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Tail index estimation depends for its accuracy on a precise choice of the sample
fraction, i.e., the number of extreme order statistics on which the estimation is
based. A complete solution to the sample fraction selection is given by means of a
two-step subsample bootstrap method. This method adaptively determines the
sample fraction that minimizes the asymptotic mean-squared error. Unlike previous
methods, prior knowledge of the second-order parameter is not required. In addi-
tion, we are able to dispense with the need for a prior estimate of the tail index
which already converges roughly at the optimal rate. The only arbitrary choice of
parameters is the number of Monte Carlo replications. � 2001 Academic Press
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extreme sample fraction.

1. INTRODUCTION

Let X1 , X2 , ... be independent random variables with a common distribu-
tion function F which has a regularly varying tail

1&F(x)=x&1�#L(x) x � �, #>0, (1.1)
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where L is a slowly varying function and 1�# is the index of regular varia-
tion, or the tail index. This is the case if F is in the domain of attraction
of an extreme-value distribution with positive index or if F is in the domain
of attraction of a stable distribution with index 0<:<2. Various
estimators for estimating # have been proposed (see Hill, 1975; Pickands,
1975; de Haan and Resnick, 1980; Hall, 1982; Mason, 1982; Davis and
Resnick, 1984; Cso� rgo� , et al. 1985, Hall and Welsh, 1985). We concentrate
on the best known estimator, Hill's estimator,

#n (k) :=
1
k

:
k

i=1

log Xn, n&i+1&log Xn, n&k ,

where Xn, 1� } } } �Xn, n are the order statistics of X1 , ..., Xn .
It is well known that if k=k(n) � � and k(n)�n � 0, then

#n (k) � #, n � �,

in probability (Mason, 1982). This follows since k(n) � � implies that
eventually infinitely many order statistics are involved, allowing for the use
of the law of large numbers, while the condition k(n)�n � 0 means that the
tail and nothing else is estimated. An asymptotic normality result for #n (k)
is needed for the construction of a confidence interval. Hall (1982) showed
that if one chooses k(n) by

k0 (n) :=arg min
k

Asy E(#n (k)&#)2,

where Asy E denotes the expectation with respect to the limit distribution,
then

- k0 (n)(#n (k0 (n))&#) w�d N(b, #2),

so that the optimal sequence k0 (n) results in an asymptotic bias b. One can
evaluate k0 (n) asymptotically when the first- and second-order regular
variation properties of the underlying distribution are known. A version of
that result is our Theorem 1. In fact, k0 (n) is the value which just balances
the asymptotic variance and bias components of E(#n (k)&#)2.

Our framework is a second-order condition connected with (1.1). There
exists a function A*, not changing sign near infinity, such that

lim
t � � \\1&F(x)

1&F(t)
&x&1�#+<A*(t)+=x&1�# x\�#&1

\�#
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for x>0 and where \�0 is the second-order parameter. A reformulated
version of this condition with the inverse function U of 1�(1&F ) is needed:
There exists a function A, not changing sign near infinity, such that

lim
t � �

U(tx)�U(t)&x#

A(t)
=x# x\&1

\
. (1.2)

The function |A| is regular varying at infinity with index \. We write
|A| # RV\ . We solve the optimality issue when \ is strictly negative. Under
this condition k0 (n) can be expressed in terms of #, \ and the second-order
rate function A.

Our aim is to determine the optimal sequence k0 (n) solely on the basis
of the sample, i.e., to determine an estimator k� 0 (n) such that

- k� 0 (n)(#n (k� 0 (n))&#) w�d N(b, #2). (1.3)

For this it is sufficient to prove

k� 0 (n)
k0 (n)

� 1, (1.4)

in probability (Hall and Welsh, 1985). To find such k� 0 (n) we need two
steps. We apply two subsample bootstrap procedures. This solves the
problem under the extra assumption that A(t)=ct\ with \<0 and c{0,
but otherwise \ and c unknown.

The published literature at the time of writing did not contain a solution
for the estimation of k0 (n) except for very special cases. The most advanced
is Hall (1990), who obtained an estimator k� 0 (n) which satisfies (1.4) under
two extra assumptions, that \ is known and that a prior estimate of # is
available such that this estimator already converges roughly at the optimal
rate.4 We are able to dispense with these assumptions. Nevertheless, Hall's
(1990) suggestion to use a bootstrap method was very instrumental for the
development of our automatic and general procedure.

As a byproduct of our approach we obtain a consistent estimator for the
second-order parameter \; cf. Eq. (3.9) below. We believe this result to be
new to the literature as well.

A completely different approach to the problem is taken in a recent
paper by Drees and Kaufmann (1998). The Drees and Kaufmann method
requires the choice of a tuning parameter. In our case the equivalence of
this tuning parameter is the choice of the bootstrap resample size n1 . Below
we present a fully automatic procedure for obtaining n1 in the sense that

228 DANIELSSON ET AL.

4 Hall (1990) also uses the same idea to select the bandwidth in kernel estimation proce-
dures. There, however, the second assumption is rather innocuous, but this is not the case for
the problem at hand.



a heuristic algorithm is used to determine the bootstrap sample size (see
Section 4). An explicit procedure for the choice of the resample size appears
to be new to the literature as well.

2. MAIN RESULTS

Let Xn, 1� } } } �Xn, n be the order statistics of X1 , ..., Xn . Hill's estimator
is defined by

#n (k) :=
1
k

:
k

i=1

log Xn, n&i+1&log Xn, n&k .

Various authors have considered the asymptotic normality of #n ; see Hall
(1982). We can minimize the mean squared error of #n to get the
asymptotically optimal choice of k, but it depends on the unknown
parameter # and the function A(t) (see Dekkers and de Haan, 1993). We
apply the powerful bootstrap tool to find the optimal number of order
statistics adaptively.

The asymptotic mean squared error of #n is defined as

AMSE(n, k) :=Asy E(#n (k)&#)2.

The AMSE will be estimated by a bootstrap procedure. Subsequently, we
minimize the estimated AMSE to find the optimal k-value adaptively. For
this to work two problems need to be solved. Even if one were given #, then
the regular bootstrap is not ensured to yield an AMSE estimate which is
asymptotic to AMSE (n, k). Moreover, one does not know # in the first
place. The first problem can be solved by using a bootstrap resample size
n1 which is of smaller order than n. Therefore resamples X*n1

=
[X1*, ..., X*n1

] are drawn from Xn=[X1 , ..., Xn] with replacement. Let n1<n
and X*n1 , 1� } } } �X*n1 , n1

denote the order statistics of X*n1
and define

#*n1
(k1) :=

1
k1

:
k1

i=1

log X*n1 , n1&i+1&log X*n1 , n1&k1
.

Hall (1990) proposes the bootstrap estimate

AMSE@(n1 , k1)=E((#*n1
(k1)&#n (k))2 | Xn).

In this setup k has to be chosen such that #n (k) is consistent. Then an
estimate of k1 for sample size n1 is obtained. The problem is, however, that
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k is unknown. Therefore we replace #n (k) in the above expression with a
more suitable statistic. This can be achieved by using a control variate.

Define

Mn (k)=
1
k

:
k

i=1

(log Xn, n&i+1&log Xn, n&k)2.

Note that Mn (k)�(2#n (k)) is another consistent estimator of #, which also
balances the bias squared and variance if k tends to infinity with the rate
of k0 (n). Only the multiplicative constant differs. Therefore, we propose to
use the bootstrap estimate for the mean squared error,

Q(n1 , k1) :=E((M*n1
(k1)&2(#*n1

(k1))2)2 | Xn),

where M*n1
(k1)= 1

k1
�k1

i=1 (log X*n1 , n1&i+1&log X*n1 , n1&k1
)2.

It can be shown that the statistics Mn (k)�(2#n (k))&#n (k) and #n (k)&#
have similar asymptotic behavior in particular, both have asymptotic
mean zero. Accordingly, as is shown in the following two theorems, the
k-value that minimizes AMSE(n, k) and the k-value that minimizes
Asy E(Mn (k)&2(#n (k))2)2 are of the same general order (with respect to n),
under some conditions.

Theorem 1. Suppose (1.2) holds and k � �, k�n � 0. Determine k0 (n)
such that AMSE(n, k) is minimal. Then

k0 (n)=
n

s& (#2 (1&\)2�n)
(1+o(1)) # RV&2\�(1&2\) , as n � �,

where s& is the inverse function of s, with s given by

A2 (t)=|
�

t
s(u) du(1+o(1)) as t � �.

For the existence of such a monotone function see Lemma 2.9 of Dekkers and
de Haan (1993). Moreover, for fixed $>0 and n � �,

k0 (n)targ min
k

E(#n (k)&#)2 1[ |#n(k)&#|<k$&1�2] .

Theorem 2. Suppose (1.2) holds and k � �, k�n � 0. Determine k� 0 (n)
such that Asy E(Mn (k)&2(#n (k))2)2 is minimal. Then

k� 0 (n)=
n

s& (#2 (1&\)4�(n\2))
(1+o(1)), as n � �.
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Moreover, for fixed $>0 and n � �,

k� 0 (n)tE(Mn (k)&2(#n (k))2)2 1[ |Mn(k)&2(#n(k))2|<k$&1�2] .

Corollary 3.

k� 0 (n)
k0 (n)

� \1&
1
\+

2�(1&2\)

(n � �).

The next theorem is our main result and shows that the optimal k1 for
a subsample of size n1 can be estimated consistently. The method used in
proving this result is more involved but similar to the method that is used
in proving Theorem 1.

Theorem 4. Suppose (1.2) holds and k1 � �, k1 �n1 � 0, n1=O(n1&=)
for some 0<=<1. Determine k*1, 0 (n1) such that

Q(n1 , k1)=E((M*n1
(k1)&2(#*n1

(k1))2)2 | Xn)

is minimal. Then

k*1, 0 (n1) s& (#2 (1&\)4�(n1\2))
n1

w�p 1, as n � �.

Theorem 4 gives the optimal k1 for sample size n1 , but we need the
optimal value for the sample size n. This can be achieved modulo a conver-
sion factor.

Corollary 5. Suppose (1.2) holds for A(t)=ct\, t � �, and k1 � �,
k1 �n1 � 0, n1=O(n1&=) for some 0<=<1. Then

\n1

n +
&2\�(2\&1) k*1, 0 (n1)

k� 0 (n)
w�p 1, as n � �.

The conversion factor can be calculated consistently as follows.

Theorem 6. Let n1=O(n1&=) for some 0<=<1�2 and n2=(n1)2�n.
Suppose (1.2) holds for A(t)=ct\, t � �, and ki � �, k i�ni � 0 (i=1, 2).
Determine k*i, 0 such that

E((M*ni
(ki)&2(#*ni

(ki))2)2 | Xn)
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is minimal (i=1, 2). Then

(k*1, 0 (n1))2

k*2, 0 (n2) \ (log k*1, 0 (n1))2

(2 log n1&log k*1, 0 (n1))2+
(log n1&log k*1, 0(n1))�log n1

k0 (n)
w�p 1 (2.1)

as n � �.

Remark 1. From Theorem 6 we can achieve the optimal choice of k
asymptotically. Therefore, by using the asymptotically optimal choice of k,
Hill's estimator will also be asymptotically optimal.

Corollary 7. Suppose the conditions of Theorem 6 hold. Define

k� 0 (n) :=
(k*1, 0 (n1))2

k*2, 0 (n2) \ (log k*1, 0 (n1))2

(2 log n1&log k*1, 0 (n1))2+
(log n1&log k*1, 0(n1))�log n1

Then #n (k� 0) has the same asymptotic efficiency as #n (k0).

To summarize, the algorithm for computing #n (k� 0) is as follows. For a
given choice of n1 draw bootstrap resamples of size n1 . Calculate Q(n1 , k1),
i.e., the bootstrap AMSE, at each k1 ; and find the k*1, 0 (n1) which mini-
mizes this bootstrap AMSE. Repeat this procedure for an even smaller
resample size n2 , where n2=(n1)2�n. This yields k*2, 0 (n2). Subsequently,
calculate k� 0 (n) from the formula in Corollary 7. Finally, estimate # by
#n (k� o). By using this procedure two tuning parameters have to be chosen,
the number of bootstrap resamples and n1 . The number of bootstrap
resamples is determined by the computational facilities and can be chosen
on the basis of a stopping criterion where either the resampling is stopped
once the fluctuations in the bootstrap MSE's fall below a certain level or
once a bound on run time is hit. The choice of n1 is made as follows.

From Theorem 6 we know that for any = such that 0<=<1�2 the
n1=n1&= is an appropriate choice. Hence, asymptotic arguments provide
little guidance in choosing between any of the possible n1 . We use the
following heuristic procedure. In the proof to Theorem 6 we will show that

k� ok*2, 0

(k*1, 0)2 � 1,

in probability. By very similar arguments one can show that

Asy E(Mn (k� 0)&2(#n (k� 0))2)2 Q(n2 , k*2, 0)
(Q(n1 , k*1, 0))2 � 1,
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in probability, as well. Thus an estimator for Asy E(Mn (k� 0)&2(#n (k� 0))2)2

is the ratio

R(n1) :=
(Q(n1 , k*1, 0))2

Q(n2 , k*2, 0)
.

The finite sample n1 is now chosen such that R(n1) is minimal. Note that
this criterion is the finite sample analogue of the asymptotic criterion that
is used for locating k� 0 (n). In practice this criterion is implemented by
working with a grid of n1 values over which R(n1) is minimized. The grid
size is again determined by the available computing time.

3. PROOFS

Let Y1 , ..., Yn be independent random variables with common distribu-
tion function G( y)=1& y&1 ( y�1). Let Yn, 1� } } } �Yn, n be the order
statistics of Y1 , ..., Yn . Note that [Xn, n&i+1]n

i=1 =
d [U(Yn, n&i+1)]n

i=1 with
the function U defined in the Introduction.

Lemma 8. Let 0<k<n and k � �. We have:

(1) For n � �, Yn, n&k�(n�k) � 1 in probability.

(2) For n � �, (Pn , Qn) is asymptotically normal with means zero,
variances 1 and 20 respectively, and covariance 4, where

Pn :=- k {1
k

:
k

i=1

log Yn, n&i+1&log Yn, n&k&1=
and

Qn :=- k {1
k

:
k

i=1

(log Yn, n&i+1&log Yn, n&k)2&2= .

Proof. The proof is similar to the proof of Lemma 3.1 of Dekkers and
de Haan (1993). K

Proof of Theorem 1. We use the method of Dekkers and de Haan
(1993), which we outline, since a similar reasoning is used in the proofs of
Theorems 2 and 4.
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Relation (1.2) is equivalent to the regular variation of the function

|log U(t)&# log t&c0 |

with index \ for some constant c0 (see Geluk and de Haan, 1987, II.1).
Then (1.2) holds with

A(t)=\(log U(t)&# log t&c0).

Applying extended Potter's inequalities to the function A, we get that for
each 0<=<1 there exists t0>0 such that for t�t0 and tx�t0 ,

(1&=) x\e&= |log x| &1�
log U(tx)&log U(t)&# log x

A(t)�\

�(1+=) x\e= |log x|&1. (3.1)

Applying this relation with t replaced by Yn, n&k and x replaced by
Yn, n&i+1 �Yn, n&k , adding the inequalities for i=1, 2, ..., k, and dividing
by k, we get

#n r#+
#Pn

- k
+\&1A(Yn, n&k)(1\=) {1

k
:
k

i=1
\Yn, n&i+1

Yn, n&k +
\\=

&1= .

Now

:
k

i=1
\Yn, n&i+1

Yn, n&k +
\\=

=
d

:
k

i=1

Yi

with Y1 , ..., Yk i.i.d. with common distribution function 1&1�x. Hence by
the weak law of large numbers,

#n r#+
#Pn

- k
+\&1 (1\=) \ 1

1&\�=
&1+ A(Yn, n&k),

i.e.,

#n=#+
#Pn

- k
+(1&\)&1 A \n

k++op \A \n
k++ .
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(Note that in the latter term we have replaced Yn, n&k by n�k, which can
be done since |A| is regularly varying.) Hence

Asy E(#n&#)2
r

#2

k
+

A2 (n�k)
(1&\)2 .

We can assume (see Lemma 2.9 of Dekkers and de Haan, 1993) that A2

has a monotone derivative s which is then regularly varying with index
2\&1. Consequently, s& (1�t) (s& denoting the inverse of s) is regularly
varying with index 1�(1&2\). The first result of the theorem is then
obtained by minimizing the right-hand side of the equation above. For the
proof of the second statement of Theorem 1 we are going to replace the
op-terms by o-terms on part of the sample space. Define for some 0<$0<1�2
the set

En :={|: |Pn |, |D\
n |, }kn Yn, n&k&1 }<k$0&1�2=

with

D\
n :=

1
k

:
k

i=1

(Yn, n&i+1 �Yn, n&k)\\=&(1&\�=)&1.

Now take = and t0 as in (3.1). Then, provided (n�k)(1&k$0&1�2)�t0 , we
have Yn, n&k�t0 on En . Also, since A is regularly varying we have

}A(Yn, n&k)&A \n
k+}<2=A \n

k+
on En . Using these two facts and the inequalities (3.1) we find that

} #n (k)&#&
#Pn

- k
+

A(n�k)
(1&\) }<=A \n

k+
on the set En (so we have o(A) instead of op (A)). Hence for n � � and any
intermediate sequence k(n),

E(#n (k)&#)2 1[ |#n(k)&#|<k$&1�2] 1En

#2

k
+

A2 (n�k)
(1&\)2

� 1.
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Next, we show that the contribution of the set E c
n to the expectation can

be neglected. For example,

E(#n (k)&#)2 1[ |#n(k)&#|<k$&1�2]1[ |Pn|>k$0&1�2]

�k2$&1P[ |Pn |>k$0&1�2],

and by Bennett's inequality (cf. Petrov, 1975, Chap. III.5) we can show that

P[ |Pn |>k$0&1�2]�k&;

for any ;>0, eventually. Hence

lim
n � �

E(#n (k)&#)2 1[ |#n(k)&#|2�k$&1�2]1[ |Pn|>k$0&1�2]

#2

k
+

A2 (n�k)
(1&\)2

=0.

The reasoning in the case any of the other conditions of the set En is
violated is exactly the same (but for (k�n) Yn, n&k we first have to transform
the inequality into an inequality for its inverse, (1�k) �n

i=1 1[Yi>(n�k) x] , and
apply Bennett's inequality). Hence

E(#n (k)&#)2 1[ |#n(k)&#|�k$&1�2] r
#2

k
+

A2 (n�k)
(1&\)2

The rest of the proof is the same as before.

Proof of Theorem 2. From the proof of Theorem 1 we get

#n =
d #+

#Pn

C
+d1A(Yn, n&k)+op (A(n�k)) (3.2)

with d1=1�(1&\) and hence

#2
n =

d #2+
2#2Pn

- k
+2#d1A(Yn, n&k)+op (A(n�k)). (3.3)

Similarly,

Mn =
d

2#2+
#2Qn

- k
+d2A(Yn, n&k)+op (A(n�k)) (3.4)

where d2=2#(2&\)�(1&\)2. The rest of the proof is similar to that of
Theorem 1. K
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Proof of Theorem 4. Let Gn denote the empirical distribution function
of n independent, uniformly distributed random variables. As n is large
enough and n1=O(n1&=), we have

1�2� sup
0<t�n1(log n1)2

tG&
n \1

t+�2 a.s. (3.5)

and

sup
t�2 }- t \Gn \1

t+&
1
t+}�

log n

- n
a.s.

(see Shorack and Wellner, 1986, Eqs. (10) and (17), Chap. 10.5). Hence

sup
4�t�n1(log n1)2 } �

1

G&
n \1

t+
_Gn \G&

n \1
t++&G&

n \1
t+&}�

log n

- n
a.s.

Therefore, for all 4�t�n1 (log n1)2,

} tG&
n \1

t+&1 }�2 - t log n

- n
a.s. (3.6)

Let Fn denote the empirical distribution function of Xn , Un=
(1�(1&Fn))&. Now we use (3.1), (3.5), (3.6),

|log y|�2 | y&1| for all 1�2� y�2

| y&\&1|�(&\)(2&\&1 6 21+\) | y&1| for all 1�2� y�2

and

log Un (t) = log F &
n \1&

1
t+

=
d

log F & \G&
n \1&

1
t++

= log U \
1

1&G&
n \1&

1
t++

=
d

log U \
t

tG&
n \1

t++
.
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From this we conclude that for any 0<=<1 there exists t0>4 such that
for t0<t<n1 (log n1)2 and t0<tx<n1 (log n1)2,

log Un (tx)&log Un (t)&# log x
A(tx)

\

=
d

log U \ tx
txG&

n ( 1
tx)+&log U(tx)&# log \ 1

txG&
n ( 1

tx)+
A(tx)

\

A(tx)
A(t)

&
log U \ t

tG&
n ( 1

t )+&log U(t)&# log \ 1
tG&

n ( 1
t )+

A(t)�\

+
log U(tx)&log U(t)&# log x

A(t)�\

+
# log \ 1

txG&
n ( 1

tx)+
A(t)�\

&
# log \ 1

tG&
n ( 1

t )+
A(t)�\

�_(1+=) \txG&
n \ 1

tx++
&\

e= |log(txGn
&(1�tx))|&1& (1+=) x\e= |log x|

&(1&=) \tG&
n \1

t++
&\

e&= |log(tGn
&(1�t))|+1+(1+=) x\e= |log x|

&1+ } #\
A(t) } 2 \} txG&

n \ 1
tx+&1 }+ } tG&

n \1
t+&1 }+ a.s.

�(1+=) _\txG&
n \ 1

tx++
&\

&1& e= |log(txGn
&(1�tx))| (1+=) x\e= |log x|

+(1+=) |e= |log(txGn
&(1�tx))|&1| (1+=) x\e= |log x|

+=(1+=) x\e= |log x|&(1&=) _\tG&
n \1

t++
&\

&1&
_e&= |log(tGn

&(1�t))|&(1&=)[e&= |log(tGn
&(1�t))|&1]&=

+(1+=) x\e= |log x|&1+ } #\
A(t) }

4 - t log n

- n
(- x+1) a.s.
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�(1+=)(&\)(2&\&1 6 21+\) } txG&
n \ 1

tx+&1 } e= log 2 (1+=) x\

_e= |log x|+4=e= log 2 (1+=) x\e= |log x|+(1+=)2 x\e= |log x|&1

+(1&=)(&\)(2&\&1 621+\) } tG&
n \1

t+&1 } e= log 2

+4=(1&=) e= log 2&=+ } #\
A(t) }

4 - t log n

- n
(- x+1) a.s.

�_(&\)(2&\+1 6 23+\)+2 } #\
A(t) }&

2 - t log n

- n
(- x+1)

+(1+9=)(1+=) x\e= |log x|&1+7= a.s. (3.7)

Similarly,

log Un (tx)&log Un (t)&# log x
A(t)�\

�&_(&\)(2&\+1 6 23+\)+2 } #\
A(t) }&

2 - t log n

- n
(- x+1)

+(1&9=)(1&=) x\e&= |log x| &1&7= a.s. (3.8)

Inequalities (3.7) and (3.8) are valid in probability with t replaced by
Yn1 , n1&k1

and tx replaced by Yn1 , ni+1 (i=1, ..., k1) since

4�Yn1 , n1&i+1�Yn1 , n1
(i=1, ..., k1) in probability,

and

Yn1 , n1

(n1(log n1)2)
� 0 in probability

for n1 � � and k1 �n1 � 0.
We now minimize

E((M*n1
(k1)&2(#*n1

(k1))2)2 | Xn).

Note that, conditionally, given Xn , Pn1
is once again a normalized m of i.i.d.

random variables from an exponential distribution. Hence, when n1

increases, the distribution of Pn1
approaches a normal one. The case is

similar for Qn1
.
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We proceed as in the proof of Theorem 2 and use

#*n1
(k1) =

d #+
#Pn1

- k1

+d1A(Yn1 , n1&k1
)+op (A(n1 �k1))

+O \log n - n1 �k1

- n + ,

(#*n1
(k1))2 =

d #2+
2#2Pn1

- k1

+2#d1A(Yn1 , n1&k1
)

+op \A \n1

k1+++O \log n - n1 �k1

- n + ,

and

M*n1
(k1) =

d
2#2+

#2Qn1

- k1

+d2A(Yn1 , n1&k1
)

+op \A \n1

k1+++O \log n - n1 �k1

- n + .

Note that the term log n - n1�k1 �- n=o(1�- k1 ), so that it can be neglected
in the minimization process. The statement of Theorem 4 follows. K

Proof of Corollary 5. The proof follows easily from Theorem 2 and
Theorem 4 and the fact that

t1�(2\&1)s& (1�t) � (&2\c2)1�(1&2\). K

Proof of Theorem 6. Since k*1, 0 # RV&2\�(1&2\) in probability, we have

log k*1, 0

log n1

w�p
&2\

1&2\

(see Proposition 1.7.1 of Geluk and de Haan, 1987); i.e.,

log k*1, 0

&2 log n1+2 log k*1, 0

w�p \. (3.9)

Write the result of Corollary 5 for k*1, 0 and k*2, 0 ,

k*1, 0

k� 0 <\
n1

n +
2\�(2\&1)

w�p 1,

k*2, 0

k� 0 <\
n2

n +
2\�(2\&1)

w�p 1.
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Hence

k� 0k*2, 0 �(k*1, 0)2 w�p 1, (3.10)

and by Corollary 3

(k*1, 0 (n1))2

k*2, 0 (n2) k0 (n)
w�p \1&

1
\+

2�(1&2\)

.

An application of the estimate of \ from (3.9) gives the result. K

Proof of Corollary 7. We now have a random sequence k� 0 (n) with the
property

lim
n � �

k� 0 (n)
k0 (n)

=1 in probability.

Theorem 4.1 of Hall and Welsh (1985) now guarantees that #n (k� 0 (n))
achieves the optimal rate. K

4. SIMULATION AND ESTIMATION

We investigate the performance of our fully automatic estimation proce-
dure by means of Monte Carlo experiments and by an application to some
financial data sets, i.e., the stock-price index S6P 500 and foreign exchange
quote data. The sample sizes are typical for current financial data sets,
ranging from 2,000 to 20,000 observations. The sample size in the Monte
Carlo experiments were chosen to be equally large.

4.1. Simulations

We evaluate the performance of our estimators for #, \, and k0 (n) on the
basis of pseudo i.i.d. random numbers from the Student-t and type-II
extreme value distributions in addition to two cases of dependent data. The
tail index 1�# equals the degrees of freedom in the case of the Student-t dis-
tribution. Recall that the type-II extreme value distribution reads
exp[&x&1�#]. We focus on 1�#=1, 4, and 11. For the Student-t distribu-
tion \�#=&2, while for the extreme value distribution \=&1.

In addition to the i.i.d. data, we also investigate the performance of our
estimator for dependent data. From Hsing (1991), Resnick and Starica
(1998), and Embrechts et al. (1997) we know that the Hill estimator is
consistent for dependent data like the ARMA processes and ARCH-type
processes. We focus on two stochastic processes.
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First, the MA(1) process Yt=Xt+Xt&1 , where the Xt are i.i.d. Student-t
with 1�#=3 degrees of freedom is considered. The first- and second-order
parameters of the tail expansion of Yt can be computed by standard
calculus methods. The interest in this process derives from the fact that
while #n (k) is biased upward for Student-t distributions, the bias switches
sign for the marginal distribution of Y; i.e., the c-parameter in the A(t)
function switches sign.

The other stochastic process exhibits conditional heteroscedasticity.
Financial time series return data typically have the fair game property with
dependence only in the second moment; see e.g. Bollerslev et al. (1992) and
Embrechts et al. (1997). The following stochastic volatility process is
typical for the processes that are used to model financial return data:

Yt =UtXtHt ,

Utti.i.d. discrete uniform on &1, 1,

Xt=- 57�Zt , Zt t/ (3) i.i.d.,

Ht=0.1Qt+0.9Ht&1 , Qt tN(0, 1), i.i.d.

The Xt and Zt are chosen such that the marginal distribution Yt has a
Student-t with a three degrees of freedom distribution. This allows us to
evaluate the performance of our procedure.

The results of the Monte Carlo experiments are reported in Tables I and
II for sample sizes of 2,000 and 20,000, respectively. Each table is based on
250 simulations per distribution. For the choice of the tuning parameter n1

we use the procedure described at the end of Section 2. Hence, for n=2,000
we searched over the interval from n1=600 to n1=1700 in increments of
100. The number of bootstrap resamples was 1,000. In the larger sample
with size n=20,000 we searched from n1=2,000 to n1=15,000, in
increments of 1,000, using 500 bootstrap resamples for each n1 . The grid
size could be made much finer, and the number of resamples larger, for a
specific data set in order to increase the precision. For each distribution we
report the true value of the parameter, the mean, the standard error (s.e.),
and the root mean squared error (RMSE). We report estimates for # and
&\, while k� 0 (n) is reported relative to k0 (n).

From the Tables I and II we see that the estimator for the inverse tail
index # performs well in terms of bias and standard error for both the
larger and the smaller sample sizes. Evidently, in most cases the bias and
standard error are lower for the larger sample size n=20,000. The only
exception to decent performance in terms of bias is the Student-t with 11
degrees of freedom, since it is heavily upward biased in the smaller sample.
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TABLE I

Monte Carlo Experiment with n=2,000

Distribution Parameters True Mean S.E. RMSE

Student(1) # 1.000 1.004 0.106 0.106
&\ 2.000 1.332 0.362 0.768

k� (n)�k0 (n) 1.000 0.874 0.426 0.444
Student(4) # 0.250 0.296 0.074 0.087

&\ 0.500 0.562 0.235 0.242
k� 0 (n)�k0 (n) 1.000 1.133 0.988 0.995

Student(11) # 0.091 0.170 0.050 0.094
&\ 0.182 0.374 0.173 0.258

k� 0 (n)�k0 (n) 1.000 1.386 1.114 1.177
Extreme(1) # 1.000 1.035 0.095 0.101

&\ 1.000 2.140 0.818 1.402
k� 0 (n)�k0 (n) 1.000 1.342 0.732 0.806

Extreme(4) # 0.250 0.259 0.024 0.025
&\ 1.000 2.138 0.817 1.400

k� 0 (n)�k0 (n) 1.000 1.339 0.732 0.805
Extreme(11) # 0.091 0.094 0.009 0.010

&\ 1.000 2.137 0.824 1.403
k� 0 (n)�k0 (n) 1.000 1.338 0.735 0.808

MA(1) # 0.333 0.322 0.089 0.090
&\ 0.667 0.621 0.279 0.282

k� 0 (n)�k0 (n) 1.000 2.544 2.260 2.733
Stochastic # 0.333 0.368 0.083 0.090

volatility &\ 0.667 0.663 0.252 0.252
k� 0 (n)�k0 (n) 1.000 1.041 0.827 0.826

This occurs even though the RMSE does not vary that much with # for the
Student-t class. Thus for some applications the RMSE criterion may give
too low a weight to the bias. The method also works well for the two
stochastic processes.

The estimates for the second-order parameter \ are less precise than
those for the first-order parameter (after rescaling the standard error by the
true parameter value). The tail observations are naturally more informative
about the leading terms of the expansion at infinity. Because k� 0 (n) depends
on \̂, it is not surprising to see that the same observation applies to
k� 0 (n)�k0 (n). As was predicted on the basis of the theoretical parameters,
the MA(1) #-estimate is downward biased, while it is upward biased for the
Student-t model.

Another way to evaluate our procedures is to see how the performance
changes as the sample size is increased by the factor 10 if we move from
2,000 to 20,000 observations. From theory we know that the asymptotic
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TABLE II

Monte Carlo Experiment with n=20,000

Distribution Parameters True Mean S.E. RMSE

Student(1) # 1.000 1.009 0.037 0.038
&\ 2.000 1.519 0.253 0.543

k� (n)�k0 (n) 1.000 1.023 0.372 0.372
Student(4) # 0.250 0.283 0.029 0.044

&\ 0.500 0.646 0.126 0.193
k� 0 (n)�k0 (n) 1.000 1.562 1.038 1.179

Student(11) # 0.091 0.146 0.033 0.064
&\ 0.182 0.423 0.118 0.269

k� 0 (n)�k0 (n) 1.000 2.379 2.235 2.631
Extreme(1) # 1.000 1.026 0.033 0.042

&\ 1.000 1.940 0.417 1.028
k� 0 (n)�k0 (n) 1.000 1.635 0.722 0.960

Extreme(4) # 0.250 0.257 0.008 0.011
&\ 1.000 1.939 0.415 1.026

k� 0 (n)�k0 (n) 1.000 1.629 0.715 0.951
Extreme(11) # 0.091 0.093 0.063 0.004

&\ 1.000 1.942 0.414 1.028
k� 0 (n)�k0 (n) 1.000 1.632 0.719 0.956

MA(1) # 0.333 0.321 0.044 0.046
&\ 0.667 0.766 0.201 0.224

k� 0 (n)�k0 (n) 1.000 3.977 2.732 4.037
Stochastic # 0.333 0.357 0.030 0.038

volatility &\ 0.667 0.744 0.134 0.154
k� 0 (n)�k0 (n) 1.000 1.281 0.768 0.816

bias and RMSE should drop by a factor 10&\�(1&2\), while the squared
root of the ratio of the asymptotically optimal number of highest order
statistics k0 should increase by the same factor. In Table III we report the
ratios that are implied by comparing the numbers from Tables I and II.
The RMSE and upper order statistics ratios are close to the true factor.
The bias ratio is less favorable. There are two cases where the bias
deteriorated in the larger sample.

4.2. Asset Return Data

The financial data sets we examine have been widely studied in the area
of finance. The use of high frequency data in financial research and applica-
tions has become standard. For example, some data sets studied in the spe-
cial issue of the Journal of Empirical Finance edited by Baillie and
Dacorogna (1997) were larger than 1.5 million, and the sample sizes of the
data sets studied in Embrechts et al. (1997, Chap. 6) are of the order of
magnitude of 10,000. Nevertheless, even though several aspects of these
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TABLE III

Asymptotic Ratios

Distribution True factor Bias ratio RMSE ratio Root of the k� 0 (n) ratio

Student(1) 2.51 0.44 2.78 2.71
Student(4) 1.78 1.39 1.97 2.09
Student(11) 1.36 1.43 1.46 1.78
Extreme(1) 2.15 1.35 2.41 2.37
Extreme(2) 2.15 1.28 2.27 2.38
Extreme(11) 2.15 1.50 2.50 2.38
MA(1) 1.93 0.92 1.96 2.41
Stochastic volatility 1.93 1.46 2.37 2.14

high frequency data are by now well understood, the distribution of tail
events has received comparatively little attention in the finance literature.
On the other hand, this is of clear importance for such applications as risk
management. Here we describe the shape of the tails for two such data sets.

We selected daily returns from the S6P 500 stock index with 18,024
observations from 1928 to 1997, and data extracted from all quotes on the
DM�Dollar contract from September 1992 to October 1993. The quote
data was supplied by Olsen and Associates who continuously collect these
data from the markets. The number of quotes is over 1.5 million, and these
quotes are irregularly spaced throughout the year. The quotes were
aggregated into 52,588 10-minute return observations. The data and the
aggregation procedures are described by Danielsson and de Vries (1997).
In order to examine the change in the tail properties of the data over the
time interval we decided to create subsamples of the first 2,000 and last
2,000 observations for both data sets in addition to using the first and last
20,000 observations on the foreign exchange rate data, and the entire stock
index data set. In the estimation procedure we employed the same grid for
n1 as was used in the simulations; the number of bootstrap resamples,
however, was increased to 5,000.

Let Pt be the price at time t of a financial asset like equity or foreign
exchange. The compound return on holding such an asset for one period
is log(Pt+1 �Pt). Hence, returns are denomination free. Therefore returns on
different assets can be directly compared. One dimension along which the
asset returns can be compared in order to assess their relative risk charac-
teristics is by means of the tail index. Financial corporations are required
to use large data sets on past returns to evaluate the risk on their trading
portfolio. The minimum required capital stock of these financial institu-
tions is determined on the basis of this risk. The capital requirement
ensures that banks can meet the incidental heavy losses that are so charac-
teristic of the financial markets. The frequency of these large losses can be
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TABLE IV

Descriptive Statistics

Annualized Annualized
Series mean return standard error Skewness Kurtosis

DM�US
First 2,000 0.842 0.209 0.70 7.98
Last 2,000 0.431 0.131 0.78 12.82

First 20,000 0.377 0.144 0.31 10.85
Last 20,000 0.051 0.116 &0.01 17.35

S6P500
First 2,000 &0.080 0.343 0.22 5.33
Last 2,000 0.115 0.117 &0.45 4.53

All 18,024 0.053 0.179 &0.49 22.71

analyzed by means of extreme value theory; see e.g. Jansen and de Vries
(1991) for an early example of this approach and Embrechts et al. (1997)
for a more recent treatment. In this analysis, the measurement of # is very
important because it indicates the shape and heaviness of the distribution
of returns. It is the essential input for predictions of out-of-sample losses;
see de Haan et al. (1994).

In Table IV we report some descriptive statistics. The mean return and
standard error of the returns have been annualized because the magnitude
in the high frequency returns is typically very small (for the daily return
data we assumed 250 trading days per year). As the tables shows, all data
exhibit a high kurtosis which points to peakedness in the center of the
return distribution and heavy tails. The main results are reported in
Table V. We see that the tails are indeed heavy. The 1�# estimates show
that the number of bounded moments hovers around 3 to 4. The shorter
samples necessarily give less precise estimates of #, but the results for the
subsamples appear to be consistent with the large sample results. As was
the case in the simulation experiments there is more variation in the \̂ and
k� 0 (n). The table yields an interesting impression concerning the first- and
second-order tail indices; It appears that both # and \ are about equal for
either asset. An economic explanation for this observation might be that
arbitrage induces similar tail shapes and hence similar risk properties. The
equality of # across different assets has been suggested before. But due to
the fact that this observation depends on the more or less arbitrary choices
of k(n), no firm conclusion regarding this observation could be reached.
The current method overcomes this problem.
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TABLE V

Lower Tail Parameters

Series #̂ &\̂ k� 0 (n)

DM�US
First 2,000 0.10 9.93 10
Last 2,000 0.35 1.93 29

First 20,000 0.27 1.70 187
Last 20,000 0.30 2.01 64

S6P500
First 2,000 0.33 1.45 57
Last 2,000 0.24 2.06 13

All 18,024 0.32 1.85 96
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