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Abstract In an Internet auction, the expected payoff acts as a benchmark of
the reasonableness of the price that is paid for the purchased item. Since the
number of potential bidders is not observable, the expected payoff is difficult
to estimate accurately. We approach this problem by considering the bids
as a record and 2-record sequence of the potential bidder’s valuation and
using the Extreme Value Theory models to model the tail distribution of the
bidder’s valuation and study the expected payoff. Along the discussions for
three different cases regarding the extreme value index y, we show that the
observed payoff does not act as an accurate estimation of the expected payoff
in all the cases except a subclass of the case y = 0. Within this subclass and
under a second order condition, the observed payoff consistently converges to
the expected payoff and the corresponding asymptotic normality holds.
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1 Introduction

Internet auctions (IA) provide an easily accessible platform for trade. This has
increased the extent of the market for many items to nationwide or even global
markets. A improve the matching between the supply and demand. Bulow
and Klemperer (1996) showed that under the hypothesis of the Independent
Private Values Paradigm (IPVP), the seller is better off if the market is larger.
By the same fact, buyers are also better off, since it becomes more likely that
the agent with highest consumer surplus is matched with the seller.

Auction theory derives the optimal bid functions for specific auction mech-
anisms, such as the Dutch (descending price) or the English (ascending price)
auctions, and given a specific demand function. The demand function is
modeled as a distribution of valuations of the object to be auctioned. Both
the seller and the buyer have an interest in knowing the final price that might
materialize to answer such questions as: Is it worthwhile to put the item up for
sale? and, is it worth my time to bid? Sellers may want to extrapolate from a
single auction to predict total revenues from repeat sales.

Under IPVP, the expected price is predicted as follows. For any standard
auction, the Revenue Equivalence Principle (REP) holds, which means that
under IPVP, the expected revenue of the seller does not depend on the auction
mechanism, see e.g. Krishna (2002).! The expected revenue for a standard
mechanism is equal to the expectation of the second highest order statistic of
the valuations. For the Vickrey or second-price sealed bid auction, this is easily
shown to be the case. In a second-price sealed bid auction, the winner pays the
second highest bid. Since for this auction agents have an incentive to exactly
bid their valuations, the claim follows. Auction theory shows that this revenue
result holds for all standard auctions.

Most IAs have two mechanisms for placing a bid, i.e. the manual bid and the
proxy bid. This induces a hybrid of an English auction and a Vickrey auction.
In an English auction, bidders publicly compete with each other by placing
ascending bids. The Vickrey mechanism uses sealed bids, i.e. bidders do not
see the bids of competitors. Since both of these two mechanisms are standard,
the TA is also standard in the sense of revenue equivalence. Compared to
studies of classical auction mechanisms, the empirical analysis of an IA is
severely hampered due to the unobserved number of potential bidders. In an
IA, besides the active bidders who indeed place a bid on the websites, there
are also a large number of potential bidders who only check the website with
or without placing a bid. The number of potential bidders plays a role similar
to the number of bidders in classical auction mechanisms, i.e. the number of

!n classical auction theory, an auction is called standard if the rule dictates that the person who
bids the highest amount is awarded the object.
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bidders sitting in the auction hall. However, for IA, it is hard to observe this
number. Firstly, most of the large IA sites do not provide the number of page
views. Secondly, even the number of page views would not be a clean estimate
of the number of potential bidders, since a potential bidder may check the
website multiple times.

Lacking the knowledge of the number of potential bidders severely restricts
the statistical analysis of the expected revenue for the seller. Therefore, a few
papers recently focus on analyzing data under some additional assumptions
regarding the number of potential bidders. Bajari and Hortagsu (2003) and
Paarsch (1992) do not require knowledge of the number of potential bidders,
but they assume that the observed bidders are the only potential bidders
willing to pay the reserve price. This assumption appears implausible for IA.
For instance, de Haan et al. (2008) argued that the actual extent of the
IA market, i.e. the number of potential bidders, is far beyond the observed
number of active bidders. Alternative approaches are based on modeling
the number of potential bidders. For example, McAfee and McMillan (1987)
analyzed the case when the number of bidders is stochastic. Another example
is Laffont et al. (1995), who assumed that the unknown number of potential
bidders is the same across all auctions under consideration.

Still different is Song (2004) who considered the nonparametric estimation
of the distribution of bidder’s valuation without having any information on
the number of potential bidders. Song (2004) argued that without knowing the
number of potential bidders, the distribution of the bidder’s valuation is not
identified if only the payoff, i.e. the second highest order statistic, is observed.
But if one can observe the bid history, then using the two top order statistics
identifies the parent distribution, even if the number of potential bidders is
unknown.

Under the IPVP, the potential bidder’s valuations are assumed to be identi-
cally and independently distributed random variables. Because the payoff of an
IA is the second largest valuation among all the potential bidders,> when the
number of potential bidders is sufficiently large, the payoff only depends on
the tail of the distribution of the bidders’ valuations. Thus there is only a need
to model the tail of the distribution. Semi-parametric Extreme Value Theory
(EVT) provides an approximation to the tail of the distribution. Caserta and
de Vries (2005) applied the EVT approach to investigate the expected payoff.
However, the number of potential bidders is a major difficulty for their analysis
as they assume that the number of actual bids equals the number of potential
bidders.

Existing econometric analysis of auctions, c.f. Paarsch (1992), often pro-
ceeds on the basis that the number of bidders is known and that the different
auctions are homogeneous, possibly controlled for covariates. This allows for

2In fact, the final payoff should be the second largest valuation plus a minimum increment because
the winner has to overbid the second largest valuation. We assume that the minimum increment is
negligible compared to the value.
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the pooling of the data from different auctions in order to estimate the demand
curve (distribution of valuations) and to test for the IPVP. In the current
analysis, we do not entertain this maintained homogeneity assumption, as we
want to investigate the expected price of a particular, possibly unique, auction.
For this purpose the EVT approach appears appropriate. Similar to Caserta
and de Vries (2005), we also model the tail of the distribution of the bidder’s
valuation as in the EVT setup.

Unfortunately, the message of the paper is somewhat bleak. We show that
while for the distributions of valuations in the max-domain of attraction with
positive extreme value index, the logarithm of the expected payoff can be esti-
mated after application of a correction factor, the expected payoff cannot be
estimated consistently. A somewhat similar result is obtained for the negative
case. Only for a subset of distributions in the max-domain of attraction with
zero extreme value index does a consistent estimator exist with a certain speed
of convergence under a suitable second order condition.

The paper is organized as follows. In Section 2, the record and 2-record
model is revisited. Section 3 demonstrates the EVT approach with positive,
negative and zero extreme value index. For the zero case, a subclass model of
the domain is introduced. Section 4 concludes this paper.

2 The bidding activities in Internet auction

IAs have some features that differentiate these from the standard auction
mechanisms, but are otherwise just the internet version of known auctions.
The differences pertain to the bidding systems and the termination rules. The
Internet facilitates the use of two bidding systems simultaneously. Most of
the IA sites allow for manual and proxy bidding. Manual bidding is similar
to the first price open ascending bid in an English auction, while the proxy
bidding procedure captures the second price sealed bid mechanism studied by
Vickrey (1962). Proxy bidding proceeds by providing the server of the IA with
the maximum value a person would be willing to pay. The machine then takes
over and keeps on overbidding on behalf of the proxy bidder as long as the
other bids are below this maximum. Regarding the termination rules, there
are also two alternatives. One type of IA ends after a pre-announced fixed
lapse of time, while the other type has a variable auto-extended termination
time. Typical examples are the eBay auctions and the Amazon auctions.
The eBay auctions have a fixed ending time. The Amazon type auctions use
the auto-extension termination rule.’> At the beginning of the Amazon type
auction, an initial ending time is announced. If no bidding takes place during
the last ten minutes, the auction stops at the announced ending time. But if

3 Although www.amazon.com has terminated their auction platform, since they used the feature
of auto-extension termination rule, we still call auctions with such kind of setup the Amazon type
auction. On the Yahoo! platform, this feature is still in use.
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there are some bids in the last ten minutes, the ending time is automatically
extended by another ten minutes. This rule is also applied to the new extension
period. On the Yahoo! auction site the sellers can choose between these two
termination rules.

The analysis of auctions can be divided into two classes. Either it is assumed
that the bidders’ valuations are independent from each other, or they are
dependent. The former case is usually referred to as the independent private
values paradigm (IPVP). Valuations are considered to be draws from some
given distribution. This is the paradigm that we consider in this paper as well.
Standard commodities are well modeled on the IPVP assumption. Rare items,
collectibles and works of art are usually considered to be in the other class.
At the extreme end of the other class is the common value case. Under the
IPVP and the Amazon type termination rule, de Haan et al. (2008) argued
that the active bidders come to the IA as a record and 2-record arrival process,
while their valuations form the record and 2-record sequence of the valuations
among all potential bidders.

To explain this model, let i = 1,2, --- , n denote the order in which the n
potential bidders arrive at the auction site. IPVP assumes that the valuation of
all potential bidders are i.i.d. random variables X, X5, --- , X}, with distribu-
tion function F(x). Define the rank sequence {R;}}", as

i
Rii=) lixe=x) (1)
k=1

Intuitively, R; is the rank of the valuation of the i—th potential bidder among
the valuations of all the potential bidders who checked the auction earlier
(before 7). The valuation X; is called a record if R; = 1. Similarly, for k =
2,3,---,itis a k-record if R; =k, see Resnick (1987). Denote the indices of
the records and 2-records as {J( )}, This index sequence is given by

J=1,J@2) =2 @)
JG4+D=min{i > J()): Ri <2}, j=2,3,--- ,m—1, (3)

where m is the number such that R; > 2 for alli > J(m).

With the maintained hypothesis that “each active (manual) bidder imme-
diately returns to the IA and increases his bid as soon as he is overbid and
his valuation is above the prevailing price.”,* the active bidders must have the
indices {J( ])};”:1 in the potential bidders sequence. So m is the number of active
bidders. Then, the active bidders’ valuations are obviously the record and
2-record sequence {X 7( /)}T:l’ Actually, the first m — 1 active bidders’ valua-
tions can be observed as their last bids. The winner’s valuation Xy, is
obviously unobservable, just as in the English auction. For the Amazon type
auction, since there is no motivation for bidders to postpone their bids for

strategic reasons, it can be assumed that the bids reflect the first m — 1 records

4Note that this assumption is automatically satisfied when there are only proxy bidders present.
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and 2-records. de Haan et al. (2008) tested this model by employing Yahoo!
IA data. A similar record breaking model is considered in Bradlow and
Park (2007). As an alternative, Shmueli et al. (2007) proposed an empirical
approach on modeling the bidder’s arrivals.

3 EVT approaches

Our purpose is to compare the observed payoff and its expectation for a
specific IA. With n potential bidders, and m active bidders, there are two ways
to represent the payoff following the record and 2-record model. One way is
to consider M,,_;., as the second largest order statistics of X;, X3, ---, Xj,. The
other way is to view the payoff as the X;(n—1), where {J()}', is the record and
2-record index sequence as defined in the previous section.

Since the payoff is determined by the largest order statistics, it is reasonable
to make assumptions only on the right tail of the valuation distribution F(x).
Caserta and de Vries (2005) suggested to use the EVT approach, and assumed
that the distribution of the bidder’s valuation belongs to the max-domain of
attraction of an extreme value distribution. This setup is as follows.

Suppose the bidder’s valuations are i.i.d random variables Xi, X, -,
X, - -- with common distribution function F. Denote M, =max { X1, ---, X,,}.
We say that F belongs to the max-domain of attraction, if there exist a non-
degenerate distribution function G, a positive sequence {a,},., and a real
sequence {b,}r-, such that

lim P{M"—_b" gx} = G(x)
n—oo an
for all continuity points of G. Denote this domain of attraction feature as
F € D(G).

The necessary and sufficient condition for a distribution function to belong
to the max-domain of attraction is the extreme value condition, see e.g.
de Haan (1984).

Proposition 3.1 Let U:= (ﬁ)(_ be the generalized inverse function of 1/

(1—=F). Then F € D(G) if and only if there exists a function a(t) > 0 such that

Uy —-U@m® xr—1
lim =
t=>00 a(r) Y

: (4)
for some y € Rand all x > 0.

Here y is called the extreme value index. Under the extreme value condition,
the following proposition is proved in Caserta and de Vries (2005).
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Proposition 3.2 Let Xy, -, X, -+ be ii.d. sequence with common distribu-
tion function F belonging to domain of attraction, i.e. Eq. 4 holds for some
y < 0. Then, we have that

EMn—l:n - U(”) _

lim =-TQ2-y) (5)

n—00 a(n)

From Proposition 3.2, a possible estimator of EM,_;., is U (n) —an)
'(2 —y), where U(n), a(n),and y are proper estimators for the location,
scale and shape parameter in the EVT model. The literature offers several
alternative estimations for these parameters. We note here that Eq. 5 holds for
0 <y <2aswell

Since in our model, only the record and 2-record sequence is observed, it is
necessary to have proper estimators based on only those observations. When
y is positive, Berred (1992) derived an estimator for y based on the record
sequence, which can be generalized to our case of the record and 2-record
sequence.

The main difficulty in this approach is that the number of potential bidders n
is in fact unknown. This lack of information inhibits the estimation of U (n) and
a(n). In Caserta and de Vries (2005) n is assumed to be equal to the number
of bids. Thus multiple bids from the same bidder are considered as coming
from different potential bidders. Although this estimate of » is larger than the
observed m, it is a rather inaccurate estimation. In de Haan et al. (2008), it is
shown that m ~ 2logn as n — oo. All in all, to consider the expected payoff
as the expectation of the second largest valuation seems to be an approach of
limited value due to the unknown number of potential bidders.

That leaves us with the second representation to model the payoff based
on the record theory. We first study the record and 2-record sequence via its
point process representation. Let {Li(n)} -, be the indices of the k—record
sequence, that is

L) =1, L+ 1) =min{j> Ly : Rj=k}, n=1,2,---.

Define the k—record point process Ny by

oo
Nk = E SXLk(n)’
n=1

for k =1,2,---. Then according to Proposition 4.30 in Resnick (1987), the
point processes { N}7- ; are i.i.d. random elements.

It is clear that the combination of L; and L, sequences constitutes the
record and 2-record sequence J. According to Proposition 4.1(ii) in Resnick
(1987), N; and N, are homogeneous Poisson processes on (0, +00). Then, the
point process of the records and 2-records must be

N=N,+ N,
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which is the sum of two independent homogeneous Poisson process on
(0, 400). So N is a Poisson process with intensity measure 2, where pu is the
Lebesgue measure on (0, +00). In other words, we have the following Lemma.

Lemma 3.1 Suppose E,, E,,--- are i.i.d standard exponentially distributed
random variables and {J (m)} is the index sequence of the records and 2-records
of {E,}). Then

{EJE(m)}m = {Fm}

where T, = Y ;" | E. is the partial sum of the sequence {E’} which is an i.i.d
sequence with exponentzal distribution and mean 1/2.

By defining Q := (—log(1 — F)), the i.i.d sequence {X,} can be repre-
sented as {Q(E,)}, where E|, E,, --- are i.i.d standard exponentially distrib-
uted random variables. Hence, a direct implication of Lemma 3.1 is as follows.

Corollary 3.1 The record and 2-record sequence can be represented as

[ Xsm )2, £ (0T,

where T, = Y ;" | E. is the partial sum of the sequence {E’} which is an i.i.d
sequence with exponentzal distribution and mean 1/2.

By definition, the Q and U functions are connected by Q(t) = U(e").
Therefore, the extreme value condition in Eq. 4 can be rewritten in terms of
the Q function as

. 0+x)—0@® e*—1
lim =
1=00 a(e’) Y

: (6)

where y is the extreme value index. We discuss in the three separate subsec-
tions the cases y > 0,y <Oandy =0.

3.1 Positive case: y > 0

When Eq. 4 holds with y > 0, we have that lim,,, U(f) = o0 and U is a
regularly varying function at infinity, i.e.

U(tx)
t%oo U(t)

According to Proposition B.1.9 in de Haan and Ferreira (2006), log U(¢)/
logt — y. Hence for any § > 0, there exists #(§) > 0 such that for any ¢ > #(§),

< U@ <P,

Correspondingly, for all ¢ > #,(8) := log#(8), we have that

e < @) < eV, (7)
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Therefore, for § < y, we have that
OTy) > "1 i)+ OTu) I, <06
> (1 — 1, <)
> =OTm _ p(r=01(®) (8)
and
OTy) < €1 )+ Q) Ir,<46)
< 7 4 O(11(8)). 9)

The expectation of e*' for A € R is calculated in the following lemma.

Lemma 3.2 For A > 2 and any fixed integer m, Ee’' = +o0. For A <2 and

any fixed integer m
2 m
EeMm = ——) .
‘ (2—A>

When y > 2, there exists a§ > O such that y — § > 2. By taking expectations
at the two sides of Eq. 8, we get that

EQ(Ty) > Eev=9Tm _ or=000) — 4 o,

Therefore, we conclude that if y > 2, for any finite level m, EQ(T";,;) does not
exist. In other words, the current observed price necessarily underestimates the
expected payoff. However, y > 2 is not very realistic for most items offered
on the TA platforms. For most, if not all, items the payoff does have an
expectation. In case of a finite expected payoff, i.e. y < 2, we have following
theorem.

Theorem 3.1 Suppose Eq. 6 holds for0 < y < 2. Then EQ(T'y,) is finite for any
fixed m. As m — oo, we have the following two limit relations

EQMTy) »p
DN +OO, 10
Om) (10)
and
log EQ(T),
log EQMw) » (11)
log Q(T')
log(%) .
where ¢ := ——>"= is a constant larger than 1.

v/2

Proof of Theorem 3.1 Since Q is a monotone function, we only need to prove
that EQ(T,,) is finite for large m. Choose § < min(y, 2 — y). By taking expec-
tations at the two sides of Eq. 9, we get that

EQ(T,,) < EeV™ ' 4+ O(t,(8)) < +00.
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Hence EQ(T'),) is finite. Similarly, we have the lower bound of EQ(T",,,) as

m
EQ(Ty,) > EeV=9Tn — r=000) — _ 2\ o)
- 2—y+48

Together with Eq. 9, we find that

EQ(,,) _ (ﬁ)m_e(y—s)n(a) - 1— (

) 791
+

=)

T,) — et O J— -
Q( ) 4 +Q( l( )) (V+‘S)r 1 g( (2 y+5) Q(t1 ((S))
(12)
log( —2
Denote c(8) := 2%. Since 2_(}2,—_5) > 1, Eq. 12 is continued as
EQMTm) 1 —o(1) (13)

O, — ertdTn-mc®/D) 4 (1)’

Note thatas § — 0, c(8) — c. From the inequality that log — > xforallx < 1,

we get that ¢ > 1. Hence, we can choose § small enough such that c(§) > 1.

From central limit theorem, we have that - %’72/2 is asymptotically standard

normally distributed. Thus, for any ¢(§) > 1,T,, — mc(8)/2 L _ooasm — oo.
Therefore, as m — oo, the right side of Eq. 13 goes to +oco which completes
the proof of Eq. 10.

From the boundaries of EQ(T;;,), we have that

2 " 2 m
- _ er=9u®
(2—y+5) e sEQ(Fm)s<2_y_8> + 011 ().

Hence, by taking logarithms and asking m — oo, we get

2 log EQ(T
log <—) < liminng—Q(m)
2 — Yy + ) m— 00 m

log EQ(" 2
ShmsupOg—Q(M)SI()g — .
m 2—y—96

m—o0

By taking 6 — 0, it follows that

log EQWwm) _ <—2 ) . (14)
m 2—vy

lim

m—0o0
. . P
Since lim;_, » log Q(t)/t— y and T',,, — oo as m — oo, we get that as m — oo

10g Q(T)/ T —> .

From the Law of Large Numbers, we have that I,/ (m1/2) £ 1 as m— oo.
Thus,

P
log Q(Tp)/m —> v /2.
Together with Eq. 14, this complete the proof of Eq. 11. O
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Theorem 3.1 implies that, for 0 < y < 2, although the expected payoff is
bounded, the observed payoff always underestimates its expectation if there
are numerous active bidders. The following remark gives the essential reason
for the underestimation.

Remark 3.1 Under the EVT model with 0 < y < 2, the comparison between
EQ(T,,) and Q(T',,) is essentially a comparison between Ee?' and e’". From
Jensen’s inequality, we have that

Ee?'n > eV Elm,

From the Law of Large Numbers, I';,, ~ ET,, as m — oo. Thus, we intuitively
see why Q(T',,) underestimates EQ(T,,).

A question is whether it is possible to correct the underestimation. Theorem
3.1 shows that the logarithm of the expected payoff can be approximated by
the logarithm of the observed payoff multiplied with an adjustment factor ¢
that is always higher than 1. Notice that c is a function of the extreme value
index y which can be consistently estimated as a function of the observed
record sequence, see Berred (1992). By estimating ¢, a consistent estimator
for the logarithm of the expected payoff can be constructed. However, a
consistent estimate at the log-level does not provide a consistent estimator
for the expected payoff itself because both of the expected payoff and the
observed payoff go to infinity as the number of active bidders m go to infinity.
The situation is similar to the 2logn rule in de Haan et al. (2008). Given the
number of potential bidders n, the number of active bidder m is consistently
estimated as 2logn. However, the 2logn rule does not provide a consistent
estimator for the number of potential bidders given the number of active
bidders. Therefore, within the framework of Theorem 3.1, it is not possible
to have a consistent estimator of the expected payoff based on the observed
record and 2-record sequence.

3.2 Negative case: y <0

In case y < 0, the distribution function of the bidders’ valuations F has a right
endpoint, i.e. Q(00) :=limy_ 1o OQ(x) < co. Hence, the bidders’ valuations
are never above Q(oc0).’ In such a case, the expected payoff is always finite.
Caserta and de Vries (2005) argued that this is a realistic model for most items
sold through IA. For example, the new price is often a realistic upper bound of
a second-hand consumer item sold through IA.

Since T, £ 400 as m — oo, we get that Q(T'),;) A Q(00). The following
theorem studies the asymptotic difference between Q(T',;,) and EQ(T,,,).

SWe remark that the uniform distribution, which is a commonly used distribution in auction
theory, belongs to this case with y = —1.
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Theorem 3.2 Suppose Eq. 6 holds for y <0. Then EQ(I';,) > Q(c0) as m— oo.
Thus,

EQ(Fm) P
—— — 1.
o)
Furthermore, we have the following two limit relations as m — oo,

0(c0) — EQ(T) »
15
0o — 0T, (15

and

log(Q(00) — EQ(T'm)) P,
log(Q(00) — Q(I'yn))

where c is defined as in Theorem 3.1. Notice that for negative y we have ¢ < 1.

c, (16)

We start by proving the following useful lemma.

Lemma 3.3 For any fixed constants T > 0, ¢ > 0,

lim ¢ P(TC,y < T) =0

m—o0

Proof of Lemma 3.3 Notice that 2T, follows a Gamma distribution with

shape parameter m, i.e. the density function of 2", is f(x) := % 1y-0. We
have that

xm—le—x
I'(m)

2T (e, ym—1,—x
_ / COT e e
0 I'(m)

2T & \m—1 ,—(efx)
= / e(ee’l)x(ex)—ed(egx)
0 I'(m)

2Te*  m—1,—x
. X e
< e(e —I)ZT/ dx
0 [(m)

=P (I, <2T¢)

2T
0<e"PT,,<T) = esm/ dx
0

where I'), is a Gamma distributed random variable with the same density
function f. Because I',, — +00 as m — o0, the lemma is proved. O

Proof of Theorem 3.2 When y <0, 1/(Q(c0) — Q(t)) is a regularly varying
function at +oo with index —y. Similar to the inequality (7) in the positive
case, the following inequality holds. For any § > 0, there exists #,(8) such that
for any ¢ > £,(8)

e’ < Q(o0) — Q1) < ¥, (17)
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Therefore, we have that
0(00) — Q(Ty) > eV Dnlp ) + (Q(00) — QT 1r, <)
> e (1= 1, 10))
> eV — 1, c6)- (18)
and
Q(00) — Q(T'y,) < eV qn sy + (Q(00) — QT I, <1,5)
< 7 4 Q(00) 11, <1,(5)- (19)
By taking expectations at the two sides of Eq. 19, we get that

2 m
0< Qo) — EQ(T'p) < (m) + Q(00) P(T', < 12(8)).

By taking § < —y, we get that 5—=— < 1. Since P(I';, < 12(8)) — O asm — oo,

we get that lim,,, ..o EQ(},) = Q(oo).
We turn to compare Q(oo) — EQ(I",,) with Q(oco) — Q(T'),). By taking
expectations on the two sides of Eq. 18, we get that

2 m
Q(o0) — EQ(T)) = <2—y—+8> — P(I'), < 1(8)).

Notice that ', L +ooasm — oo. The inequality (19) implies that eventually

0(c0) — Q(T,,) < 7+,

Hence

00— EQ) _ (755) — P = )
Q(c0) — Q(Ty) e+,
Lemma 3.3 shows that P(T',, < 12(8)) goes to 0 at a higher speed than any
exponential speed. Thus, Eq. 20 is continued as
0(00) — EQTw) _ 1—0()
(o) — Q) ~ e+ Tn—d@®ym/2)’

(20)

1)

where d = 2- (2 ”5) . Notice that as § — 0, d(§) — ¢ and ¢ < | holds for
y < 0. Hence, we can choose § small enough such that d(§) < 1. Then, T,

d(é)ym/2 £ 400 as m — oo. Therefore, as m — oo, the right side of Eq. 21
goes to +oo which completes the proof of the theorem. The proof of Eq. 16 is
similar to that of Eq. 11. O

Theorem 3.2 studies the case y < 0 and tells a story just opposite to the
positive case. For y < 0, the observed payoff might be considered as a con-
sistent estimator of its expectation because both the observed and expected
payoff converge to the right endpoint of the bidder’s valuation. Nevertheless,
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the distance between the observed payoff and the right endpoint is eventually
smaller than the distance between the expected payoff and the right endpoint.
Hence, if there are sufficiently many active bidders, the observed payoff always
overestimates its expectation. A consistent estimator on the log-level of the
difference is given by multiplication with an adjustment factor c that is always
lower than 1. However, similar to the positive case, a consistent estimate at
the log-level would not provide a consistent estimator of the difference itself.
Therefore, it is not possible to correct the overestimation.

To sum up, Theorems 3.1 and 3.2 show that if the extreme value index of
bidder’s valuation distribution is not 0, the observed payoff is never a satis-
factory estimator for the expected payoff.

3.3Zerocase:y =0

In the previous two Subsections, we found that the observed payoff under-
estimates or overestimates its expectation when y is positive or negative
respectively. The remaining case is y = 0, i.e. when F belongs to the Gumbel
domain. In this section, we show that at least for a subclass of the Gumbel
domain, the observed payoff is a reasonable estimator for its expectation.

3.3.1 Model specification

As we discussed before, in order to avoid the problem of the unknown number
of potential bidders, the model should be based on the Q function and the
payoff should be taken as the last observation in the record and 2-record
sequence.

We introduce a refinement and assume that the Q function itself is regularly
varying or generalized regularly varying. Furthermore, in order to study the
asymptotic properties, we assume that a second-order condition holds.

We start from the regularly varying model. Suppose Q function itself is
regularly varying with index A > 0. We also assume that it is second-order
regularly varying with second-order index p < 0, i.e.

Otx) _ Xt

00 WX —
—_ H =
A0 — H(x) X

as t — oo, for some suitable function A(f) € RV, and all x > 0. We call this
Regularly Varying Q-function (RVQ) model.

(22)

Remark 3.2 The RVQ model with p < —1 is a subclass of the Gumbel domain.

Proof of Remark 3.2 From Eq. 22, we have the following inequality (See de
Haan and Ferreira (2006, Appendix B)). Given any ¢ > 0, there is a #(¢) such
that for all tx > 1y(e),

O@tx) _ X+

0() _
A0 H(x)

< ex*trE, (23)

@ Springer



The expected payoff to Internet auctions 233

Therefore,

O(t+x) t4x\* Atpte
oo — 7/ t+x t+x
()= ()

A t

forallt > fy(e) and positive x. When p < —1and A(¢) € RV, we gettA(t) — 0
as t — oo. It leads to the fact that

t{w — (1 +x/t) — 1)} 0.

@)
Since
t(1+x/H)* — 1) — Ax,
we finally get that
Ot+x) — Q0@ N
1O/ ’
i.e. the corresponding U function satisfies condition Eq. 4 with y = 0. ]

Thus, the RVQ model is only a special case in the Gumbel domain (y = 0),
and therefore is more narrow. Fortunately, quite some well-known parametric
distributions belong to this model. For example, both the normal distribution
and the exponential distribution satisfy this model. (For the normal distribu-
tion, A = 1/2, p = —oo. For the exponential distribution, A = 1, p = —00.)

In the RVQ model, the original distribution function can not have a finite
right endpoint. In order to include distributions with finite right endpoint, we
extend the model as follows. Suppose the Q function is second-order gener-
alized regularly varying with first-order index A € R and second-order index
p <0,ie.

Q(IX)(—)Q(I) _x—1

a(t A

_ > H 24

T~ HW (24)

ast — oo, for all x > 0 and some suitable function a(f) € RV, A(t) € RV, and

H(x). We call this Generalized Regularly Varying Q-function (GRV Q) model.
In the GRVQ model, if A > 0, it can be simplified to the RVQ model. When

A is negative, Q(00) < oo. Hence, in this case, the original distribution function

F must have a finite right endpoint.® We note though that a random variable

K with distribution function

1 — o (@)

5The commonly used distribution functions for the valuations in auction theory are the uniform
distributions and other distributions with a finite right endpoint. Notice that the uniform distribu-
tion belongs to the case y = —1 which has been discussed in the previous section.
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for all x <a, where b > 0, A < 0 satisfies the requirements of the GRVQ
model (% is the regularly varying index in Eq. 24 and p = —o0). Notice that
— K follows the inverse Weibull distribution.

3.3.2 Statistical inference

We turn to study the expected payoff. The following lemma gives the asymp-
totic properties of the observed and expected payoff.

Lemma 3.4 Suppose the RVQ model holds with p < —1/2, then

Xiom) d
EX](m) I'A+m)
M(Q<m/2> T (m) ) > 26)

where W is a standard normal distributed random variable and T is the Gamma
function.

Proof of Lemma 3.4 Applying Eq. 23, we get that, eventually,

A
Oy _ ( T ) Atpe
Oy \m2) i < U . 27)
A@m/2) m/2 m/2
The symbol £+ means taking the suitable sign according to whether ;72 is higher

or lower than 1. Since /mA(m/2) — 0, rZ/Z £ 1 and lim,_,; H(x) £ ex*+rte
exists, we find that

Oy (Tw\"\ 2
m(Q(m/Z) B (m/2> ) =0

From Central Limit Theory, we have that

| d
Vi (s 1) 5w

where W is a standard normal distributed random variable. According to

Cramer’s delta method,
T \*
[ (=) —1) L aw.
m/2

Thus, Eq. 25 is a direct consequence.
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Taking expectation of the two sides of inequality (27) on the set
{T'), > to(e)}, because the absolute value function is a convex function, we get
that

M_E<F

A
—m) ]
Q(m/2) m/2) {Tm>10()} r
—EH | —75 ) lir, =00

A(m/2) m/2

r ApEe
<¢E (X Lt 1 (o)1
=€ (m/2> {Tm>to(e)}

Similar to above discussion, we can conclude that

E Fm 1 Sto(e Fm A
«/E( Q(Q(Zn{/l’zm) hel _ g <m/2> l{l"m>[0(s)}> — 0. (28)

Since /mP(T',, < x) — 0 as m — oo for all x > 0, we have that

EQTm) Lty <o O(t6(e) P(T'm < 15(&)))
‘%( 0(m/2) ) = M( 00m/2) ) -0

and

T\ fo(e) )"
JmE (m_/z) Lty ey < VE (m—/z) P(T, < 19(e))) — 0.

It follows that Eq. 28 can be rewritten as

EQ(T) I
ﬁ( o2 (m/2> ) =0 )

Since 2T, follows the Gamma distribution with shape parameter m, the
expectation of (2I,,)* is "4 (see e.g., Papoulis (1984), pp. 103-104). Then

T
g(Tn) _TO+m
m/2)  m*I(m)’
Thus, Eq. 26 is proved. O
Now, we prove that
ra
fim o (CEEM ) . (30)
m— 00 m T (m)
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Since I'(x) = e *x* 1227 (1 4+ 1/12x0(1))) as x — 0o, we have that

ro+m o2 L1+ E20(1)
o = © (L 2/ m)" 12 o) ——— o

= T I/DNeHAIM=A (1 32 /m + o(1/m)) (1 4 o(1/m))

= ¢ 5 UM (1432 /m + o(1/m)) (1 + o(1/m))
=1+ 0(/m).

Thus Eq. 30 is proved.

We can estimate the expected payoff as follows. Suppose we have m active
bidders in an IA. We observe the bidders’ valuations Xy, - -+ , Xjm—1) as
their final bids, except for the winner. The payoff will be X;,—1). We estimate
the expected payoff E X,y by this observation. The asymptotic property of
this estimator is given by the following theorem.

Theorem 3.3 Suppose the RVQ model holds for p < —%. Then

Xiom_
N <#(>) _ 1) 4w (31)
—

as m — oo, where W is a standard normally distributed random variable.

Proof of Theorem 3.3 The theorem is proved by combining Eqgs. 25, 26 and 30.
]

Theorem 3.3 shows that for the RVQ model the observed payoff is an accu-
rate estimator for the expected payoff and the corresponding asymptotic
normality holds under a second order condition.

Starting from the GRVQ model, similar results can be obtained as in the
previous subsection. Here we only present the conclusion, the proof is omitted.
The proof for the GRVQ model is essentially the same as the proof for the
RVQ model.

Theorem 3.4 Suppose the GRVQ model holds with p < —%. Then as m — oo,
Xim—1y — EXrm-1) d
Vm— 121 S W,
a((m—1)/2)

where W is a standard normally distributed random variable. In particular,
when A > 0, we have that Eq. 31 holds. When ) < 0, we have that Q(oc0) < 00,
and as m — oo,

Q(o0) — Xyom-1) ) d
vm —1 —1 AW.
" (Q(oo) “EXy, )T
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4 Conclusion

Internet auctions are a hybrid of the standard second-price Vickrey auction
and the first-price English auction, for which the expected payoff is equal
to the expectation of the second highest valuation among all the potential
bidders. The expected payoff acts as a benchmark for the reasonableness of
the price that is paid for the purchased item. Since the number of potential
bidders is not observable, the expected value is difficult to estimate accurately.
We approached this problem by considering the bids as a record and 2-record
sequence of the potential bidder’s valuation. The observed payoff is thus one
of the records and 2-records.

In this paper, we use the EVT models to model the tail distribution of
the bidder’s valuation and to study the expected payoff. We first argue that
assuming that the extreme value index y is higher than 2 is not a realistic model
because in that case the expected payoff is unbounded. For 0 < y < 2, we show
that the observed payoff underestimates the expected payoff. At the log-level,
an adjusted estimator exists for the expected payoff based on the logarithm
of the observed payoff. We show that this is not possible at the level of the
expected payoff. Hence, the consistency is at stake. One may argue that y > 0
is not a realistic setup for the distribution of the bidder’s valuation, because
such a distribution function has no finite right endpoint which may not reflect
the reality of IA.

For y < 0 the distribution function of the bidder’s valuation has a finite
endpoint, which may be a more realistic setup for IA. Both the expected
and observed payoff converge to the right endpoint as the number of active
bidders m goes to infinity. However, the distances to the endpoint converge to
0 at different speeds. The distance between the observed payoff and the right
endpoint goes to 0 faster. Therefore, the observed payoff always overestimates
the expected payoff.

For y = 0, i.e. the distribution function of the bidder’s valuation belongs to
the Gumbel domain, the observed payoff can be a consistent estimator for
the expected revenue. We introduced a subclass of the Gumbel domain as
the model of bidder’s valuation distribution. Within this subclass and under
a second order condition, the observed payoff consistently converges to the
expected payoff and the corresponding asymptotic normality holds.

All in all, in an IA the observed payoff is the final price of the deal, while
the expected payoff is what the seller should get from holding such an IA. Our
study shows that by assuming that the tail of the bidder’s valuation distribution
belongs to the domain of attraction of an extreme value distribution, the final
price does not always reflect what the seller deserves.

Our analysis focused on the general EVT setup for the distribution of bid-
der’s valuation. In case one is willing to make an explicit parametric assump-
tion regarding the distribution of valuations, consistent estimation of the
expected payoff may be possible outside the limited class that we could handle.
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Further research on estimating the extreme value index from the observed
record and 2-record sequence is also of interest and may help to identify the
particular situation for a specific IA.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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