA-LFM model, we do not
use the LDA method for determining the topic-distributions
θi. After that we sample the word topics, we learn Φ = {θ,
φ} using Adam Optimization as in Equation 16 (where qi is
dependent on θi by means of Equation 12). Since we start
this method by the LDA model and use its output (θi) as
an input for the LFM method (qi), we refer to this method
as LDAFirst.

5. RESULTS
Firstly, we perform the analysis for the case when no extra
features are added to the LDA-LFM model, assuming that
the number of topics in LDA model is equal to the number
of latent factors in LFM with K ∈ {5,10} [25]. Correspond-

ingly, in order to analyse the impact of adding extra latent
features (user and item characteristics) on the performance
of recommender system based on the proposed LDA-LFM
model, such that the number of topics in the LDA has value
5 and the number of extra latent factors with 4 different val-
ues of extra features K∗ ∈ {1, 2, 3, 4}. Table 3 presents the
prediction per product category with the number of topics
equal to 5.

We observe that for the majority of supplied datasets it
holds that the Offset and Baseline models perform the worst,
with large MSE values, compared to the LFM, LDAFirst,
and LDA-LFM models. This can also be seen in Figure
4 which visualizes the performance of the LDA-LFM com-
pared to the Offset and BRM, respectively. Only for Video
Games and Tools and Home Improvements datasets the Off-
set method performs better than the LFM and LDAFirst
models. Moreover, we observe that compared to the Offset
and Baseline models, standard LFM improves the recom-
mender systems prediction accuracy for almost all datasets,
except datasets Patio, Lawn and Garden, Video Games, and
Tools and Home Improvement. This can be seen by the
large difference between the MSE values corresponding to
the LFM, and MSE values corresponding to the Offset and
Baseline models. We also observe that the MSE’s corre-
sponding to the LFM and LDAFirst models, also visualized
in Figure 5, are very close to each other for the majority
of datasets. This means that the LDAFirst model does not
improve the prediction accuracy a lot compared to the stan-
dard LFM model. The LDAFrist slightly outperforms LFM
in case of the datasets Baby,Office Products Grocery and
Gourmet Food, Apps for Android, CDs and Vinyl. From Ta-
ble 3 we observe that the LDA-LFM model outperforms all
other models in almost all datasets, with its lowest MSE val-
ues. Last two columns of Table 3 present the percentage de-



Table 2: Parameter Tuning LDA-LFM. Grid Search parame-
ter tuning for regularization parameters λ and µ per product
category dataset. λopt and µopt are the optimal parameters
chosen from λ = {0, 0.001, 0.01, 1, 10 } and µ = {1, 10,
100, 1000, 10,000} respectively, resulting in the most accu-
rate model for the validation set.

Dataset λopt µopt
Electronics 10 1000
Clothing, Shoes and Jewelry 10 1000
Movies and TV 10 1000
Home and Kitchen 10 1000
CDs and Vinyl 10 10,000
Cell Phones and Accessories 10 1
Sports and Outdoors 10 1000
Kindle Store 10 1000
Health and Personal Care 10 100
Apps for Android 10 10
Toys and Games 10 1000
Beauty 10 10,000
Tools and Home improvement 10 1000
Automotive 10 10,000
Video Games 10 1000
Grocery and Gourmet Food 10 10
Office Products 10 1000
Pet Supplies 10 10,000
Patio, Lawn and Garden 10 1
Baby 10 1
Digital Music 10 10
Amazon Instant Video 1 100
Musical Instruments 10 100

crease in the MSE of the LDA-LFM model compared to the
LFM and the LDAFirst models, respectively. Both improve-
ment columns consist mostly of positive entries. We ob-
serve that the proposed LDA-LFM results in at least 0.24%
(Health and Personal Care) and at most 14.12% (Kindle
Store) improvement in prediction accuracy, compared to the
standard LFM. From Imp.[5]/[4] we observe that the pro-
posed LDA-LFM results in at least 0.28% (Electronics) and
at most 14.12% (Kindle Store) improvement, compared to
the LDAFirst model. The improvement columns in Table 3
contain also few negative values which correspond solely to
small datasets (Musical Instruments, Amazon Instant Video,
Patio, Lawn and Garden). Table 3 also reports the average
MSE over all datasets per model in case of K = 10. We
observe that average MSE’s per model with K = 5 and K =
10 are similar.

Table 4 presents the prediction results in terms of MSE, per
product category with the number of topics equal to 5 and
extra added features. We observe that for almost all datasets
there is at least one LFM-LDA model with extra feature(s)
with higher prediction accuracy (lower MSE value compared
to the corresponding MSE value in the K∗ = 0 model, i.e.,
without extra features). Moreover, for the datasets Musi-
cal Instruments, Patio, Lawn and Garden, Automotive, Toys
and Games, Health and Personal Care, Sports and Outdoors,
CDs and Vinyls, Home and Kitchen and Movies and TV all
four models with different number of extra features are per-
forming better compared to the model without extra added
features. However, there are few datasets (Amazon Instant
Video, Office Products, and Beauty) for which it holds that
adding extra features to the LDA-LFM model either does

Figure 4: Percentage decrease in MSE when comparing LDA-
LFM model performance to the Offset model (green bars) and
to the BRM model (grey bars) performances.

not change or worsens the performance of the model. We
observe that all those datasets, for which adding extra fea-
tures is not efficient, are either very small or medium size
datasets in the set of all 23 Amazon datasets used in this
study. The last row of Table 4 presents the number of cases
in which adding a particular amount of extra features leads
to an increase in the prediction accuracy of the model. We
observe that in all four cases (adding 1, 2, 3, and 4 extra
features), the number of datasets with better performance
are close to each other. More specifically about 15 out of
23 datasets (from which around 9 cases corresponds to a
medium or a large dataset), adding extra features results in
more accurate recommendations.

Figure 5: Percentage decrease in MSE when comparing LDA-
LFM model performance to the LFM model (orange bars) and
to the LDAFrist model (red bars) performances.



Table 3: Prediction results in terms of MSE with K = 5 number topics. Imp.[5]/[3] reports the percentage improvement of
LDA-LFM model compared to the LFM model, in terms of prediction accuracy. Imp.[5]/[4] shows the percentage improvement
of LDA-LFM model compared to the LDAFirst model. The average MSE per model is also reported for the K = 10 case.

Dataset Offset[1] Base.[2] LFM[3] LDAFirst[4] LDA-LFM[5] Imp. [5]/[3] Imp.[5]/[4]

Electronics 2.909 2.345 1.789 1.789 1,780 0.28% 0.28%
Clothing, Shoes and Jewel. 2.275 2.122 1.456 1.457 1.445 0.76% 0.82%
Movies and TV 2.803 2.334 1.721 1.723 1.682 2.27% 2.38%
Home and Kitchen 2.535 2.249 1.841 1.841 1.787 2.93% 2.93%
CDs and Vinyl 2.508 2.083 1.746 1.740 1.523 12.77% 12.47%
Cell Phones and Access. 2.542 2.448 1.996 1.995 1.901 4.76% 4.71%
Sports and Outdoors 2.138 2.096 1.422 1.422 1.349 5.13% 5.13%
Kindle Store 2.516 2.145 1.814 1.813 1.581 14.12% 14.12%
Health and Personal Care 2.392 2.259 1.670 1.689 1.666 0.24% 1.36%
Apps for Android 2.984 2.397 2.190 2.188 2.006 8.40% 8.32%
Toys and Games 2.258 2.152 1.512 1.512 1.485 1.79% 1.79%
Beauty 2.371 2.256 1.675 1.674 1.646 1.73% 1.67%
Tools and Home Improve. 1.392 2.136 1.634 1.634 1.516 7.22% 7.22%
Automotive 2.081 2.064 1.511 1.511 1.410 6.68% 6.62%
Video Games 1.603 2.354 1.721 1.722 1.617 6.04% 6.10%
Grocery and Gourmat 2.020 2.129 1.520 1.519 1.491 1.91% 1.84%
Office Products 2.168 2.306 1.813 1.796 1.626 10.31% 9.47%
Pet Supplies 2.480 2.265 1.815 1.814 1.765 2.81% 2.70%
Patio, Lawn and Garden 1.970 2.235 1.780 1.781 1.738 2.36% -2.41%
Baby 1.934 2.194 1.717 1.715 1.693 1.40% 1.28%
Digital Music 1.261 1.555 1.030 1.030 1.052 -2.14% -2.14%
Amazon Instant Video 2.828 1.985 1.278 1.277 1.508 -18.09% -18.00%
Musical Instruments 1.735 1.921 1.165 1.165 1.208 -3.69% -3.69%
Average MSE K = 5 2.248 2.122 1.643 1.644 1.572
Average MSE K = 10 2.248 2.122 1.637 1.637 1.579

Table 4: Prediction results of LDA-LFM model in terms of the MSE with K = 5 number topics. K∗ defines the number of extra
factors added to the LDA-LFM model. K∗ = 0 represents the case when no extra feature has been added to the model, results
corresponding to the Table 3. K∗ = 1, K∗ = 2, K∗ = 3, and K∗ = 4 correspond to the LDA-LFM model predictions with 1, 2,
3, and 4 extra features, respectively.

Dataset K∗= 0 K∗= 1 K∗= 2 K∗= 3 K∗= 4
Electronics 1.78019 1.78001 1.77651 1.77901 1.78199
Clothing, Shoes and Jewel. 1.44511 1.44510 1.44515 1.44510 1.44581
Movies and TV 1.68230 1.68204 1.69210 1.69199 1.68221
Home and Kitchen 1.78696 1.78694 1.78690 1.78710 1.78691
CDs and Vinyl 1.52294 1.52293 1.52278 1.52280 1.52270
Cell Phones and Access. 1.90113 1.90553 1.90540 1.90112 1.90154
Sports and Outdoors 1.34960 1.34959 1.34950 1.39512 1.39516
Kindle Store 1.58104 1.58118 1.58143 1.58100 1.58011
Health and Personal Care 1.66564 1.66558 1.66557 1.66555 1.66553
Apps for Android 2.00655 2.00617 2.00524 2.00644 2.00696
Toys and Games 1.48472 1.48455 1.48458 1.48442 1.48446
Beauty 1.64578 1.64584 1.64580 1.64578 1.64583
Tools and Home improve. 1.51640 1.51644 1.51637 1.51658 1.51656
Automotive 1.40996 1.40983 1.40977 1.40973 1.40984
Video Games 1.61691 1.61699 1.60912 1.60902 1.60936
Grocery and Gourmet 1.49049 1.49057 1.49046 1.49045 1.49084
Office Products 1.62635 1.62666 1.62673 1.62674 1.62668
Pet Supplies 1.76503 1.76502 1.76501 1.76500 1.76515
Patio, Lawn and Garden 1.73829 1.73810 1.73812 1.73811 1.73809
Baby 1.69345 1.69332 1.69358 1.69272 1.69372
Digital Music 1.05179 1.05165 1.05175 1.05185 1.05170
Amazon Instant Video 1.50755 1.50852 1.50949 1.50835 1.50885
Musical Instruments 1.20791 1.19803 1.19825 1.19818 1.19817
Number of Times Beneficial - 15 15 15 14



6. CONCLUSION
Most of the existing recommender systems are based on the
ratings data only, since incorporating textual reviews in a
rating based model is not an easy task to perform, while
reviews, opinions, and shared experiences of the consumer
represent a rich source of information about the consumer
preferences. Moreover, most of those recommender systems
are tested and applied only on a dataset with a small num-
ber of observations (with thousands of observations) and
are not applied to a very large dataset (with millions of ob-
servations). Finally, the few recommender systems in the
existing literature that allow adding extra user- and item-
specific features to the recommender system, are mainly CF
type of systems based on ratings only. Hence, none of those
systems combine ratings with textual reviews. Therefore,
taking into account all those limitations in the existing lit-
erature, we utilize the Latent Factor Model by using both
ratings and textual reviews of customers, such that it is ap-
plicable on both small and large datasets and also allows
adding user- and item-specific data to it. We have shawn
how one can combine review-based LDA for topic modeling,
with a rating-based LFM for rating predictions.

From the prediction results where we compared the predic-
tion accuracy of the proposed LDA-LFM model to the pre-
diction accuracy’s of various baseline models applied on var-
ious datasets.We found that adding textual reviews to the
recommender system leads to an increased prediction accu-
racy, which is especially true for medium and large datasets.
Then we introduced an approach of adding extra latent fea-
tures to the user-item rating matrix of the proposed LDA-
LFM model, representing the user- and item-specific fea-
tures not present in the review data. We found that for
the majority of datasets (15 out of 23 datasets) it holds
that, adding extra features to the proposed recommender
system increases the quality of its recommendations, result-
ing in lower MSE, thus higher prediction accuracy. This in-
dicates that again, that the improvements are better visible
in medium and large datasets. In order to add extra user and
item characteristics to the proposed LDA-LFM model, we
used the approach of adding extra rows and columns to the
user-item rating matrix. However, since all supplied Ama-
zon datasets used in this analysis do not contain any item-
or user-characteristic variables, we were unable to fully in-
vestigate the impact of adding those extra features to the
recommender system on its prediction accuracy. Therefore,
using real user and item characteristic data as extra rows
and columns to the user-item rating matrix might lead to
more significant improvement in recommendations.

In this paper, we combined the rating modeling technique
LFM with the topic detection method LDA in order to make
recommendations but we have not taken into account the
fact that a word used in the textual review might have mul-
tiple senses and multiple interpretations when used in differ-
ent contexts, polysems or that different words might actually
have the same interpretations, synonyms [10]. In the future
work we would like to redo the current experiment using
synsets instead of words after applying a word sense disam-
biguation procedure [28]. It may be interesting to also inves-
tigate whether using sentiment analysis improves the quality
of recommendations. Correspondingly, one can extend our

model in such a way, that it combines the rating model-
ing, topic extraction, and sentiment analysis techniques for
making recommendations. For instance, sentiment analy-
sis can be used to classify whether a review is negative or
positive. [42] proposed a recommender system combining
rating based CF system with sentiment analysis for making
recommendations. [19] introduced the joint sentiment/topic
model (JST) which combines the topic modeling method
LDA with sentiment analysis in order to detect a topic and
a sentiment from the text simultaneously. For future work,
one can try to combine the JST model with our LDA-LFM
model in order to get better recommendations. In this way,
one can exploit topics that carry sentiment and are possibly
better proxies for our ratings.
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Appendix: Gradients Derivation

In this section, we present the first and second degree deriva-
tives of the objective function with respect to the model pa-
rameters. The following equations represent the first and
the second order derivatives of the proposed LDA-LFM ob-
jective function with respect to the model parameters pu,
bu, qi, bi, κ and ψ, respectively.

∂f(T | Θ,Φ, κ, z)
∂pu

= −2qi(rui − (α+ bi + bu + qTi pu))

+ 2λpu

= −2qi(rui − r̂ui) + 2λpu

= −2qieui + 2λpu

= −2(qieui − λpu)

∂2f(T | Θ,Φ, κ, z)
∂pu∂pu

= 2λ

(18)

∂f(T | Θ,Φ, κ, z)
∂bu

= −2(rui − (α+ bi + bu + qTi pu)) + 2λbu

= −2(rui − r̂ui) + 2λbu

= −2eui + 2λbu

= −2(eui − λbu)

∂2f(T | Θ,Φ, κ, z)
∂bu∂bu

= 2λ

(19)

∂f(T | Θ,Φ, κ, z)
∂bi

= −2(rui − (α+ bi + bu + qTi pu)) + 2λbi

= −2(rui − r̂ui) + 2λbi

= −2eui + λbi

= −2(eui − λbi)

∂2f(T | Θ,Φ, κ, z)
∂bi∂bi

= 2λ

(20)

∂f(T | Θ,Φ, κ, z)
∂κ

= −µ
(∑
d∈T

Nd∑
j=1

qd,zd,j

−
exp(κqd,zd,j )∑K
k=1 exp(κqd,zd,k )

qd,zd,j

)

= −µ
(∑
d∈T

Nd∑
j=1

qd,zd,j
(
1−

exp(κqd,zd,j )∑K
k=1 exp(κqd,zd,k)

))

∂2f(T | Θ,Φ, κ, z)
∂κ∂κ

= µ

(∑
d∈T

Nd∑
j=1

qd,zd,j
exp(κqd,zd,j )∑K
k=1 exp(κqd,zd,k))(

1−
exp(κqd,zd,j )∑K
k=1 exp(κqd,zd,k))

))
(21)

∂f(T | Θ,Φ, κ, z)
∂ψ

= −µ
(∑
d∈T

Nd∑
j=1

1−
exp(ψzd,j ,wd,j )∑
w′ exp(ψzd,j ,w′)

)

∂2f(T | Θ,Φ, κ, z)
∂ψ∂ψ

= µ

(∑
d∈T

Nd∑
j=1

exp(ψzd,j ,wd,j )∑
w′ exp(ψzd,j ,w′)(

1−
exp(ψzd,j ,wd,j )∑
w′ exp(ψzd,j ,w′)

))
(22)

∂f(T | Θ,Φ, κ, z)
∂qi

=
−2

| T |
∑
u,i∈T

(
(rui − r̂u,i)pu + 2λiqi

)
−

µ

(∑
d∈T

Nd∑
j=1

κ−
exp(κqd,zd,j )∑K
k=1 exp(κqd,zd,k )

κ

)
=
−2

| T |
∑
u,i∈T

(
(ru,i − r̂u,i)pu + 2λqi

)
−

µ

(∑
d∈T

Nd∑
j=1

κ
(
1−

exp(κqd,zd,j )∑K
k=1 exp(κqd,zd,k )

))

∂2f(T | Θ,Φ, κ, z)
∂qi∂qi

=
−2

| T |
∑
u,i∈T

2λ−

µ

(∑
d∈T

Nd∑
j=1

κ2exp(κqd,zd,j )∑K
k=1 exp(κqd,zd,k )

(
1−

κ2exp(κqd,zd,j )∑K
k=1 exp(κqd,zd,k )

))
(23)


