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Summary. In  a (first price) a l l -pay  auct ion,  b idders  s imul taneous ly  submi t  bids 
for an item. All p layers  forfeit their  bids, and  the high b idde r  receives the item. 
This auc t ion  is widely  used in economics  to mode l  rent  seeking, R & D  races, 
pol i t ica l  contests ,  and  j o b  p r o m o t i o n  tournaments .  We  fully charac ter ize  equi-  
l ib r ium for this class of games,  and  show tha t  the set of equi l ibr ia  is much  larger  
than  has been recognized  in the l i terature.  W h e n  there  are  more  than  two players,  
for instance,  we show tha t  even when the auc t ion  is symmet r ic  there  exists 
a c o n t i n u u m  of a symmet r i c  equil ibr ia .  Moreover ,  for economica l ly  i m p o r t a n t  
conf igura t ions  of  va luat ions ,  there  is no revenue equivalence across  the equil ibria;  
a symmet r i c  equi l ibr ia  imply  higher  expected revenues than  the symmetr ic  
equi l ibr ium.  

J E L  Classification Numbers: D44, D72. 

I Introduction 

In a (first price) a l l -pay  auct ion,  each b idde r  (i = 1, 2 . . . . .  n) submits  a (non-negative)  
sealed bid, x i, for an i tem valued  by  p layer  i a t  v i. All  p layers  forfeit their  bids, bu t  the 
high b idde r  wins the item. (Ties are b r o k e n  randomly) .  W h e n  there is comple te  
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information, the payoff  to player i is given by 

f - x  i i f ~ j s u c h t h a t x j > x  i 
Vi 

u~(x 1 . . . . .  x , )  = m - -  xi i f  i ties for  the high bid with m -  1 others (1) 

k v l - x  i i f  x i > x  j V j # i  

The all-pay auction is similar to a s tandard (winner pay) first-price auction, except 
that  losers must  also pay the auctioneer their b ids )  

In  an all-pay auction, one can interpret differences in the vi's as arising from 
differences in abilities. To see this, suppose the utility to player i of winning a prize of 
W by putt ing forth effort x i is u* = U I ( W  ) - ~ixi, where x i is effort, and/3~ is the 
marginal  cost to player i of effort. Since behavior  is invariant to affine transform- 
ations, we may  just as well write the utility function as u~ =- u*/~ i = v~ - x i, where 
v i -- U i (W) /~  ~. Thus, differences in the vi's m a y  be due to differences in valuations or 
differences in the abilities of players to convert  an entry into a prize: players with 
higher vi's can be thought  of as stronger players. 

The all pay  auction is widely used in economics because it captures the essential 
elements of contests. It has been used to model  (1) the lobbying for rents in regulated 
and trade protected industries [cf. Moul in  (1986a, b); Hil lman and Riley (1989); 
Hil lman and Samet (1987); Hil lman (1988) and Baye et al. (1993)], (2) technological 
competi t ion and R & D  races [cf, Dasgup ta  (1986)], and (3) a host of other situations 
including political campaigns,  tournaments  and job  promot ion .  2 Essentially, these 
economic  problems boil down to a contest  that  is an all-pay auction in effort; the 
player putt ing forth the greatest effort wins the prize, while the efforts of other 
contestants go unrewarded.  3 

Section II  of this paper  completely characterizes the set of  Nash  equilibria in the 
first price all-pay auction with complete information. Our  characterization shows 
that  for n > 2 the set of  equilibria is larger than recognized in the existing literature, 
and critically depends on the configurations of  player valuations. We show that  with 
homogeneous  valuations (vl = v a = v 3 . . . .  v,) there exists a unique symmetric 
equilibrium and a continuum o f  asymmetric  equilibria. All of these equilibria are 
payoff  equivalent, as is the expected sum of the bids (revenue to the auctioneer). 

1 The war of attrition is a second-price all pay auction: all players forfeit their bids except the winner, who 
pays the second-highest bid. Hendricks et al. (1988) characterize the set of equilibria for the war of 
attrition with complete information in continuous time and with general payoff functions. 
2 For instance, in the literature on rent seeking (Tullock, 1980), political campaigns (Snyder, 1989), job 
promotions (Rosen, 1986), and commitment (Dixit, 1987), the probability player i wins a contest by 
putting forth an effort ofx~ is modeled as x./Zjx, where 7 > 0. As ? goes to infinity the player putting forth 

�9 . . r j '  . . . .  

the greatest effort is certam to win the contest, and thus the hmlt of these models is the all-pay auction. The 
all-pay auction may also be interpreted as the limit of many games with uncertainty or incomplete 
information, including the models of Lazear and Rosen (1981), Nalebuff and Sfiglitz (1983), Weber (1985), 
and Bull, Sehotter and Weigelt (1987). As the incomplete information or uncertainty vanishes, these 
models converge to the complete information all-pay auction. 
3 Many other games with discontinuous payoffs (and in which only mixed-strategy equilibria exist) have 
a structure that is isomorphic to the all-pay auction, including Varian (1980), Narasimhan (1988), 
Broecker (1990) Raju et al. (1990), Baye and de Vries (1992), Baye, Kovenock and de Vries (1992), 
Deneckere et al. (1992), and Dennert (1993). The characterization results presented in this paper are thus 
pertinent to a wide body of literature in economics. 
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When vl > v 2 = v 3 >_ v 4 >_ ... > v n, there is a unique "symmetric equilibrium" (sym- 
metric in the sense that all agents with identical values use the same strategy), as well 
as a continuum of  asymmetric equilibria. The expected sum of the bids (revenue to the 
auctioneer) varies across the continuum of equilibria; there is not "revenue equival- 
ence." The case where v 1 > v z > v 3 > ... > v, is known to have a unique equilibrium 
(Hillman and Riley, 1989). 4 

Our  theoretical results have important  implications for economic applications 
of the all-pay auction. To highlight these implications, Section I I I  reconsiders the 
regulation game analyzed by Wenders (1987) and Ellingsen (1991). 

II Characterization of equilibria 

The all-pay auction with complete information does not have a Nash equilibrium in 
pure strategies, but does have a Nash equilibrium in mixed-strategies. Accordingly, 
let Gi(xl) denote the cumulative distribution function (cdf) representing the equilib- 
rium mixed-strategy of player i. Player i is said to randomize continuously on A ~ R if 
he plays a mixed strategy that is atomless (i.e., contains no mass points) and has 
a strictly increasing cdf almost everywhere on A. 

Our  first theorem characterizes equilibrium for the case when m > 2 players have 
the highest valuation of the prize. For  this case, Hillman and Samet (1987) have 
shown that  there exists a symmetric equilibrium and a finite number of asymmetric 
equilibria where some agents with the highest valuation bid zero with probabili ty 
one, and claim this exhausts all equilibria. Our  Theorem 1 shows, however, that 
there actually exists a continuum of asymmetric equilibria when three or more 
players have the highest valuation of the prize. Nonetheless, we show that all of the 
equilibria imply the same expected payoff (zero) for each player, and yield the 
auctioneer the same expected revenue. 

Theorem 1: When v 1 . . . . .  vm > vm+ 1 >- "'" >-- vn and m >_ 2: 

( A ) I f  m = 2, the Nash equilibrium is unique and symmetric. I f  3 <_ m <_ n, there is 
a unique symmetric Nash  equilibrium, as well as a continuum of  asymmetric Nash 
equilibria. In any equilibrium players m + 1 through n bid zero with probability one, 
and at least two players randomize continuously on [0,vii .  Each other player 
i t  {1 . . . . .  m} randomizes continuously on [b i, v l l ,  where b i >_ 0 is a free parameter, and 
bids 0 with positive probability /f b i > 0. 5 When two or more players randomize 
continuously on a common interval, their corresponding cdf's are identical over that 
interval. 6 

( B )  In any equilibrium, the expected payof f  to each player is zero. 
( C )  All equilibria are revenue equivalent: the expected sum o f  the bids in any 

equilibrium equals v 1. 

4 In this unique equilibrium, only players one and two actively bid (players 3 through n bid zero with 
probability one). 

Ifb~ _> vl, player i bids 0 with probability one. 
6 Equation 2 below summarizes the algebraic form of the complete set of equilibria. 
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The formal proof of Theorem 1 is similar to the proof contained in the Appendix 
for our Theorem 2 below, and is thus omitted (our 1990 working paper contains 
a complete proof). However, it is useful to highlight some of the features of 
equilibrium, as well as some intuition for the existence of a continuum of equilibria. 
The basic issues can be illustrated in the case where r e = n = 3 ,  so that 
v 1 -- v z = v3(-  v, say). Theorem 1 implies, in this case, that in every equilibrium two 
players randomize continuously on the interval [0, v], while the third player 
randomizes continuously on the interval [b, v] and concentrates all remaining mass 
at zero (this mass is (b/v) 1/2, and is thus zero ifb = 0). (Note that b > 0 is an arbitrary 
constant). Since two players randomize continuously on [0, v], and any atoms in the 
third player's mixed strategy (player 3's, say) are isolated at 0, the highest bid is 
positive and unique with probability one. Furthermore, since zero is contained in 
the support of all three players' mixed strategies and at least two players use mixed 
strategies that do not put mass at zero, each player earns an expected payoff of 
zero. 

Given the characterization of the support of each player's mixed strategy, we 
know that all three players randomize continuously on [-b, v], and hence, all three 
are capable of generating a winning bid in the interval [b, v]. Equilibrium requires 
that, for any bid in [b, v], each player earns an expected payoff of zero, given the 
mixed strategies used by the other two players. Three non-degenerate mixed 
strategies over [b, v] are uniquely determined as the solution to three equations that 
set the expected payoff of each player i to be zero for bids in [b, v]: 

For i ~ j, k: ui(x ) = G~(x)Gk(x) Iv - x]  - [1 - Gj(x )Gk(x  )] x = 0 Vx  e [b, v-l. 

The solution to this system of equations is symmetric and given by 

G 1 = G 2 = G 3 = ( x / v )  1/2 for x e [ b ,  v]. 

The probability player 3 submits a winning bid in the interval [0, b] is zero, since 
the characterization of player 3's support requires that (remaining) mass of 
G3(b ) - ( b / v )  1 /2  be isolated at 0 if b > 0. Given G3(b ), and the fact that only players 
1 and 2 can submit a winning bid in the interval [0, b] with positive probability, the 
mixed strategies for players 1 and 2 must satisfy 

For i r j, 3: ui(x) = Gj (x )G3(b)[v  - x]  - [1 - G~(x)G3(b)]x  = 0 V x ~ [ b , v ] .  

For a given b, the solution to this system of equations is symmetric: 

G t = 6 2  = (x / v ) [  G3(b) ] -  1 = ( x / v ) (b / v ) -  1/2 for xe  [-0, b-1. 

These mixed-strategies for players 1 and 2 are sufficiently aggressive on the interval 
[0, b] to ensure that player 3 will not find it profitable to deviate by submitting a bid 
in the open interval (0, b). 

Thus, for a given b, we have constructed Nash equilibrium mixed-strategies for 
the three players. On the interval [b, v], all players randomize continuously accord- 
ing to the three-player symmetric equilibrium. On the interval [0, b], player 3's 
mixed strategy concentrates all mass at zero (unless b = 0), while players 1 and 
2 randomize continuously according to mixed-strategies that are proportional to 
the two-player symmetric equilibrium. But since b is arbitrary, by varying b from 0 to 
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v one  genera tes  a c o n t i n u u m  of  equi l ibr ia ,  r a n g i n g  f rom the  u n i q u e  s y m m e t r i c  
e q u i l i b r i u m  (when  b = 0) to the  ex t remely  a s y m m e t r i c  one  in  which  on ly  p layers  
1 a n d  2 ac t ively  c o m p e t e  (when  b = v, p l aye r  3 b ids  zero wi th  p r o b a b i l i t y  one). 7 

M o r e  general ly ,  T h e o r e m  1 a l lows us to  expl ici t ly  charac te r ize  the  a lgebra ic  
fo rm of the fami ly  of e q u i l i b r i u m  mi x e d  s t ra tegies  for the  case where  v 1 -- v 2 = v 3 -- 

. . . .  v,, > Vm+ 1 > "'" >_V n. Let  v = v 1 = v 2 = v 3 . . . . .  v m. By the  theorem,  p layers  
m + 1 t h r o u g h  n b id  zero  wi th  p r o b a b i l i t y  one,  so suppose  w i t h o u t  loss of genera l i ty  
t ha t  p layers  i = 1,2 . . . . .  h, m > h _ 2, r a n d o m i z e  c o n t i n u o u s l y  over  [0 ,v]  wi th  
p layers  i = h + l , . . . , m  r a n d o m i z i n g  c o n t i n u o u s l y  over  [bi,  v], with  b h + l <  

b h + z <  . . .  < b , , < v .  (The bi's are  a rb i t r a ry ,  a n d  v a r y i n g  the  b~'s genera tes  the  
c o n t i n u u m  of  equi l ibr ia) .  P laye r s  m + 1 t h r o u g h  n b id  zero wi th  p r o b a b i l i t y  one.  

O n e  can  easi ly verify t ha t  the  fo l lowing  fami ly  of cdf 's  are  e q u i l i b r i u m  strategies  for 
the  players:  

i:? g x e  Ibm, v]: Gi(x)  = i = 1 , . . . ,  m; 

['-XT1/(j- 1)[- -]l/( j-  1) 
Vxe  [bj,  b j+ t): 

j e { h  + 1 . . . . .  m -  1) (2) 

Gk(X ) = Gk(bk) k = j + 1 . . . . .  m; 

Vxe  [0, bh+ 1): G i ( x  ) = Gk(b k i = 1 . . . .  , h; 
Lk>h _] 

Gk(X ) = Gk(bk) k = h + 1 , . . . ,  m. 

By T h e o r e m  1, these  are  all  the  poss ib le  e q u i l i b r i u m  cdf's,  s 
O u r  next  T h e o r e m  shows tha t  r evenue  equ iva l ence  b reaks  d o w n  w h e n  one  

" s t rong"  p l aye r  compe tes  aga ins t  several  weaker ,  b u t  equal ,  players .  Th i s  case is 
e c o n o m i c a l l y  in te res t ing ,  because  in  the  l i t e ra tu re  on  r egu l a t i on  (cf. Roger son ,  1982 
a n d  El l ingsen ,  1991), R & D  races (Dasgup ta ,  1986), o r  pol i t ica l  contes ts  (cf. Snyder ,  
1989), one  p layer  (often the  i n c u m b e n t )  is m o d e l e d  as h a v i n g  a n  a d v a n t a g e  over  

a n u m b e r  of  iden t ica l  chal lengers .  H i l l m a n  (1988) uses the  case v 1 > v 2 = v 3 . . . .  v n to 
m o d e l  p r o t e c t i o n i s m ,  a n d  e r r o n e o u s l y  c la ims  tha t  o n l y  two agen ts  act ively  par t ic i -  

7 For instance, if v I = v 2 = v a = 1 and b = 1, then player 3 bids zero with probability one while players 
1 and 2 randomize according to a uniform distribution on [0,1]. If b = 0, all three players randomize 
according to the distribution function x 1/2 on [0, 1]. Ifb = 1/4, then players one and two randomize using 
G 1 = G 2 = 2x on [0, 1/4], while player 3 uses G a = 1/2 on [0,1/4]. All three players use G~ = x ~/2 on the 
interval [1/4, 1]. 
s The symmetric equilibrium (h = m) is used in Moulin (1986b) and Dasgupta (1986). Somewhat more 
general is the case b h + ~ = v and 2 _< h _< m, i.e. some agents may be inactive. This is discussed in Hillman 
and Samet (1987, p. 72), Hillman (1988, p. 66) and Hillman and Riley (1989, fn. 12). Hillman and Samet 
(1987, p. 72) claim there are no other equilibria. Also, Proposition lc in Hilhnan and Riley which claims 
that at most one active agent bids zero with positive probability is erroneous, as up to m - 2 active agents 
can do so. 
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pate. Theorem 2 shows, however, that  there actually exists a con t inuum of equilibria 
with up to n active participants. 9 

Theorem 2." When v 1 > v 2 . . . . .  v m > v,,+ l >_ ... >_ v,, and 3 <_ m < n: 

( A )  There exists a continuum of  Nash equilibria. In any equilibrium, player 
1 randomizes continuously on the interval [0, v2] and players m + 1 through n bid zero 
with probability one. Each player i, i t  {2 . . . . .  m}, employs a strateyy G i with support 
contained in [0, v2] that has an atom ei(O) at O. The size of  the atom may differ across 
players, but Hm=20r = ( v  1 - v 2 ) / v  1. Each G i is characterized by a number b i >_ O, 
where b i = 0 for  at least one i r 1, such that Gi(x) = G i(O ) = ei(0) VxE [0, bi] and player 
i randomizes continuously on (bi, v2]. ~~ Furthermore, when two or more players in the 
set {2 . . . . .  m} randomize continuously on a common interval, their cdf 's  are identical on 
that interval) ~ 

( B )  In any equilibrium player one earns an expected payof f  o f  v 1 - v2, while each 
"of the players two through n earns an expected payof f  o f  zero. 

( C ) There is not revenue equivalence. In particular, the expected sum of  the bids is 

where Ex~ varies across the continuum o f  equilibria, is minimized when symmetric 
players use symmetric strategies, and is maximized when only one o f  the players 
2 through m is active (i.e., submits positive bids with positive probability). 

This theorem, which is proved in the Appendix, allows us to construct  the family 
of equilibrium mixed-strategies for the case where v 1 > v z . . . . .  vm> vm+z > 
--- _> v,. By the theorem, players m + 1 th rough  n bid zero with probabil i ty one, so 
suppose without  loss of generality that  of the players {2 . . . . .  m} players 
i = 2 , . . . ,  h, h > 2 randomize  cont inuously over (0, v2], with players i = h + 1 . . . . .  m 
randomizing cont inuously over (bi, ve], (where bi = v2 implies ~i(0)= 1) with 
bh+ ~ <_bh+z<_ ... <_bm<_v2. (Again, the bi's are arbitrary, and varying the bi's 
generates the cont inuum of equilibria). Players m + 1 th rough  n bid zero with 
probabil i ty one. In  light of  Theorem 2, the family of  cdf's below constitute the entire 
set of Nash  equilibrium strategies: 

VxE[bm, v2]: Gi(x) I v l - v 2  + x ]  1/('-1' = i = 2 , . . . , m  
1) 1 

GI(X)= X~ --02-~-Xl(2-m)/(m-1) 

Vx~[bj, bj+ l): = Gk(bk) [ i = 2 . . . . .  j 
L _ J L ~ > j V l  A 

9 This serves as a caveat to the claim by Magee, Brock and Young (1989, p. 217) that two-ness is a general 
property of political contests. 
lo if bi> v2 ' ~i(0) = 1. 
1~ Equation 4 below summarizes the algebraic form of the complete set of equilibria. 



The all-pay auction 297 

j ~ { h +  1 . . . . .  m -  1} 

Gk(x) = Gk(bk) k = j + l  . . . . .  m; 

Gl(x)=XFVlV2L - v 2 + x ]  ( 2 - i ) / u - 1 ) F v l  L~jG~(bk)j-l-~/(i-~ 
Vxe [0, bh+ x): G i ( x ) = [ v l _ v 2 + x q l / ( h - 1 ) F _  ]- l / (h-  a) 

Gk(x ) = Gk(bk) k = h + 1 . . . . .  m 

X [-Vl__l)2..~ X-](2-h)/(h 1)[- 7-1/(h 1) 
G , ( x ) = - l .  - -  / l ]] Gk(bk)/ �9 ( 4 )  

V2L vl J kk>h J 

In addit ion to the multiplicity of equilibria, the key implication of  Theorem 2 is 
par t  C: expected revenue varies across the con t inuum of equilibria. Note  that  the 
theorem states that  expected revenue is maximized in the equilibrium that  maxi- 
mizes the expected bid of  the player with the highest valuation. Given the form of 
the mixed strategies in equat ion (4), this occurs in the asymmetric  equilibrium 
where player 1 and exactly one other player submit  a positive bid with positive 
probability.  ~ z 

To complete the characterization,  we need the following result originally 
formulated by Hil lman (1988) and Hil lman and Riley (1989) (a r igorous p roof  is 
contained in our  1990 Cen tER working paper): 

Theorem 3 (Hillman and Riley): I f  va > l) 2 > 1) 3 ~ " ' "  ~__ l)n, the N a s h  equil ibrium is 
unique. In  equilibrium, p layer  1 randomizes  cont inuously  on [0, v2]. Player  2 ran- 
domizes  cont inuously  on (0, v2], placing an a tom o f  size g2(0)= (v 1 - V z ) / V  1 at zero. 
P layers  3 through n bid zero wi th  probabi l i ty  one. P layer  l ' s  equil ibrium p a y o f f  is 
u* = v 1 - v2, while players  2 through n earn payof fs  o f  zero. 

The algebraic form of the equilibrium mixed strategies for the case when 
v I > v 2 > v 3 _> ... >_ v, are as follows. Players 3 th rough  n bid zero with probabi l i ty  
one. Players one and two randomize  according to GI(X)----X/I) 2 and 
G2(x ) = (v 1 - v z + x) /v  1 for xe[O,  v23. 

I I I  A concluding example 

We conclude with an example that  highlights our  results in the context of  the 
regulatory contest  discussed by Wenders  (1987) and Ellingsen (1991). 23 Suppose 

12 Milgrom (1981) and Bikhchandani and Riley (1991) examine a similar issue in standard (winner pay) 
auctions, and find the opposite result often holds for classes of standard auctions: symmetric strategies 
may yield higher expected revenues. 
13 Of course, there are numerous other applications, as noted in the introduction. For example, the 
following analysis is analogous to the case of an incumbent versus a number of potential entrants as 
discussed in Rogerson (1982) and Dasgupta (1986). 
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M > 2 potential producers compete for the monopoly right to run a public utility. 
They face opposition from a consumer organization. The regulatory body decides to 
reward the organization which exerts the highest effort in the lobbying process. If 
this turns out to be one of the producers, the monopoly solution is implemented. If 
the consumer organization wins, the marginal cost pricing solution is implemented. 

If the consumer group wins, it earns a payoff equal to the sum of the would-be 
monopoly profits (call this amount "T" for "Tullock square") and the would-be 
deadweight loss (H, for "Harberger triangle"). If one of the producers wins, it earns 
the monopoly profits, T. Thus v 1 = T +  H and 1)2 = / ) 3  . . . . .  VM+ 1 = T. By The- 
orem 2A, there exists a continuum of equilibria to this game, and by 2C the equilibria 
are not revenue equivalent. In particular, the expected revenue to the regulator is 

v 2 ( vz~ T 2 H 
E~x~ = - -  v 2 +  1 -  E x  1 -  t- (5) v 1 \ v l /  T + H  -T---~ Exl" 

Since Ex~ varies depending upon which equilibrium is played, when the regulator 
receives the lobbying expenditures as "bribes" she is not indifferent to the equilib- 
rium that is played. By Theorem 2C, Exl is maximized when only one of the firms 
participates in the lobbying process. 14 The selfish regulator does best in the 
equilibrium where only the consumer group and one of the M firms engage in 
lobbying. 

It turns out that the expected social waste due to lobbying also depends on which 
equilibrium is played. Suppose that only a proportion 2, 0 < 2 < 1, of the lobbying 
expenditures is socially wasteful (see, e.g., Fudenberg and Tirole, 1977; Brooks and 
Heydra, 1990; and Dougan, 1991). Expected social waste, W, equals the expected 
deadweight loss plus a fraction 2 of the expected lobbying expenditures. If P~ is the 
probability the consumer group wins, then the expected social waste is 

W = (1 - P~)H + 2 E ~ x  i. (6) 

Using equation (5) and the fact ~s that Exl = P~vl + vz - v~, this can be written as 

W = ;~T + (1 - 2) H H ~ ( T -  E[xl]) .  (7) 

If2 = 1 (all of the lobbying is socially wasteful) the expected social waste is T. Notice 
that this result is independent of which equilibrium is played. ~ 6 In contrast, when 

14 As an  example, consider the three player case with v 1 = 2, and/)2 = / ) 3  = 1. In the most  asymmetr ic  
equilibrium, player 3 bids zero with probabil i ty one, while G 1 = x and G z = (1 + x ) / 2  on [0, 1]. In this 
equilibrium, E x  1 = 1/2, and by equat ion (5), ~ , E x l  = 3/4. In  the "symmetric  equilibrium", player one 
randomizes with Gt(x ) = x[(1 + x)/2] - 1/2, while players two and three use G 2 = G 3 = [(1 + x ) / 2 ]  1/2. In 

this case, 

Z Exl = E5 - 2,//?/3, 

which is less than  3/4, as of course it mus t  be by Theorem 2C. 
15 Theorem 2B implies that, in equilibrium, E u  1 = P l y 1  - -  E x  1 = v 1 - v 2. 

16 Ellingsen (Proposi t ion 1) considers the case where 2 = 1 and a finite number  of possible equilibria. 
Equat ion  7, however, reveals that  Ellingsen's result is valid across the entire cont inuum of other  
equilibria. 
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0 _< 2 < 1 the expected social waste is a decreasing function of Exl, which in turn 
depends on which equilibrium is played. By Theorem 2C, it follows that the more 
symmetric the bidding strategies of the producers, the greater the expected social 
waste, W. This holds irrespective of 2, except when lobbying is completely wasteful 
(in which case, 2 = 1 and hence W = T). When 2e  [0, 1), different equilibria imply 
different expected social wastes, and society prefers fewer firms lobbying for 
monopoly rights to more. 

Appendix: Proof of Theorem 2 

Proof of 2A and 2B: The proof of parts A and B of Theorem 2 are contained in the 
following lemmas. Before proceeding, note that if gi andsl  are the upper and lower 
bounds of the support of player i's mixed strategy, then Vi, vl > gi ->& -> 0. Also, recall 
that ei(x) is the mass placed at x by player i's mixed strategy. 

The first lemma is used in Lemma 2 to show that the lower bound of the support 
of each player's mixed strategy is zero. 

Lemma 1: If 3i such that s i ~>._Sj and e~(~j) = 0, then _sj = 0 and 
G j(0) = limxt_~iGj(x ). If, in addition, ei(_si) = 0, then G j(0) = Gj(_sl). 

Proofi Let uj(xj, G_j) denote f s  payoff to bidding xj when strategies G_j are 
employed by the other n -  1 players. Now u i(s j, G_j) = -_sj < 0 for_sj > 0. Since the 
same holds for uj(xt, G_j) for xj <sf,  and also for xj =s i  if e~(~i)= 0, the claim 
follows. []  

Lemma 2: s i = 0 Vi. 

Proof." Clearly, v~ >_s i > 0 Vi, so it is sufficient to show that no player employs 
a mixed strategy that has a support with a strictly positive lower bound. By way of 
contradiction, suppose S --- {i[_s~ > 0} is nonempty, i.e.,& > 0 for at least one i. 

If S consists of a single player i, then sl > s  t = 0 Vj # i. In this case, if ~i(s~) = 0, 
Lemma 1 implies that G j(0)= Gj@i) Vj--/=i, which in turn implies that 
u~(_si, G-i) < limx~+o ui(xi, G-i). This contradicts the hypothesis that s i > 0. If 
ei(_si) > 0, then Vj # i, ~j(~i) = 0, so G j(0) = limxj+_~ Gj(xj) leads to a similar contradic- 
tion. 

If S contains more than one player, then an argument similar to that just made 
implies _s i =_sj > 0 Vi, j sS .  At least one player ieS must employ a mixed strategy 
with ei(~i) = 0, for otherwise any j e S  could gain by increasingsj by a small ~ > 0 
(unless sj = v j, in which case j has incentive to reduce the bid vj to 0). But this 
means that there exist i , jr  such that si = s j  > 0 and ei@~) = 0, a contradiction to 
Lemma 1. 

Thus, we conclude that s i = 0 for all i. []  

The next lemma shows that, in any mixed-strategy equilibrium, each player 
2 through n must employ a strategy that places an atom at 0, while player 1 cannot 
employ a strategy that places an atom at 0. This, in conjunction with Lemma 2, 
implies that players 2 through n earn equilibrium expected payoffs, u*, of 
zero. 
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Lemma 3: (a) el(0) = 0; 
(b) Yi % 1, ei(0) > 0. 
(c) u* = 0 Yi r 1. 

Proofi (a) Since player i would never use a strategy that puts mass on (vi, ~ )  (setting 
the bid equal to zero strictly dominates such a strategy), player 1 clearly has no 
incentive to use a strategy that puts mass in the interval ( v z ,  v l ] .  Hence, 
Yi, gl -< v2 < vl, which guarantees that player i must have an equilibrium payoffu~ of 
at least v l  - v z > 0. This, and the fact that not all players can use mixed strategies 
that have an atom at 0, implies that player l's mixed strategy cannot place an atom 
at 0. (b) From part (a), u~ > 0 in every neighborhood above 0, so player 1 must outbid 
every other player with a probability that is bounded away from zero. Thus, every 
player but player 1 must use a strategy that has an atom at 0. (c) Since player l's 
mixed strategy does not have an atom at 0, it follows from part (b) that Vi ~ 1, 
u~ = ui(0, G_ i) = 0 [ ]  

We have now established that zero is the lower bound of the support of each 
player's equilibrium mixed strategy, that all players but player 1 must employ 
equilibrium strategies that contain an atom at 0, and that the equilibrium payoffs for 
players {2, 3 . . . . .  n} are zero. The next lemma establishes that at least two players 
have v 2 as the upper bound of the support of their mixed strategies. 

Lemma 4: g~ _< v2Vi, with strict equality for at least two players. 

Proofi From the proof of Lemma 3, gi <- v 2 V i .  By way of contradiction, suppose 
g~ < v  2 for all i. By bidding above g-maxk{gk} by an arbitrarily small amount, 
player 2 can earn arbitrarily close to v 2 - g > 0 = u*, which contradicts Lemma 3. 
Thus, gi = v2 for at least one i. Another player j # i  must also have gs = v2, for 
otherwise player i could gain by reducing gi by a small e > 0. [] 

The next five lemmas provide the rough characterization of the equilibrium 
strategies of players (2, 3 . . . . .  n} stated in Theorem 2A. For  notational convenience, 
w e  define Ai(x ) ~ H jc_iG j(x), Aik(X ) ~ H j~i,k G j(x), and Aikh(X ) ~-- Hj:~i,k,h G j(x ). 

Lemma 5: For all j e { 1, 2 . . . . .  n}, Gj contains no atoms in the half open interval 

(0, v2]. 
Proof: Suppose one of the cdf's, say Gi, has an atom at xi~(0, v=]. Lemma 2 implies 
that Vx~(0,v2], A i s G  i > 0, and hence A i j G  ~ has an upward jump at x~, Vj ~ i. This 
follows directly from the monotonicity of the cdf's. For  xi < v s this implies that 
player j can gain by transferring mass from an e-neighborhood below x~ to some 

neighborhood above xi. At x~ = v s it pays for j to transfer mass from an 
~-neighborhood below x~ to zero. Thus, there would be an e-neighborhood below x~ 
in which no other player's mixed strategy puts mass. But then it is not an equilibrium 
strategy for player i to put mass at x~. []  

Define Bi (xg  ) - (vi - x i ) A i ( x i )  - -  x i ( 1  - A i ( x i )  ) = v i A i ( x i )  - -  x l .  

Lemma 6: B~(x~) is constant and equal to u* at the points of increase of Gi on 
(0, v 2] Vi. B i ( x i )  <_ u *  if x i is not a point of increase of G i on (0, v23. 
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Proof: By Lemma 5 there are no atoms in (0, V2]. Thus, Bi(xl) is the expected payoff 
to player i from bidding x i s (0, v2]. Ifxl is a point of increase of G i, player i must make 
his equilibrium payoff at xl. [] 

Lemma7: Vxs(O, v2],3il , i  2 such that r e > 0 :  Gi(x + e) - G i ( x -  e) > O, i =  
il, i2. [ ]  

Proof: Immediate. 

Lemma 8: si = 0 Vi > m. 

Proof." Without loss of generality assume ~,,+ 1 = maXi>m{Si}. Suppose g,,+l ~ 0. 
Then there exists an interval (g,,+ 1 - e, Sin+ 1] in which Gin+ 1 increases and in which 
Bm+l(X)- Hm+ I :O:l)m+lAm+l(x)--x. Thus, vm+l=x/Am+l(X)VXs(gm+l--,~,, 
s,,+ a]. From Lemma 7, Vxs(g,,+ 1, Vz] 3is {2,.. . ,  m} such that G i is increasing at x. 
Since there are no atoms in (g,,+l,v2], for each XS(gm+I,V2] there is a player 
ie {2 . . . . .  m} such that v~ = x/Ai(x  ). This implies that for any x > g,,+ 1, but arbitrarily 
close to ~-,,+1, there exists an i~{2 . . . . .  m} such that A ~ ( x ) = H j ~ i G j ( x ) >  
IIj~Gj(gm+ 2) > Hj~.m+ ~ Gj(g,,+ 1) = Am+ ~(gm+ 1), a contradiction to the fact that 
v,~+, < v~. Thus, S-m+l : 0. 

Lemma 8 demonstrates that when n > m, players m + 1 through n bid zero with 
probability one. We now proceed to characterize the equilibrium strategies of 
players 1 through m. 

Lemma9: Suppose x~(0,v2] is a point of increase in G~ and Gj for 
i, j s{2 ,3 , . . . ,m} .  Then G i = Gj at x. 

Proof: By Lemmas 3c and 6, B i ( x ) = B j ( x ) = O ,  which may be written as 
(v 2 - x)Gj(x)Ao(x ) - x[1 - G j(x)Aij(x) ] = 0. This implies that G j(x)Aij(x ) = x/v 2 = 
Gi(x)Aji(x ). Division by Aij = Aji > 0 gives Gj(x) = Gi(x ). [] 

Lemma 10: If G~, is  {2,. . . ,  m} is strictly increasing on some open subset (a, b), 
where 0 < a < b < v 2, then G~ is strictly increasing on the entire interval, (a, v2]. 
Furthermore, at least one of players {2 . . . .  , m} randomizes continuously on the 
interval (0, v2]. 

Proof: Suppose to the contrary that Gi were constant on (b, c), b < c _< v 2. Then from 
Lemma 5, @(b) = Gz(c). By Lemma 7, there exists an e > 0 such that on the interval 
(b, b + e) there exist at least two players, h and k, with strictly increasing cdf's over the 
interval. At least one of these players, say h, must be an element of {2,. . . ,  m}. Since 
the mixed strategies contain no atoms in the interval (0,v2], from Lemma 
9 Gh(b ) = Gi(b ) > 0. But from Lemmas 3c and 6, Bi(b ) = Bh(b ) = Bh(X ) g x s ( b ,  b + e). 
Hence, Bi(x ) <_ Bh(X ) Vx~(b,  b + e), since such values ofx  do not lie in i's support. But 
this implies that A~(x) < Ah(X), and hence Gh(X ) < @(X), a contradiction to the fact 
that Gi(b ) = Gh(b), G h is increasing on (b, b + e), and G i is constant on (b, b + g). The 
second statement follows from the first part of Lemma 10 and from Lemmas 4 
and 7. [] 

Lemma 10 thus shows that, in equilibrium, at least one of the players {2, 3, . . . ,  m} 
randomizes continuously on (0, v2]. Notice that, by Lemma 3, the mixed strategies 
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of each of the players {2, 3 . . . . .  m} contain an atom at 0 but, by Lemma 5, no player's 
mixed strategy places an atom in the half-open interval (0, v2]. Lemma 10 thus 
implies that if Gi, i t  {2, 3 . . . .  , m} is increasing over any interval (a, b), 0 < a < b < v2, 
then G i must be strictly increasing on the interval (a, v2]. Hence, any gap in the 
support of player i's mixed strategy must be of the form (0, bi] for some bi > 0. 
Furthermore, from Lemma 9, for any point of increase x~(0,v2] of G~ and 
G j, i, j e {2, 3 , . . . ,  m}, these distribution functions must take identical values. 

In order to provide the complete characterization of the equilibrium distribu- 
tions provided in Equation (4) of the text, we need to say more about player l 's 
equilibrium strategy and payoffs. We continue with 

Lemma 11: (a) gl = v2. Furthermore, for every bid 0 < x < 1-)2 in the support 
of G 1, G l ( x  ) < Gi(x ), i~{2 . . . .  , rn}. 

(b) u~ = vl  - v2. 

Proof: (a) From Lemma 10, at least one j e  {2, 3 . . . . .  m} randomizes continuously on 
(0, v2]. Without loss of generality suppose player two is such a player. From Lemma 
3, player l's mixed strategy does not have an atom at 0, and from Lemma 5, no 
player's mixed strategy has an atom in (0, v2]. Thus, there exists some point xe(0, vz) 
at which G~(x) is increasing. At any such point, Bl(X) > vl - v2, since the right-hand- 
side represents what player 1 can obtain by bidding v 2 with probability one. 
Rearranging this expression we obtain A ~ ( x ) >  ( v l -  v2 + x ) / v l .  From Lemmas 
3 and 6, Az(X ) = x/v  2. Subtracting A 1 from A 2 gives 

A2(x ) - Al(x ) <_ [(v 2 - x)(1 - v l /Vz ) ] / v  1 < O, 

where the strict right-hand inequality follows from the assumption that v 2 > x and 
vl > v2. Thus, at any point of increase of G1 in (0, v2), A~ > A2. This directly implies 
that G 2 > Gt for any such point. But since G 2 has support [0, v2] and G1 has no 
atoms, this implies gt = v2. Furthermore, since for any other player i t  {2 . . . . .  m} and 
for any x e [0, v2], G2(x) < G~(x), we have the second claim. (b) Part  (a), together with 
Lemma 6, implies that player l's equilibrium payoffis u* = Vl - v2. []  

This completes the proof to part B of Theorem 2. To complete the proof to part 
A we must show: 

Lemma 12: (a) Player 1 randomizes continuously on support [0, v2]. 
(b) //~= 2~i(0) = (v 1 - v2)/v 1. 

Proof" (a) We know that gl = v2 and_s~ = 0. Suppose there is a gap (a, b) in which 
G~(x) is constant, 0 < a < b < v 2. By Lemmas 6, 7, and 8, we know that at x = a there 
are at least two players i,k~{2 . . . .  , m} such that Ai(x)= Ak(x  ) = x / v  2. At x = b 
this holds as well. In addition, since a and b are in the support of 
GI,  A l ( x  ) = (v 1 - v 2 + x) /v  1, x = a, b. Thus we have 

Gl(x )Gk(x )Aik l (x  ) = x /v2 ,  x = a, b (A1) 

Gi(x)Gk(x)Aik l (x  ) = (v 1 - v z + x) /v  1, x = a, b. (A2) 

Since G~(a)= Gl (b  ) by assumption, and by Lemma 9 G i ( x ) =  Gk(x ) for x e [ a , b ] ,  
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equation A1 implies 

[ Gk(a)Aikl (a) ]/[ Gk(b)Aikl (b) ] = a/b, 

while equation A2 implies 

[ [Gk(a)]ZAikl(a)]/[ [Gk(b)]ZAigl(b)] = (v 1 - v 2 -k- a)/(v t - -  l .)  2 ..If- b). 

Combining these gives Gk(a ) = Gk(b ) [b(O + a)/a(O + b)], where 0 -- v 1 - v2 > 0. Since 
b/a > (b + O)/(a + 0), this implies Gk(a ) > Gk(b), which contradicts the fact that b > a. 
Thus, player l's mixed strategy distributes positive mass to every open interval in 
[0, v2]. This, along with Lemmas 3a and 5, implies that player l's mixed strategy 
contains no atoms and has a strictly increasing cdf on its support, [0, v2]. Part (b) 
follows from part (a), Lemma 6, and Lemma 1 lb. [] 

We now know that in any equilibrium: (1) player 1 earns an expected payoff of 
vl - v2, while all other players earn expected payoffs of zero; (2) player l's mixed 
strategy contains no atoms or gaps in its support, and thus G 1 is strictly increasing 
on its support, [0, v2]; (3) players m + 1 through n bid zero with probability one; and 
(4) all other players j~ {2 . . . . .  m} play a mixed-strategy that has an atom at zero and 
a strictly increasing cdf on some interval of the form (bj, v2], where bj >_ 0 for all j, 
with strict equality for at least one j. Lemma 9 guarantees that in subintervals of 
(0, v2] where the mixed strategies of any subset of the players {2, 3 . . . .  , m} apply 
a positive mass, the players have the same value of their cdf's. The system of 
equations given by Bi(x ) = u* for i~{1, 2 . . . .  , m} in Lemma 6 thus determines the 
equilibrium mixed-strategies, Gi(x ), for any given nonnegative vector (b~, b 3 . . . . .  b,,) 
for which at least one b i = 0. These are given in equation (4) in the text. Recursive 
application of Lemma 9 for given bi's implies that these constitute all the equilibria. 

Proofof2C: Theorem 1 in Baye, Kovenock and De Vries (1993) establishes that, 
in any Nash equilibrium, r~Ex i = ( / )2 / / )1) / )  2 ~- (1  - VZ/Vl)EX 1. Hence it is sufficient to 
establish that (a) Ex 1 is maximized in an equilibrium in which all but one of players 
2 through m bid zero with probability one, and (b) Exl  is minimized when players 
2 through m play symmetric strategies. Our proof makes use of the fact that if cdf 
F stochastically dominates cdf G, then EF[X] > Ea[x-]. 

(a) By Lemma 10, in any equilibrium at least one of the players 2, 3 . . . .  , m, 
randomizes continuously on the interval (0, v2]. Suppose player i is such a player. By 
Lemma 6, Bi(x) = 0 Vxe(0, v2]. Isolating the cdf of player 1, G~, in the expression for 
A i yields Gl(x ) = Ex/(v2Hj~l,iGi(x)) ]. Hence, across all equilibria, Gl(x ) is mini- 
mized for each xe(0,v2] when the denominator is maximized (note that every 
equilibrium must have an i t  {2 . . . .  , m} randomizing continuously over (0, v 2 ]). This 
implies that Gl(x ) is minimized when Hj~ 1.~Gj(x)= 1 (that is, in the equilibrium 
where only players 1 and i actively bid.) But this means that G 1 in this asymmetric 
equilibrium stochastically dominates the corresponding Gl's that arise in the other 
equilibria, which implies Exa is maximized in this equilibrium. 

(b) Similarly, suppose player ie {2,...,  m} randomizes continuously on (0, v2]. 
Then Gl(x ) is maximized for each xe  [0, v2] across equilibria when Hj~  1,iGj(x) is 
minimized. By Lemma 12, in any equilibrium player 1 randomizes continuously 
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over (0, V2], This implies by Lemma 6 that in any equilibrium Al(x  ) = (vl - ~)2 + X)/ 
v 1, Vx e(0, Vz]. Since A ~ (x) = Hj~ a Gj(x) is constant across equilibria, H i e  1 .i Gj(x) is 
minimized in an equilibrium in which Gi(x) is maximized. But by Lemmas 5, 9, and 
10, in any equilibrium and for every j~  {2, . . . ,  m}, j va i, Gi(x ) < Gj(x) Vxe[0 ,  v2]. 
Hence maximizing G~ (x) across equilibria requires maximizing the minimum of the 
Gk(X)'S, k ~ {2, . . . ,  m}. Since for each x E(0, v2], A l(x) is constant across equilibria, 
this is done by setting Gk(X ) = G~(x) for all k, j e  {2, . . . ,  m} on [0, v2]. []  
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