
Econ Theory
DOI 10.1007/s00199-009-0489-2

SYMPOSIUM

Contests with rank-order spillovers

Michael R. Baye · Dan Kovenock ·
Casper G. de Vries

Received: 9 September 2008 / Accepted: 29 June 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract This paper presents a unified framework for characterizing symmetric
equilibrium in simultaneous move, two-player, rank-order contests with complete
information, in which each player’s strategy generates direct or indirect affine “spill-
over” effects that depend on the rank-order of her decision variable. These effects arise
in natural interpretations of a number of important economic environments, as well
as in classic contests adapted to recent experimental and behavioral models where
individuals exhibit inequality aversion or regret. We provide the closed-form solution
for the symmetric Nash equilibria of this class of games, and show how it can be used
to directly solve for equilibrium behavior in auctions, pricing games, tournaments,
R&D races, models of litigation, and a host of other contests.
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1 Introduction

This paper presents a unified framework for analyzing equilibrium in simultaneous-
move, two-player, rank-order contests with complete information, in which each
player’s strategy generates direct or indirect affine “spillover”effects that depend on the
rank-order of her decision variable. We show that these effects arise in natural interpre-
tations of a number of important economic environments, including contests adapted
to recent experimental and behavioral models where individuals exhibit inequality
aversion or regret. We provide a characterization of symmetric equilibria (both pure
and mixed), closed-form expressions for these equilibria, and show how our results
may be used to directly solve for equilibrium behavior in auctions, pricing games,
tournaments, R&D races, models of litigation, and a host of other games.

Rank-order contests are ubiquitous. These take the form of environments in which
players choose non-negative bids (which may be interpreted as a proposed payment,
effort, or the commitment of other scarce resources that are non-refundable) whose
rank-order discontinuously influences the probability of winning some prize. Classic
examples include homogeneous product Bertrand competition (see Bertrand 1883),
in which the lowest price firm “wins” the profit from selling to demand at that price,
as well as first- and second-price auctions (see Vickrey 1961), where the player who
submits the highest bid wins the item and pays either his own bid (in the first-price
auction) or the bid of the second-highest bidder (in the second-price auction).

Winners and losers alike forfeit payments in many rank-order contests. In a first-
price all-pay auction, for instance, each player submits a non-refundable bid and only
the higher bidder receives a prize. The war-of-attrition (see Maynard Smith 1974) is
a second-price all-pay auction: the high bidder wins the prize and pays the amount
bid by the second-highest bidder. These forms of competition have been widely used
to model activities as diverse as patent and R&D races, lobbying and rent-seeking
activities, litigation, advertising and political campaigns, tournaments as incentive
devices in labor markets, competition for college admissions, sports competitions,
urban architecture, and territorial contests among organisms.1

The principal motivation of this article is that spillovers are often important in
rank-order contests; in many economic environments, one player’s decision affects
the other player’s payoff, and the nature of this effect may depend on the rank-order of
the players’ choices. This is perhaps most obvious in second-price auctions where the
high bidder pays the second-highest bid, but spillovers also arise in a variety of eco-
nomic contexts. For instance, an extensive literature starting with D’Aspremont and
Jacquemin (1988) has examined the effects of positive spillovers in R&D competition

1 Applications in these areas include work by Dasgupta (1986), Kaplan et al. (2003), Hillman and Riley
(1989), Baye et al. (1993), Che and Gale (1998), Baye et al. (2005), Sahuguet and Persico (2006), Konrad
(2004), Fu (2006), Groh et al. (2009), Helsey and Strange (2008), and Kura (1999).
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that can arise when one player’s R&D effort provides information that benefits its rival.
Although D’Aspremont and Jacquemin (1988) does not involve rank-order effects, a
growing literature, starting from an original observation by Dasgupta (1986), mod-
els the R&D process as a rank-order tournament (see also Che and Gale 2003; Zhou
2006). The results examined in this article apply to the positive spillovers arising in
this context.

Rank-order spillovers also arise in models of litigation. Baye et al. (2005), for
instance, examine equilibrium in a litigation game with incomplete information in
which legal expenditures increase the quality of the case presented and where the
“best case” wins.2 This turns the litigation process into a rank-order contest in which
the litigation incentives in legal systems, such as the American, British, Continental
and “Quayle” systems, may be examined. Although the American system, where lit-
igants pay their own legal costs, involves no spillovers, other fee-shifting rules, such
as the British and Continental rules, which require that losers compensate winners for
a portion of their legal costs, and the Quayle system, in which the loser reimburses
the winner up to the amount actually spent by the loser, involve spillovers. Under the
British and Continental rules there is a negative indirect spillover effect of the win-
ner’s expenditure on the loser. In the continuation we call this a second-order negative
spillover effect. In the case of the Quayle system, there is a positive indirect spillover
of the loser’s expenditure on the winner. We call this a first-order positive spillover
effect.

Our taxonomy of spillover effects may also be used to construct and analyze vari-
ants and extensions of the auction and contest literatures noted above. For instance, the
classic partnership dissolution problem may be viewed as the auction of a business in
which two partners simultaneously submit bids and the partner with the higher bid pays
his bid to the partner with the lower bid in return for ownership of the business. In this
case, the payment of the winning partner is a second-order positive spillover effect on
the loser. Similarly, both the first-price and second-price all-pay auctions, often used
to model economic and biological contests, may be extended to include environments
in which effort expended imposes both a rank-order contingent direct effect on the
player expending the effort and a rank-order spillover effect on the player’s rival. For
instance, if two organisms are engaged in a territorial fight, the effort of the winner
may exact both a cost to the winner (a first-order negative direct effect) and a cost
to the loser (a second-order negative spillover effect). The loser’s effort may have
a second-order negative direct effect on the loser’s payoff and a first-order negative
spillover effect on the winner.

An important class of economic environments where rank-order dependent spill-
overs arise naturally is the analysis of auctions adapted to recent experimental and
behavioral models of individual choice. In Sect. 3 we show that our characterization
may be used to examine behavioral models that include: (i) tournaments in which

2 Our analysis is also related to a number of papers that have examined other incomplete information envi-
ronments. Recent contributions include the analysis of cross-holdings and financial externalities (Dasgupta
and Tsui 2004; Ettinger 2003; Maasland and Onderstal 2007), k-double auctions (Kittsteiner 2003); and
charity auctions (Engers and McManus 2004; Goeree et al. 2005). Our paper is also related to the literature
on auctions with externalities dependent on the identity of the winner and not the bids per se (see, for
instance, Jehiel et al. 1996).
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individuals exhibit inequality aversion in the spirit of Fehr and Schmidt (1999), (ii)
first-price and all-pay auctions where players experience regret similar to that in the
models of Engelbrecht-Wiggans (1989), Engelbrecht-Wiggans and Katok (2007), and
Filiz-Ozbay and Ozbay (2007), and (iii) an all-pay auction in which players maxi-
mize relative fitness according to the finite agent Evolutionary Stable Strategies (ESS)
equilibrium of Schaffer (1988).3

Section 3 also shows that many pricing games have rank-order dependent spillovers
that may be analyzed within our framework. For instance, in a variant of the classic
Bertrand model due to Varian (1980), two sellers simultaneously set a price and sell to
three inelastic segments of demand with common choke price, r. One of these inelastic
segments consists of price-sensitive consumers who are aware of both prices in the
market and who purchase from the lower-price seller, while the other two segments
are attached to different firms and are each aware of only the price of that firm to
which they are attached (as long as that price is at or below the choke price). Baye
et al. (1992) have shown that this game has a structure similar to that of a first-price
all-pay auction in which the bid is the difference between the choke price and a firm’s
price. In this context, the bid corresponds to the opportunity cost of the lost revenue
from the seller’s own uninformed segment that results from reducing price in order to
attempt to capture the “prize” consisting of the demand of the informed price-sensitive
consumer segment.

Spillovers also arise naturally in the context of the Varian model when one examines
popular price matching policies (see Lin 1988; Png and Hirshleifer 1987; Baye and
Kovenock 1994). If a high-price seller institutes a price-matching policy, it will sell at
its own price to consumers informed only of that price, but sell at its rival’s price to a
proportion of the informed customers who are willing to bear the cost of visiting the
high-price seller and taking it up on its offer to match the better price. In this case, the
rival’s low price generates a spillover effect on the high-price seller’s payoff, but not
vice-versa. Section 3 also includes additional applications of our results, including a
“reference pricing” version of the Varian model that includes “relative bargain” seek-
ers whose demand from the low-price firm depends on the ratio of the high price to
the low price. With reference pricing, a rival’s high price generates a spillover effect
on the low-price seller’s payoff, but not vice-versa.

All of these models have the property that they are special cases of the linear param-
eterized class of rank-order contests whose symmetric equilibria we characterize in
this paper. In Sect. 2 we formally introduce this class of models and provide a general
closed-form solution for the symmetric equilibria of the class. We characterize the
symmetric equilibrium strategies as functions of “contest parameters,” which when
varied change the “rules” of the contest. In Sect. 3, we show how this characterization
may be used to directly obtain closed-form solutions for symmetric equilibrium strat-
egies in these and other economic environments. In Sect. 4 we conclude. The proofs
are collected in the Appendix.

3 See also Hehenkamp et al. (2004) who, to the best of our knowledge, were the first to apply the ESS
equilibrium concept in a (Tullock) contest.

123



Contests with rank-order spillovers

2 Model and results

We study the symmetric Nash equilibria of the class of two-player games of complete
information in which each player i ∈ {1, 2} chooses an action (or bid) xi from the
strategy space A = [0,∞), and where payoffs are

ui (xi , x j ) =
⎧
⎨

⎩

W (xi , x j ) ≡ v − βxi − δx j if xi > x j

L(xi , x j ) ≡ −γ − αxi − θx j if xi < x j

T (xi , x j ) ≡ 1
2 W (xi , x j ) + 1

2 L(xi , x j ) if xi = x j .

(1)

We assume that V ≡ v + γ > 0.4 We also assume that at least one of the contest
parameters β, δ, α, or θ is nonzero.5 In the sequel, we let � denote an arbitrary game
within this class.

The δ and θ parameters capture the externalities (negative or positive) that con-
testants may inflict on each other. We use the terms “first-order positive (negative)
spillover effects” when δ < (>)0, and “second-order positive (negative) spillover
effects” when θ < (>) 0. This captures the fact that when xi is the higher bid (the
first in rank-order), the spillover effect of player j’s bid, j �= i, on player i’s payoff
is linear with coefficient −δ. If δ > 0, this effect is negative and if δ < 0 this effect is
positive. Likewise, when player i’s bid is the lower bid (second in the rank-order), the
spillover effect of player j’s bid, j �= i , is linear with coefficient −θ . If θ > 0, this
effect is negative and if θ < 0 this effect is positive. For similar reasons, we refer to
β and α as the first- and second-order direct effects. If player i’s bid (xi ) is the higher
bid, or first, in the rank-order, the direct effect of player i’s bid on player i’s payoff
is linear with coefficient −β. If β > 0, the first-order direct effect of an increase in
player i’s bid is negative; this effect is positive if β < 0. Similar interpretations apply
to the second-order direct effect, α.

Notice that, were the strategy space bounded and one is merely interested in estab-
lishing existence of a symmetric equilibrium, one could readily analyze this class of
games using the Dasgupta and Maskin (1986) framework. For games of incomplete
information, Lizzeri and Persico (2000) examine existence and uniqueness of bidding
strategies in auctions where W

(
xi , x j

)
and L

(
xi , x j

)
need not be linear, while Baye

et al. (2005) provide closed-form expressions for equilibrium strategies in the lin-
ear case. In what follows, we provide closed-form solutions for symmetric pure- and
mixed-strategy equilibria for the case of complete information, and allow for parameter
configurations not accounted for in the Lizzeri–Persico and Baye–Kovenock–deVries
analyses.6

4 In particular, note that V > 0 implies W (0, 0) > L (0, 0).
5 The case where β = δ = α = θ = 0 corresponds to the game of “pick the greatest non-negative real
number,” which does not have an equilibrium when the strategy space is unbounded.
6 Complete information analogs of the Lizzeri–Persico axioms (labelled A1–A8) would require α ≥ 0 (A5,
A7), β > 0 (A7), δ ≥ 0 (A7), and θ = 0 (A7). Baye, Kovenock, and de Vries assume, in their incomplete
information framework, that (β, α) > 0, δ = (1 − α), and θ = (1 − β).
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2.1 Symmetric pure strategy Nash equilibria

We first provide the conditions under which there exists a symmetric pure strategy
equilibrium, x∗, such that each player earns the equilibrium payoff U∗ < ∞. To this
end, define η ≡ α + θ −β − δ, so that η measures the change in the payoff per unit of
expenditure at x∗ derived solely from changes in the direct and spillover effects (and
not from winning V ) that result from the switch from being a loser to being a winner
at x∗.
Proposition 1 � has a symmetric pure strategy Nash equilibrium if and only if the fol-
lowing three conditions jointly hold: (i) β ≥ 0, (ii) α ≤ 0 and (iii) η < 0. Furthermore,
there is but one such equilibrium and it is given by

x∗ = − V

η
≡ v + γ

β + δ − α − θ
. (2)

These conditions have intuitive interpretations: β ≥ 0 means that, conditional on
winning, a player’s utility is non-increasing in his own bid, and α ≤ 0 means that,
conditional on losing, a player’s utility is non-decreasing in his own bid. The condition
η < 0 roughly means that in addition, the net spillover effect (θ −δ) is “small” relative
to the net direct effect (α − β).

Examples of applications of Proposition 1 to games of complete information include
the first-price auction ( γ = 0, β = 1, δ = α = θ = 0) where x∗ = v and the
second-price auction ( γ = 0, δ = 1, β = α = θ = 0) where x∗ = v. Proposition
1 also implies that games such as the standard first-price all-pay auction (β =α = 1,

δ = θ = 0) and the second-price all-pay auction (also called the war of attrition,
where δ = α = 1, β = θ = 0) do not have symmetric pure-strategy equilibria. Since
it is known that these special cases of � do have symmetric mixed-strategy equilibria,
we next provide a characterization of all such equilibria to �.

2.2 Symmetric mixed-strategy equilibria

In the analysis that follows, a cumulative distribution function, F , is said to be a sym-
metric mixed-strategy equilibrium of � (with associated equilibrium payoff EU∗) if,
for each player i , for every xi in the support of F , and for all x ′

i ∈ [0,∞):

Ui
(
x ′

i , F
) ≡

∞∫

0

ui (x ′
i , x j )dF

(
x j
) ≤

∞∫

0

ui (xi , x j )dF
(
x j
) ≡ Ui (xi , F)

= EU∗ ∈ (−∞,∞) .

Note that the existence of such an equilibrium requires that, for each xi ∈ [0,∞), ui (xi ,

x j ) be integrable with respect to the probability measure that induces F
(
x j
)
; that is,

conditional expected utility exists and is finite.7 This formulation of symmetric mixed-

7 See, for instance, Chung (1974, p. 40) for a formal definition of integrability.
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strategy equilibria permits us to deal with technical issues that can arise in games with
unbounded strategy spaces and payoffs.8

It follows that if F is a symmetric mixed-strategy equilibrium with density f (x) on
some subset (m, u) of the support of F (so that there are no mass points in this interval),
the expected payoff to a player that bids w ∈ (m, u) against the rival’s mixed-strategy
F is given by

EU (w) =
w∫

0

W (w, x)dF(x) +
∞∫

w

L(w, x)dF(x).

Since F is a symmetric mixed-strategy equilibrium by hypothesis, EU (w) = EU∗
on w ∈ (m, u). Hence,

dEU (w)

dw
= [V + ηw] f (w) − α + (α − β)F(w) = 0 (3)

on (m, u). The solution to this differential equation is given by

F(w) = α

α − β

{

1 −
[

V + ηm

V + ηw

] α−β
η

}

+ C

[
V + ηm

V + ηw

] α−β
η

, (4)

where m ≥ 0 and 0 ≤ C ≤ 1.

Notice that this derivation of the functional form for a symmetric equilibrium
mixed-strategy is only heuristic, as it ignores mass points, the possibility of profitable
deviations outside of (m, u), and furthermore, may not represent a well-defined dis-
tribution function for some parameter configurations. Our next proposition addresses
these issues formally and characterizes the non-degenerate symmetric mixed-strategy
equilibria to �.

Proposition 2 � has a non-degenerate symmetric mixed-strategy equilibrium if and
only if one of the following three sets of conditions holds: (i) β > 0 and α > 0;
(ii) β = 0, α > 0 and either ηθ = 0 or η < α; or (iii) β = 0, α < 0 and either
α < η < 0 or η < θ = 0. In cases (i) and (ii), the equilibrium is unique within
the class of symmetric equilibria (pure or mixed). In case (iii) there exists a con-
tinuum of non-degenerate symmetric mixed-strategy equilibria, as well as a unique
symmetric pure strategy equilibrium (given in Proposition 1). The non-degenerate
symmetric mixed-strategy equilibria are atomless and described by the distribution
function F∗ (w) on [m∗, u∗), where

8 The fact that F satisfies the above definition of an equilibrium does not imply that ui
(
xi , x j

)
is integrable

with respect to the the joint probability measure induced by F because E
[
ui
(
xi , x j

)]
may not exist. Note

that if E
[
ui
(
xi , x j

)]
exists, it equals EU∗; if it does not exist, F is nonetheless an equilibrium in the sense

that any given xi drawn from F and assigned to player i is a best response to F—provided player i knows
this realization, but not the realization assigned to his rival.
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F∗ (w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α
α−β

(

1 −
(

V +ηm∗
V +ηw

) α−β
η

)

if η �= 0;α �= β

α
θ−δ

ln
(

V +(θ−δ)w
V

)
if η �= 0;α = β

α
α−β

(
1 − exp

(
−α−β

V w
))

if η = 0;α �= β
α
V w if η = 0;α = β

(5)

m∗ =
{

0 if α > 0

m′ ∈
(
− V

η
,∞

)
if α < 0

, and (6)

u∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− V
η

if α > 0;β = 0; η < 0

V
η

[
(α/β)

η
α−β − 1

]
if α > 0;β > 0;α �= β; η �= 0

V
η

[
exp (η/α) − 1

]
if α = β > 0; η �= 0

V
α−β

ln α
β

if α > 0;β > 0;α �= β; η = 0
V/α if α > 0;β > 0;α = β; η = 0
∞ if otherwise.

Furthermore, the corresponding equilibrium payoffs are given by

EU∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θv+δγ
θ−δ

+ β θ
η(θ−δ)

[

1 −
(

α
β

) η
α−β

]

V if η �= 0;α �= β; θ �= δ;β �= 0

−γ + θV
η

− θV
η

α
η

ln α
β

if η �= 0;α �= β; θ = δ;β �= 0
θv+δγ
θ−δ

+ αδ
θ−δ

m∗ if η �= 0;α �= β; θ �= 0;β = 0
−γ − αm∗ if η �= 0;α �= β; θ = 0;β = 0
θv+δγ
θ−δ

+ β θ

(θ−δ)2

[
1 − exp

(
θ−δ
β

)]
V if η �= 0;α = β

θv+δγ
θ−δ

+ β θ

(θ−δ)2

[
ln
(

α
β

)]
V if η = 0;α �= β;β �= 0

θv+δγ
θ−δ

if η = 0;α �= β;β = 0
−γ − θ

2α
V if η = 0;α = β.

(7)

Notice that all of the terms in Eqs. (5), (6) and (7) are well-defined, since condi-
tions (i) through (iii), which guarantee the existence of a non-degenerate symmetric
mixed-strategy equilibrium, imply: (a) α �= 0; (b) if α < 0, then η < 0 and β = 0;
(c) if α = β, then α > 0 and β > 0; (d) if α = β and η �= 0, then θ �= δ; (e) if α �= β

and η = 0, then θ �= δ; and (f) if β �= 0 then α > 0 and β > 0.

The Appendix constructively derives all of the possible symmetric equilibria and
the resulting payoffs in a series of lemmata, and also indicates when an equilibrium
does not exist. The analysis in the Appendix implies that one may also obtain closed-
form expressions for the equilibrium strategies by taking limits of Eq. (4). For instance,
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the functional form for the equilibrium distribution function in Proposition 2 when
η �= 0 and α = β obtains by taking the limit of equation (4) as α − β tends to zero.

Propositions 1 and 2, which characterize the parameter ranges where symmetric
pure and non-degenerate mixed-strategy equilibria arise, together facilitate a complete
partition of the parameter space into ranges of qualitatively different symmetric Nash
equilibrium correspondences. We summarize this in

Proposition 3 The symmetric equilibria to � are characterized as follows:

(a) The unique symmetric equilibrium is in pure strategies if and only if one of the
following three conditions holds: (i)β > 0, α ≤ 0, and η < 0;(ii)β = 0, α = 0,

and η < 0; or (iii)β = 0, η ≤ α < 0, and θ �= 0.
(b) The unique symmetric equilibrium is in non-degenerate mixed strategies if and

only if one of the following two conditions holds: (i) β > 0 and α > 0; or (ii)
β = 0, α > 0 and either ηθ = 0 or η < α.

(c) There is a unique symmetric pure strategy equilibrium and a continuum of non-
degenerate symmetric mixed-strategy equilibria if and only if β = 0, α < 0 and
either α < η < 0 or η < θ = 0.

Furthermore, if none of the conditions in (a) through (c) hold, � does not have a
symmetric equilibrium (either pure or mixed).

It is important to emphasize that we have focused solely on symmetric equilibria.
Asymmetric equilibria are known to exist, for instance, in the symmetric two player war
of attrition (α = δ = 1, β = θ = 0) and sad loser auction (α = 1, β = θ = δ = 0).

We also note that, were there a common finite upper bound on the strategy space for the
players (such that the strategy space is compact), existence of a symmetric equilibrium
is guaranteed by Lemma 7 of Dasgupta and Maskin (1986).9

Before proceeding, we offer several observations about the four functional forms for
the symmetric equilibrium mixed-strategies that can arise under different parameter
configurations. First, note that the lower bound of the support, m∗, of every symmetric
equilibrium mixed-strategy to � is zero when α > 0, but an arbitrary positive num-
ber m∗ ∈ (−V/η,∞) when α < 0 (this accounts for the continuum of symmetric
mixed-strategy equilibria that arise in this case). Second, notice that the equilibrium
mixed-strategies take on different functional forms (including the uniform distribu-
tion, exponential distribution, as well as more exotic forms) depending on which of
four regions (denoted R1–R4) the parameters lie:

R1: η �= 0 and α �= β. In this case, any of the conditions (i) , (ii), or (iii) in Proposition
2 may apply. This is, in a sense, the most general form of an all pay auction in
which direct effects are asymmetric and spillovers may be either symmetric or
asymmetric. When both α and β are positive, Proposition 2 implies that the sup-
port of the distribution is bounded. When β = 0, the support of the symmetric
equilibrium mixed strategies is unbounded unless η < 0; the unbounded distri-
bution is known as a Burr distribution with a Pareto-type upper tail such that not

9 As a referee noted, extending our analysis to include a common finite upper bound on the strategy space
would permit one to analyze games (such as the Traveler’s Dilemma; see Basu 1994) that have payoffs as
in Eq. (1) but are not covered in our framework because of the strategy space restriction.
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all moments exist. Notice that part (ii) of Proposition 2 includes the case where
β = 0, α > 0, and θ = 0. The Riley and Samuelson (1981) sad loser auction
in which only the loser pays his bid (β = δ = θ = 0 and α = 1) is a special
case of this configuration. The case where β = 0, α > 0 and α > η �= 0 may
be viewed as a sad loser auction with spillovers (δ > θ ). Finally, note that when
α < β = 0 and either α < η < 0 or η < θ = 0, there is a continuum of symmet-
ric mixed-strategy equilibria which stem from the continuum of lower bounds for
the support that arise when α < 0. The Baye and Morgan (1999) folk-theorem for
one-shot, homogeneous product Bertrand games, which entails both a continuum
of symmetric equilibrium strategies and equilibrium payoffs, is an example of an
economic environment that may be viewed as a � with parameters in R1.

R2: η �= 0 and α = β. In this case, conditions (i) through (iii) in Proposition 2
imply that only condition (i) is satisfied, and therefore α = β > 0 and θ �= δ. In
this case the asymmetric spillovers impact both the equilibrium payoffs and the
symmetric mixed strategies (which take on a logarithmic form). To the best of
our knowledge, contests or auctions with parameters in R2 have not heretofore
been examined in the literature. Games with parameters in R2 may be interpreted
as a generalized first-price all-pay auction with asymmetric spillovers.

R3: η = 0 and α �= β. In this case, conditions (i) through (iii) in Proposition 2 imply
that either (i) or (ii) applies, and therefore α > 0, β ≥ 0 and θ �= δ. In this
case the asymmetric spillovers impact the symmetric equilibrium payoffs but not
the equilibrium mixed-strategies (which take the form of a truncated exponen-
tial distribution). The standard war of attrition (α = δ = 1, β = θ = 0) is a
special case of a � with parameters in R3. Notice that when β > 0, the symmet-
ric mixed-strategy has a bounded upper support, whereas it is unbounded when
β = 0 (and hence the symmetric mixed-strategies are a non-truncated exponential
distribution).

R4: η = 0 and α = β. In this case, conditions (i) through (iii) in Proposition 2 imply
that only condition (i) can be satisfied, and therefore α = β > 0 and θ = δ. The
standard all-pay auction (α = β = 1 and θ = δ = 0) is a special case of this
configuration. More generally, this configuration is a modified first-price all-pay
auction in which θ = δ �= 0 is a “nuisance parameter” that does not influence
the symmetric equilibrium mixed-strategy (which is a uniform distribution) but
does impact the players’ equilibrium expected payoffs. Notice that a game with
parameters in R4 is the limit of games with parameters in R2 as the spillovers
become symmetric.

3 Applications

We now are in a position to show how our characterization of symmetric equilibria
may be used to obtain closed-form expressions for equilibrium strategies in economic
environments that include auctions, contests, and pricing games. In so doing, we also
show that our results may be used to generalize existing models to allow for spillover
effects, and to examine the implications of alternative behavioral and evolutionary
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assumptions on equilibrium. Throughout this section, we suppress ties, which we
assume are broken with the flip of a fair coin.

3.1 Auctions and contests with spillovers

In addition to standard auctions and contests (such as first- and second-price auc-
tions, the war of attrition, and the all-pay auction), our framework may be used to
characterize symmetric equilibria in more exotic economic applications.

3.1.1 Partnership dissolution (The self-auction)

Two partners wish to dissolve a partnership each values at v > 0. They simultaneously
submit bids; the high bidder wins the asset and pays his bid to the other partner. Here,
the payoffs are given by

ui
(
xi , x j

) =
{

v − xi if xi > x j

x j if xi < x j

and thus the game may be viewed as a � with V = v, β = −θ = 1, α = δ = 0,

and η = −2. It follows from Proposition 1 that the only symmetric pure-strategy
equilibrium is x∗ = v/2. Furthermore, Proposition 3 reveals that the self-auction does
not have a non-degenerate symmetric mixed-strategy equilibrium.

3.1.2 An innovation contest with spillovers

One may also use our results to extend Dasgupta’s (1986) all-pay auction formulation
of an R&D race by allowing each firm’s expenditure on R&D to induce an infor-
mational spillover that benefits the rival. In particular, suppose the winner receives
a greater benefit per unit of expenditure from the loser’s expenditure than the loser
receives from the winner’s expenditure. The corresponding payoffs are

ui
(
xi , x j

) =
{

v − xi − δx j if xi > x j

−xi − θx j if xi < x j .

This game may be viewed as a � in which V = v > 0, α = β = 1, and δ < θ < 0.

Since α − β = 0 and η > 0, Propositions 2 and 3 imply that the unique symmetric
equilibrium is in non-degenerate mixed strategies (with parameters in R2) and is given
by

F∗ (x) = 1

θ − δ
ln

(

1 + θ − δ

v
x

)

on

[

0,
v

θ − δ

(

exp

(
θ − δ

α

)

− 1

)]

.

3.1.3 Territorial contests with injuries

Next, consider a generalization of an all-pay auction formulation of a territorial contest
in which the outcome of the battle depends on the intensity of effort put forth by the
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two players in the fight, where each player values the territory in dispute at v > 0.
Suppose the cost to a player per unit of intensity of effort is unity (α = β = 1), and
each unit of effort a player expends in the battle imposes a cost on its rival (through
injury), so that δ, θ > 0. If the cost to the loser per unit of intensity of effort of the
winner is greater than the cost to the winner per unit of intensity of effort of the loser
(θ > δ > 0), then α − β = 0 and η = θ − δ > 0. In this case, Proposition 2 reveals
that the symmetric equilibrium of this game is identical to that in the above innovation
contest with spillovers.

If, on the other hand, the efforts of the winner and loser entail symmetric injury
(θ = δ > 0), Proposition 2 implies that the symmetric equilibrium mixed-strategy
(with parameters in R4) is given by

F∗ (x) = x/v on [0, v] ,

which corresponds to the all-pay auction. However, expected payoffs are not zero (as
they are in the standard all-pay auction). Notice that, as a result of spillovers, both of
these variants differ from the classic war of attrition (β = θ = 0 and α = δ = 1),
which lies in the region of R3 that entails an equilibrium distribution that is an expo-
nential distribution.

3.1.4 Litigation contests with fee-shifting

Our framework may also be used to characterize symmetric equilibria for the complete
information analogs of the Baye et al. (2005) model of litigation contests under incom-
plete information. In this application, players are litigants who compete by choosing
(quality normalized) expenditures on legal services, with the player spending the
higher amount winning the case valued at v > 0. The fee-shifting rules examined by
Baye et al. may be examined under complete information using the tools developed
in Sect. 2.

For instance, under the Continental rule, the loser pays his own legal expenditure
and, additionally, reimburses the winner a fraction (1 − β) ∈ (0, 1) of the winner’s
legal expenditures. Thus, the Continental rule is a � with V = v, 0 < β < α = 1,

and δ = 0 < θ = (1 − β). Since α > 0, β > 0, α − β > 0, and η = 2(1 − β) > 0,
Proposition 2 implies that the corresponding equilibrium (with parameters in R1) is

F∗(x) = 1

1 − β

(

1 −
(

v

v + 2(1 − β)x

) 1
2
)

on

[

0,
v

2 (1 − β)

(
1

β2 − 1

)]

and the equilibrium payoff is EU∗ = −v (1 − β) / (2β) < 0.
In contrast, under the Quayle rule, where the loser reimburses the winner up to

the amount actually spent by the loser, V = v α = 2, β = 1, δ = −1 and θ = 0.
Since α > 0, β > 0, α − β > 0 and η = 2 > 0, Proposition 2 implies that the
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corresponding equilibrium (with parameters in R1) is

F∗(x) = 2

[

1 −
(

v

v + 2x

) 1
2
]

on

[

0,
3

2
v

]

and the equilibrium payoff is EU∗ = 0. Furthermore, Proposition 1 reveals that sym-
metric pure-strategy equilibria do not arise in these litigation environments.

3.2 Price competition

We mentioned earlier that our framework readily includes standard models of price
competition under complete information that take the form of first- and second-price
auctions (which have a unique symmetric equilibrium in pure strategies) as well as
variants that have symmetric mixed-strategy equilibria. We next show that our frame-
work also subsumes several models of price competition in the industrial organization
literature.

3.2.1 Bertrand competition

Our framework may be used to identify all symmetric equilibria in winner-take-all
homogeneous product Bertrand games, including the unique symmetric pure-strat-
egy equilibrium (marginal cost pricing) and the continuum of positive-profit mixed
strategy equilibria identified by Baye and Morgan (1999). To see this, suppose two
price-setting firms produce a homogeneous product at a constant marginal cost, c > 0,
and the firm offering the lowest price captures the entire market demand, which is given
by D (p) = 1 for p ∈ [0,∞). Thus, the profits of firm i are given by

πi
(

pi , p j
) =

{
0 if pi > p j

pi − c if pi < p j .

Letting xi ≡ pi , this is a � with V = c, α = −1 , β = θ = δ = 0, and η = −1.

By Proposition 1 , x∗ ≡ p∗ = −V/η = c is the unique symmetric pure strategy
Nash equilibrium (and each firm earns zero profits). By Proposition 2, there is also a
continuum of symmetric positive profit equilibria in non-degenerate mixed strategies
(with parameters in R1): For every m ∈ (c,∞),

F∗ (p) = 1 −
(

m − c

p − c

)

on [m,∞)

is a symmetric non-degenerate mixed-strategy equilibrium with corresponding equi-
librium payoffs of EU∗ = m ∈ (c,∞).
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3.2.2 The Varian/Rosenthal model

The price setting models of Varian (1980) and Rosenthal (1980) may be analyzed in
our framework as follows. Here, two price-setting firms each service a fixed number,
L > 0, of loyal (or uninformed) consumers who have unit demand up to a choke
price, r > 0. Additionally, there are S > 0 price sensitive “shoppers” (or informed
consumers) who always purchase from the firm charging the lowest price—provided
it does not exceed r . Each firm produces at zero cost to earn a payoff of

πi
(

pi , p j
) =

{
(S + L) pi if pi < p j

Lpi if pi > p j

where, for simplicity we have suppressed the fact that a firm’s profits are zero if it
prices above r.

To see that this model is a special case of our framework, define xi ≡ r − pi ≥ 0
so that the above payoffs are equivalent to those in a game in which

ui
(
xi , x j

) =
{

(S + L) r − (S + L) xi if xi > x j

r L − Lxi if xi < x j .

Thus, the Varian/Rosenthal models may be interpreted as a � with v = (S + L) r, γ =
−r L , V = r S > 0, β = (S + L) > 0, δ = θ = 0, α = L > 0, and η = −S < 0.10

Hence, by Proposition 2, the equilibrium (expressed in terms of the discount from the
monopoly price, or x ≡ r − p) is associated with parameters in R1 and is given by

F∗ (x) = L

S

(
r

r − x
− 1

)

on

[

0,
r S

S + L

]

.

To write this expression in terms of the equilibrium distribution of prices, G∗ (p), use
the fact that x ≡ r − p and note that G∗ (p) = Pr (P ≤ p) = 1 − Pr (x < r − p) =
1 − F∗ (r − p), so that

G∗ (p) = 1 − L

S

(
r − p

p

)

on

[

r
L

S + L
, r

]

.

3.2.3 Price matching guarantees

One may also use our results to extend the Varian/Rosenthal models to allow for price
matching policies, as in Png and Hirshleifer (1987) and Baye and Kovenock (1994). To
see this, extend the Varian/Rosenthal models by assuming that the two firms not only
list prices, but also promise to match a better price by the rival. Here, one interprets S
as informed consumers who are aware of the firms’ prices, L as uninformed consumers

10 Application of our Propositions also requires the strategy space in the transformed game to be [0,∞).
Notice that xi ∈ [0, ∞) implies pi ∈ (−∞, r ]. It is immediate that negative prices are strictly dominated.
Hence, expanding the strategy space in the original game to include negative prices does not change the
equilibrium set.
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who are unaware of the firms’ prices, and one assumes that only a proportion µ < 1/2
of the informed customers are willing to bear the cost of visiting a firm charging the
highest price to take it up on its offer to match a better price. Consequently, the firms’
payoffs are

πi
(

pi , p j
) =

{
(L + (1 − µ) S) pi if pi < p j

Lpi + µSp j if pi > p j
.

As before, let xi = r − pi , so that the payoffs may be rewritten as

ui
(
xi , x j

) =
{

r ((1 − µ) S + L) − ((1 − µ) S + L) xi if xi > x j

r (L + µS) − Lxi − µSx j if xi < x j
.

Note that V = (1 − 2µ) Sr > 0, β = (1 − µ) S+L > 0, α = L > 0, θ = Sµ > 0,

and δ = 0. In this case, α − β = − (1 − µ) S < 0 and η = − (1 − 2µ) S < 0, and
the parameters lie in R1. Proposition 2 implies

F∗ (x) = L

(1 − µ) S

⎛

⎝

(
r

r − x

) (1−µ)
(1−2µ) − 1

⎞

⎠ on

⎡

⎣0, r

⎛

⎝1 −
(

L

((1 − µ) S + L)

) (1−2µ)
(1−µ)

⎞

⎠

⎤

⎦ .

As before, one may easily re-write this distribution of discounts from the monopoly
price purely in terms of the prices.

3.3 Behavioral and evolutionary extensions

The results in Sect. 2 may also be used to extend existing models to account for
behavioral or evolutionary considerations that impact the payoffs in standard games.
We discuss these applications next.

3.3.1 Reference pricing

One may use our results to analyze an extension of the Varian/Rosenthal models to
account for reference pricing. To see this, suppose that in addition to shoppers and
loyal consumers, there also exists a measure of “relative bargain seekers”. As above,
all consumer segments have a common choke price, r > 0. Relative bargain seekers,
like shoppers, always purchase from the firm offering the lowest price. But unlike
shoppers, the demand of relative bargain seekers depends on how low the best price
is in comparison to the next best price: The lower the “best” price relative to that of
the higher price, the greater their demand for the low-priced good. To capture this
behavior, assume that when firm i charges the lowest price, its demand from relative
bargain seekers is Di ≡ λp j/pi while firm j’s demand from these consumers is zero.
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When λ > 0, this captures the behavioral phenomenon where the demand by one
segment of consumers depends, in part, on their frame of reference.

With this extension, the payoffs are

πi
(

pi , p j
) =

{(
S + L + λ

p j
pi

)
pi if pi < p j

Lpi if pi > p j
.

As before, let xi ≡ r − pi , so that these payoffs are equivalent to

ui
(
xi , x j

) =
{

r (S + L + λ) − xi (S + L) − λx j if xi > x j

r L − Lxi if xi < x j
.

If λ ≤ L , this extension may be viewed as a � with V = r (S + λ) > 0, α = L >

0, β = S + L > 0, θ = 0, δ = λ, α − β = −S < 0 and η = − (S + λ) < 0.11

These parameters lie in R1, and Proposition 2 implies

F∗ (x) = L

S

((
r

r − x

) S
S+λ − 1

)

on

⎡

⎣0, r

⎛

⎝1 −
(

L

S + L

) (S+λ)
S

⎞

⎠

⎤

⎦ ,

or in terms of price,

G∗ (p) = 1 − L

S

((
r

p

) S
S+λ − 1

)

on

⎡

⎣r

(
L

S + L

) (S+λ)
S

, r

⎤

⎦ .

This distribution converges to that in the Varian/Rosenthal model as λ tends to zero.
Interestingly, when there are only loyal customers and relative bargain seekers

(S = 0), then η = −λ < 0 and α − β = 0. In this case the parameters lie in R2, and
Proposition 2 implies

F∗ (x) = L

λ
ln

r

r − x
on

[

0,

(

1 − exp

(

− λ

L

))

r

]

.

3.3.2 Effort inequality aversion in a job tournament

Next, consider an environment where two workers compete in a job tournament but
exhibit a specialized form of inequality aversion such that they receive disutility from
inequality of effort. We model inequality aversion with a utility function similar to
that in Fehr and Schmidt (1999), except that our focus is on effort inequality rather
than income inequality.

11 Notice that xi ∈ [0, ∞) implies pi ∈ (−∞, r ]. If λ ≤ L , it is immediate that negative prices are strictly
dominated. Hence, expanding the strategy space in the original game to include negative prices does not
change the equilibrium set.
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In particular, suppose that the worker exerting the greater effort (xi ) receives a
bonus valued at µ > 0 and that payoffs are

ui
(
xi , x j

) =
{

µ − xi − b
(
xi − x j

)
if xi > x j

−xi − a
(
x j − xi

)
if xi < x j

where 0 < a < 1 and 0 < b. This captures behavior where the winner experiences dis-
utility for having “slaughtered” the loser, and the loser derived disutility from having
been beaten badly. In this case, utilities may be written as

ui (x1, x2) =
{

µ − (1 + b) xi + bx j if xi > x j

− (1 − a) xi − ax j if xi < x j .

This behavioral environment may thus be viewed as a � in which V = v = µ >

0, γ = 0, α = 1 − a > 0, θ = a, β = 1 + b > 0 and δ = −b < 0. Note that
α − β = − (a + b) < 0 and η = 0.

Since α = 1 − a > 0, it is immediate from Proposition 1 that there does not exist
a symmetric pure strategy equilibrium. However, Propositions 2 and 3 imply that a
unique non-degenerate symmetric mixed strategy equilibrium (with parameters in R3)
exists. The corresponding distribution of effort is

F∗ (x) = 1 − a

a + b

(

exp

(
a + b

µ
x

)

− 1

)

on

[

0,
µ

a + b
ln

(
1 + b

1 − a

)]

and each player earns an expected equilibrium payoff of

EU∗ = a

a + b

[

1 + 1 + b

a + b
ln

(
1 − a

1 + b

)]

µ.

It is interesting to note that if a ∈ (0, 1) but b ∈ (−1, 0) (so that the winner enjoys
“slaughtering” the loser), the equilibrium strategies and payoffs have exactly the same
form when b �= −a. But when b = −a (so that α−β = 0 and η = 0), the parameters
lie in R4 and the equilibrium distribution of effort is identical to that in the all-pay
auction:

F∗ (x) = 1 − a

µ
x on

[

0,
µ

1 − a

]

.

However, unlike the all-pay auction,

EU∗ = − a

2 (1 − a)
µ.
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3.3.3 Loss aversion in a job tournament

Two workers compete in a job tournament and the worker exerting the greater effort
(xi ) receives a bonus valued at µ > 0. Thus, their income is

yi =
{

µ − xi if xi > x j

−xi if xi < x j .

Suppose the workers’ utility (over income) exhibits “loss aversion” in that ui = yi if
player i wins, and ui = λyi if player i loses, where λ > 1. In this case, utility (as a
function of effort) is

ui
(
xi , x j

) =
{

µ − xi if xi > x j

−λxi if xi < x j

and this scenario may be analyzed as a � with v = µ, γ = 0, V = µ > 0, α =
λ > 0, β = 1 > 0, θ = δ = 0, and η = α − β = λ − 1 > 0. Hence, Propositions
2 and 3 imply that the unique non-degenerate symmetric mixed-strategy equilibrium
(with parameters in R1) is given by

F∗ (x) = λx

µ + (λ − 1)x
on [0, µ] .

3.3.4 Regret in auctions

A growing literature has examined regret in auctions; see Engelbrecht-Wiggans (1989),
Engelbrecht-Wiggans and Katok (2007), and Filiz-Ozbay and Ozbay (2007) and the
references cited therein. To illustrate how our framework may be used to examine
the implications of this behavioral assumption in complete information environments,
consider a first-price auction where each player i ∈ {1, 2} values the item at v, but
there is winner regret such that the payoffs are

ui (x1, x2) =
{

v − xi − µ
(
xi − x j

)
if xi > x j

0 if xi < x j
.

Here, xi is player i’s bid and v > 0 is the value of the item; winner regret (µ > 0)
refers to the fact that the high bidder derives disutility from leaving money on the table
(the difference between the winning and losing bid). The payoffs may be rewritten as

ui (x1, x2) =
{

v − (µ + 1) xi + µx j if xi > x j

0 if xi < x j
,

which is a rank-order contest, �, with a positive first-order spillover effect. In partic-
ular, V = v, α = θ = 0, β = (1 + µ) > 0, δ = −µ, and η = −1, so Proposition 1
implies that a symmetric pure strategy Nash equilibrium exists and is given by x∗ = v.
Furthermore, by Proposition 3, there are no symmetric mixed-strategy equilibria.
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In a first-price auction with loser regret, payoffs are

ui (x1, x2) =
{

v − xi if xi > x j

−ρ
(
v − x j

)
if xi < x j

,

where ρ > 0. Preferences with loser regret thus transform the standard auction into a
rank-order contest with a positive second-order spillover effect, and one can use the
results in Sect. 2 to conclude that the unique symmetric equilibrium (pure or mixed)
is x∗ = v.

The results of Sect. 2 may also be used to extend these behavioral models to include
combined winner and loser regret in a first-price auction. In this case, both first and
second order spillover effects arise, as the payoffs are

ui (x1, x2) =
{

v − (µ + 1) xi + µx j if xi > x j

−ρ
(
v − x j

)
if xi < x j

.

One can readily establish that the unique symmetric equilibrium is in pure strategies
and is given by x∗ = v.

Furthermore, our results may be utilized to examine the implications of combined
winner–loser regret in other auction environments. For instance, in an all-pay auction
with winner–loser regret, payoffs are

ui (x1, x2) =
{

v − (µ + 1) xi + µx j if xi > x j

−vρ − (ρ + 1) xi + ρx j if xi < x j
.

This may be viewed as a � in which V = (1 + ρ) v, α = (1 + ρ) > 0, β =
(1 + µ) > 0, θ = −ρ, δ = −µ, and η = 0. When ρ �= µ, Propositions 2 and 3
imply that the unique symmetric equilibrium (with parameters in R3) is

F∗(x) =
(

1 + ρ

ρ − µ

)(

1 − exp

(

−ρ − µ

1 + ρ

x

v

))

on

[

0,
1 − δ

δ − µ
ln

(
1 + ρ

1 + µ

)]

and each player earns an expected payoff of

EU∗ = vρ + ρ (1 + ρ) v
(1 + µ) ln 1+µ

1+ρ
+ ρ − µ

(ρ − µ)2 .

However, if ρ = µ, so that α = β, one obtains the standard all-pay auction form (with
parameters in R4): F∗ (x) = x/v. In this case, total expected effort is the same with
symmetric winner–loser regret as in the standard all-pay auction, but EU∗ = −ρv/2.

3.3.5 ESS in the all-pay auction

Finally, one may utilize our results to construct equilibrium strategies in certain evo-
lutionary environments. To see this, consider a two-player all-pay auction and note
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that the (finite agent) ESS equilibrium of Schaffer (1988) requires that each player
maximizes the difference in payoffs. Thus

ui (x1, x2) =
{

v − xi − (−x j ) if xi > x j

−xi − (v − x j ) if xi < x j
.

Hence, this may be viewed as a � where payoffs are

ui (x1, x2) =
{

v − xi + x j if xi > x j

−v − xi + x j if xi < x j

and V = 2v > 0, β = α = −θ = −δ = 1, and consequently, α−β = 0 and η = 0.

Notice that these parameters lie in R4. One may therefore apply the results in Sect. 2
to conclude that the unique symmetric Nash equilibrium to a game with these payoffs
(which corresponds to the ESS equilibrium of a game with the original formulation
of payoffs) is

F∗(x) = x

2v
on [0, 2v] .

Among other things, this implies that there is overdissipation of rents in the ESS equi-
librium. This is similar to the findings of Hehenkamp et al. (2004) for the case of a
Tullock contest.

4 Conclusion

This paper has characterized symmetric equilibria (pure and mixed) in a parameter-
ized class of two player complete information contests with rank-order spillovers.
We derived explicit closed form solutions for the complete set of symmetric equi-
librium strategies for this class of games, and showed that these strategies take on
only a small number of functional forms that depend on the parameters in a system-
atic and easily verified way. We concluded by using this framework to formulate and
solve several new contests. Not only are a plethora of existing models of auctions,
contests, and price competition covered as special cases, but our results permit one
to extend these models to allow for a broader array of preferences, spillover effects,
and equilibrium concepts. The logarithmic equilibrium distribution that arises in the
all-pay auction with asymmetric spillovers, for example, appears to be novel to the
literature. We believe that Propositions 1 through 3 will provide positive spillovers for
future applied work on auctions, contests, and pricing strategies, as well as behavioral
economics and evolutionary game theory.

Appendix

This Appendix provides the proofs of Propositions 1 through 3. Recall the definitions
of W, L , and T are given in Eq. (1).
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A1. Proof of Proposition 1

The following lemma is useful in proving Proposition 1.

Lemma 1 x ∈ [0,∞) is a symmetric pure strategy Nash equilibrium of � if and only
if the following two conditions hold:

T (x, x) ≥ W (y, x) for all y ≥ x
(8)

T (x, x) ≥ L (y, x) for all 0 ≤ y ≤ x .

Proof Recall that x1 = x2 = x is a symmetric pure strategy Nash equilibrium if and
only if ui (x, x) ≥ ui (y, x) for all y ∈ [0,∞). Note that ui (y, x) = L (y, x) for
y < x and ui (y, x) = W (y, x) for y > x . Additionally, since

ui (x, x) = T (x, x) = 1

2
W (x, x) + 1

2
L (x, x)

the conditions in (8) imply

ui (x, x) = T (x, x) = W (x, x) = L (x, x) .

(⇐
) By hypothesis, x ∈ [0,∞) satisfies

T (x, x) ≥ W (y, x) for all y ≥ x

T (x, x) ≥ L (y, x) for all y ≤ x .

Hence, if player i plays the pure strategy xi = x when player j plays x j = x, she
earns a payoff of U∗ = T (x, x) = W (x, x) = L(x, x). The conditions in (8) imply
that player i cannot gain by deviating from x , given that x j = x .

( 
⇒ ) If (x, x) is a symmetric pure strategy Nash equilibrium, player i earns a
payoff of T (x, x) in this equilibrium. By way of contradiction, suppose there exists a
y ∈ [0,∞) such that y > x with T (x, x) < W (y, x). Then player i could increase
his payoff to W (y, x) > T (x, x) by deviating from xi = x to xi = y, a contradiction.
Similarly, if there existed a y ∈ [0,∞) such that y < x with T (x, x) < L(y, x),
player i could increase his payoff to L(y, x) > T (x, x) by deviating from xi = x to
xi = y, a contradiction. �

We conclude that the conditions in (8) are necessary and sufficient for the existence
of a symmetric pure strategy Nash equilibrium. Note that the proof of Lemma 1 does
not rely on the linear structure for W and L in Eq. (1), and hence applies to more
general formulations for payoffs.

We are now in a position to prove Proposition 1. We do so by exploiting the linear
structure in Eq. (1) and applying Lemma 1.

Proof of Proposition 1 (
⇒) By way of contradiction, suppose x ∈ [0,∞) is a sym-
metric pure strategy Nash equilibrium so that player i earns his equilibrium payoff of
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U∗ = T (x, x) = W (x, x) = L(x, x) at (x, x). If condition (i) in Proposition 1 did
not hold, then player i could deviate to earn W (x + ε, x) > U∗ = W (x, x), since
β < 0 implies W (xi , x) is increasing in xi , a contradiction. If condition (i i i) did not
hold, then V +ηx = W (x, x)− L (x, x) > 0, which contradicts the conditions in (8).
Finally, since V > 0, condition (i i i) implies x > 0. Thus, if condition (i i) did not
hold, then x > 0 and α > 0, in which case player i could deviate to earn a payoff of
L(x − ε, x) > L(x, x) = W (x, x) = U∗, since α > 0 implies L (xi , x) is decreasing
in xi , a contradiction.
(⇐
) Suppose conditions (i) through (i i i) hold. It is immediate that condition (i i i)
implies that x∗ = −V/η is well-defined and V +ηx∗ = W (x∗, x∗)− L (x∗, x∗) = 0.
Hence, W (x∗, x∗) = L (x∗, x∗) = T (x∗, x∗). Next, note that there is no incentive
to deviate from x∗, since (i) implies T (x∗, x∗) ≥ W (y, x∗) for all y ≥ x∗, and (i i)
implies T (x∗, x∗) ≥ L (y, x∗) for all y ≤ x∗. By Lemma 1, this implies that x∗ is
a symmetric pure strategy Nash equilibrium. Uniqueness follows from Lemma 1 and
the fact that x∗ = −V/η is the unique solution to W (x, x) − L (x, x) = 0. �

A2. Proof of Proposition 2

Our second proposition is proved through a sequence of lemmas. We first demonstrate
that if an atom exists at some point (x, x) in a non-degenerate symmetric mixed-
strategy equilibrium of �, then (x, x) constitutes a symmetric pure strategy equi-
librium as well. We then apply Proposition 1 to show that this can occur only over a
restricted range of the parameter space and that any such atom is unique. Consequently,
if the symmetric equilibrium is in non-degenerate mixed strategies, there must exist
an absolutely continuous part of the mixed-strategy, and furthermore, it must satisfy
the differential equation in Eq. (3). Given the linearity of differential equation (3),
it readily follows that its solution over the interval (m, u) is unique (as it satisfies a
Lipschitz condition). Lemma 4 provides an endpoint restriction on the lower bound
of the distribution. We then examine (by exhaustion) a partition of the parameter
space to show (i) when the differential equation can be solved in a manner consistent
with the corresponding restrictions on mass points and endpoints, (ii) which solutions
indeed define equilibria in the sense that there is no incentive for a player to unilater-
ally deviate from his strategy, and (iii) whether the differential equation, mass point
and endpoint restrictions are inconsistent, thereby implying nonexistence of a non-
degenerate symmetric mixed-strategy. We also derive the corresponding equilibrium
payoffs.

Lemma 2 If there is an atom at some point x ∈ [0,∞) in a non-degenerate sym-
metric mixed-strategy equilibrium of �, then (x, x) is also a symmetric pure strategy
equilibrium of �. Furthermore, there is no atom at x = 0.

Proof If there is an atom of size qx ∈ (0, 1) at some point x , it must be the case that
qx [W (x + ε, x) − T (x, x)] ≤ 0 (there is no incentive to raise the bid above x) and,
if in addition x > 0, qx [L (x − ε, x) − T (x, x)] ≤ 0 for small ε > 0 (there is no
incentive to lower the bid below x). Furthermore, there can be no atom at x = 0, since
q0 [W (0 + ε, 0) − T (0, 0)] ≤ 0 implies W (0, 0) − T (0, 0) ≤ 0 by the continuity
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of W, contradicting W (0, 0) − T (0, 0) = V/2 > 0. For x > 0, since qx > 0 by
hypothesis, [W (x + ε, x) − T (x, x)] ≤ 0 and [L (x − ε, x) − T (x, x)] ≤ 0. This
implies T (x, x) = W (x, x) = L (x, x), and furthermore, given the linearity of W
and L ,

T (x, x) ≥ W (y, x) for all y ≥ x

T (x, x) ≥ L (y, x) for all y ≤ x .

These are exactly the conditions (8) for a pure strategy solution from Theorem 1 and
hence (x, x) must also be a pure strategy equilibrium point. �
Lemma 3 Suppose a symmetric equilibrium strategy of � has an atom of size qx ∈
(0, 1] at x. Then β ≥ 0, α ≤ 0 and η < 0. Furthermore the atom is unique and located
at x = −V/η > 0.

Proof Follows immediately from Lemma 2 and Proposition 1. �
Importantly, Lemma 3 implies that if a non-degenerate symmetric mixed-strategy

equilibrium exists, any atom (if one exists) associated with the strategy is necessarily
unique (and given by x = −V/η). Consequently, the remaining absolutely continuous
part is characterized by differential equation (3). We will use this fact to establish when
non-degenerate symmetric mixed-strategy equilibria exist, their functional forms and
the corresponding equilibrium payoffs. We also identify parameter configurations for
which the set of non-degenerate symmetric mixed-strategy equilibria is empty. We
also use this lemma to establish:

Lemma 4 Suppose α > 0. Then in any non-degenerate symmetric mixed-strategy
equilibrium of �, the lower bound of the support is m = 0.

Proof The proof proceeds by way of contradiction. Suppose the lower bound of the
support of the equilibrium mixed-strategy is m > 0 and let qm be the size of an atom
(possibly zero) at m. Then a player who bids m earns his equilibrium payoff of

U∗ = qm T (m, m) + (1 − qm) (−γ − αm − θ EF [x |x > m])

= qm

2
V − γ + qm

2
αm − αm − qm

2
(θ + β + δ) m − (1 − qm) θ EF [x |x > m] .

Deviating by bidding zero yields a payoff of

U∗∗ = −γ − θqmm − θ (1 − qm) EF [x |x > m] .

The difference in payoffs is thus

U∗∗ − U∗ = qm

2
{−V + (−θ − α + β + δ) m} + αm = αm > 0

since qm > 0 implies −V = ηm by Lemma 3. Therefore it pays to deviate by bidding
zero, a contradiction. �
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We are now in a position to consider, case by case, the parameter configurations
identified in Proposition 2. We do this through a sequence of lemmas that are col-
lected according to the four parameter regions (R1 through R4) defining the different
forms for the equilibrium mixed strategies in Eq. (5), and which establish existence,
uniqueness, or nonexistence of equilibrium for parameter configurations within each
case. We begin with
Case 1: α − β �= 0; η �= 0

Lemma 5 Suppose β = 0, α > 0 and η �= 0. Then there exists a symmetric equilib-
rium if and only if either θ = 0 or η < α. Furthermore, this equilibrium is unique and
in non-degenerate mixed strategies as characterized in Proposition 2.

Proof Since α > 0, Proposition 1 implies any symmetric equilibrium must be in
non-degenerate mixed-strategies, and by Lemma 3, there are no atoms. By Lemma 4,
m = 0. Hence, if a symmetric equilibrium exists, it necessarily has the form in Eq. (4)
with C = 0:

F(x) = 1 −
(

V

V + ηx

)α/η

. (9)

This is a well-defined distribution function; when η > 0, the upper bound of its support
is u = ∞; when η < 0, it is u = −V/η < ∞. Since β = 0, a player cannot gain by
choosing an action w > u. Thus, for an equilibrium to exist, it is sufficient to show
that EU∗ < ∞ and a player’s expected payoff against a rival who uses F is constant
for any action in the support of F.

The expected payoff when a player chooses xi = w against such a strategy is

EU (w) =
w∫

0

(v − δx) dF (x) +
u∫

w

(−γ − αw − θx) dF (x)

or, since this also holds at w = 0,

EU (0) =
u∫

0

(−γ − θx) dF (x)

= −γ −
u∫

0

θxdF (x) .

Evidently, when θ = 0, EU (0) = −γ , so EU (w) = −γ for all w ∈ Support (F),
and F is the unique symmetric equilibrium. Thus, suppose θ �= 0.

Consider first the case where η > 0. In this case u = ∞ and the distribution in
(9) has a Pareto-type “fat tail” and

∫ u
0 xdF (x) is unbounded when α/η − 1 ≤ 0 (or

equivalently, δ ≤ θ �= 0). Thus, when β = 0, θ �= 0 and 0 < α ≤ η, we conclude
that EU (0) is unbounded and hence there does not exist a symmetric equilibrium.
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But if α/η − 1 > 0 (or equivalently, δ > θ �= 0), the relevant integral is finite and the
expected payoff is

EU∗ = −γ − θ

∞∫

0

xα

(
V

V + ηx

)α/η 1

V + ηx
dx = θv + δγ

θ − δ
. (10)

Since for all w ∈ [0,∞), EU (w) = EU∗, in this case it follows that F is the unique
symmetric equilibrium.

Finally, if η < 0, then u = −V/η and simple integration reveals

EU (0) = (θv + δγ ) / (θ − δ) = EU (w) ,

for all w ∈ [0, u], and hence F is the unique symmetric equilibrium. �

Lemma 6 Suppose β = 0, α < 0 and η > 0. Then there does not exist a symmetric
mixed-strategy equilibrium.

Proof Since α < 0 and η > 0, Lemma 3 implies that F contains no atoms. Hence,
C = 0 in Eq. (4), and thus

F (w) = 1 −
(

V + ηw

V + ηm

)−α/η

.

But note that, since −α/η > 0 and η > 0,

(
V + ηw

V + ηm

)−α/η

> 1

for all w > m, which implies F(w) ≤ 0, a contradiction. �

Lemma 7 Suppose β = 0, α < 0 and either α < η < 0 or η < θ = 0. Then
there exists a continuum of non-degenerate symmetric mixed-strategy equilibria, all
of which are identified in Proposition 2. Furthermore, if β = 0, α < 0, η ≤ α and
θ �= 0, there does not exist a non-degenerate symmetric mixed-strategy equilibrium.

Proof By Proposition 1, a unique symmetric pure-strategy equilibrium exists at x∗ =
−V/η. By Lemma 3, in any non-degenerate symmetric mixed-strategy equilibrium,
there is at most a single mass point, and this atom is located at −V/η. Let q ∈ [0, 1)

denote the size of any such mass point. By way of contradiction, suppose that the
lower bound of the absolutely continuous part of F is m > −V/η (that is, F contains
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a gap). Then the expected payoff to a player that bids −V/η against F is

EU

(
V

−η

)

= qT

(
V

−η
,

V

−η

)

+ (1 − q)

⎛

⎝−γ − α

(
V

−η

)

− 1

1 − q

∞∫

m

θxdF (x)

⎞

⎠

= q

2

[

v − γ + (δ + α + θ)
V

η

]

+ (1 − q)

⎛

⎝−γ + α
V

η
− 1

1 − q

∞∫

m

θxdF (x)

⎞

⎠ .

A player that bids m > −V/η against F earns an expected payoff of

EU (m) = q

(

v + δ
V

η

)

+ (1 − q)

⎛

⎝−γ − αm − 1

1 − q

∞∫

m

θxdF (x)

⎞

⎠ .

Recall that V = v + γ and that, under the conditions stated, η = α + θ − δ. Provided∫∞
m xdF (x) exists or θ = 0, straightforward algebra reveals

EU (m) − EU

(
V

−η

)

= −α (1 − q)

(

m − V

−η

)

> 0,

which is a contradiction: there can be no atom below the lower bound of the absolutely
continuous part of a symmetric mixed-strategy equilibrium.

We next show that under the conditions stated, m > −V/η (which implies there
are no mass points) and that there exists a continuum of symmetric equilibria of the
form in Proposition 2. To see this, note that for α < 0 and η < 0, Eq. (3) requires that
m > −V/η in order for F(w) to be a well-defined (and non-degenerate) distribution
function on an open interval above m. It follows that, when β = 0, α < 0 and η < 0,
the only candidate for a non-degenerate symmetric mixed-strategy equilibrium is

F(w) = 1 −
(

V + ηm

V + ηw

)α/η

(11)

on [m,∞),where m ∈ (−V/η,∞) is arbitrary. The expected payoff when a player
chooses xi = w against F is

EU (w) =
w∫

m

(v − δx) dF (x) +
∞∫

w

(−γ − αw − θx) dF (x) .

If α/η ≤ 1,
∫∞

m xdF (x) is unbounded due to the fat (Pareto-type) tail of the distri-
bution. In this case, when θ �= 0, EU (w) is unbounded and hence a non-degenerate
symmetric mixed-strategy equilibrium does not exist. But if θ = 0, the expected
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payoff to a player that bids w = m is EU (m) = −γ − αm, and hence for all
w ∈ [m,∞), EU (w) = EU (m). Since α < 0, EU (w) < EU (m) < ∞ for
w < m, and hence it does not pay to deviate by choosing an action below m.

When α/η > 1 (which implies θ > δ ) it follows that for all w ∈ [m,∞),

EU (w) = EU (m) = −γ − αm − θ

∞∫

m

xα

(
V + ηm

V + ηx

)α/η 1

V + ηx
dx

= θv + δγ

θ − δ
+ αδm

θ − δ
.

Again, since α < 0, EU (w) < EU (m) < ∞ for w < m, it does not pay to deviate
by choosing an action below m. �
Lemma 8 Suppose β < 0, α �= β, α �= 0, and η �= 0. Then there does not exist a
symmetric equilibrium.

Proof Since β < 0, Proposition 1 implies there does not exist a symmetric pure
strategy equilibrium, and by Lemma 3, there are no mass points in a non-degenerate
symmetric mixed-strategy equilibrium. Since F(m) = 0, C = 0 in Eq. (4); hence, if
a symmetric mixed-strategy equilibrium exists, it must be of the form

F(w) = α

α − β

(

1 −
(

V + ηm

V + ηw

) α−β
η

)

. (12)

We claim the distribution is unbounded. To see this, suppose to the contrary that
u < ∞. Since F has no atoms, a player that bids u is certain to win and earn an equilib-
rium payoff of EU (u) = v−βu−δEF [x]. But, since β < 0, a player who deviates by
bidding u′ > u earns an expected payoff of EU

(
u′) = v−βu′ −δEF [x] > EU (u) ,

a contradiction.
If (α − β)/η > 0, Eq. (12) implies

lim
w→∞ F(w) = α

α − β
�= 1.

If (α − β)/η < 0, then

lim
w→∞ F(w) = ±∞.

Hence, regardless of the sign of (α − β)/η, F is not a well-defined distribution func-
tion, a contradiction. Thus there does not exist a symmetric mixed-strategy equilibrium
in this case. �
Lemma 9 Suppose β > 0, α < 0, η �= 0. Then there does not exist a non-degenerate
symmetric mixed-strategy equilibrium.
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Proof If η > 0, then there are no mass points by Lemma 3. A symmetric equilibrium,
if one exists, must therefore satisfy Eq. (4) with C = 0:

F (w) = α

α − β

[

1 −
(

V + ηm

V + ηw

) α−β
η

]

for w ∈ (m, u) .

Since (α − β) /η < 0 and ηw > ηm ≥ 0 for w > m, the term in square brackets is
negative. This and the fact that α/ (α − β) > 0 implies F (w) < 0, which contradicts
the assumption that F is a well-defined distribution function.

If η < 0, Lemma 3 implies that an equilibrium mixed-strategy may have a mass
point at w = −V/η (hence C ≥ 0). Hence, Eq. (4) implies

F (w) = α

α − β
+
(

C − α

α − β

)[
V + ηm

V + ηw

] α−β
η

for w ∈ (m, u) . (13)

If the distribution is unbounded, limw→∞ F (w) = α/ (α − β) < 1, a contradiction.
Thus, suppose u < ∞.

Suppose first that the equilibrium distribution contains no mass point. Then the
differential equation in Eq. (3) holds at u, and since F (u) = 1, we have

[V + ηu] f (u) − α + (α − β) = 0.

Now, f (u) ≥ 0, α < 0, β > 0 and η < 0 implies u < −V/η. Hence, the derivative
of Eq. (13) is

F ′ (w) = α (V + ηm)
α−β

η (V + ηw)
− α−β+η

η < 0

since V + ηw > 0 for all w ∈ [m, u], a contradiction.
Finally, suppose there is a mass point. We first show the mass point must be located

at or below m. By way of contradiction, suppose there is a mass point at −V/η > m.

In this case, the differential equation (3) holds at m, and F (m) = 0. Hence,

[V + ηm] f (m) − α = 0.

Since f (m) ≥ 0, α < 0, and 0 ≤ m < −V/η, this is a contradiction.
Since the mass point must be at −V/η and m ≥ −V/η, the derivative of Eq. (4) is

(for w > m)

F ′ (w) =
(

α

α − β
− C

)

(α − β)

(
V + ηm

V + ηw

) α−β
η 1

V + ηw
.

Since F ′ (w) > 0 for some w > m,

sgn
(
F ′ (w)

) = sgn

(
α

α − β
− C

)

> 0 (14)
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in order for F to be a well-defined distribution. Since the differential equation holds
at w = u, setting F (u) = 1 implies

β

α
=
[

1 − α − β

α
C

](
V + ηm

V + ηu

) α−β
η

.

The LHS is strictly negative by assumption, while the RHS is strictly positive by
Eq. (14) and the fact that m, u > −V/η—a contradiction.

Hence, there does not exist a non-degenerate mixed-strategy equilibrium. �
Lemma 10 Suppose β > 0, α > 0, α �= β, and η �= 0. Then there exists a unique
symmetric equilibrium and it is in non-degenerate mixed-strategies as identified in
Proposition 2.

Proof Since α > 0, Lemma 3 implies there are no mass points, and Lemma 4 implies
m = 0. Hence Eq. (4) implies

F(w) = α

α − β

[

1 −
(

V

V + ηw

) α−β
η

]

. (15)

It is straightforward to show that, for all β > 0, α > 0, α �= β, and η �= 0, this a
well-defined distribution function on

[
0, u∗] , where

u∗ = V

η

((
α

β

) η
α−β − 1

)

> 0.

Suppose first that θ �= δ (or equivalently, η �= α − β). The expected payoff to a
player that bids w = 0 against a rival that employs F is

EU∗ = EU (w = 0) = −γ − θ

u∗
∫

0

xdF (x)

= θv + δγ

θ − δ
+ β

θ

η (θ − δ)

[

1 −
(

α

β

) η
α−β

]

V .

Hence, EU (w) = EU∗ for all w ∈ [0, u∗] , and it does not pay to deviate to a w > u∗
since β > 0.

When θ = δ (or equivalently, η = α −β), the expected payoff to a player that bids
w = 0 against a rival that employs F is

EU (w = 0) = −γ − θ

u∗
∫

0

xdF (x)

= −γ + θV

η
− θαV

η2 ln
α

β
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As above, since β > 0, a player cannot gain by deviating to a w > u∗. We conclude
that F is the unique symmetric equilibrium in this case. �
Lemma 11 Suppose α − β �= 0, α = 0 and η �= 0. Then there does not exist a
symmetric equilibrium in non-degenerate mixed strategies.

Proof Under the conditions stated, the solution to differential equation (3) is

F(w) = K

[
V + ηw

V + ηm

] β
η

, (16)

for some K �= 0. By hypothesis, β �= 0. Suppose first that β < 0. Then there is no
mass point by Lemma 3, and hence F (u) = 1 implies

u = K − 1
β
ηV + K − 1

β
η
ηm − V

η
.

But since β < 0, this is a contradiction, since a player could improve his payoff by
bidding above u.

Suppose next that β > 0. If η > 0 then once again there is no mass point by Lemma
3. Hence, F (w) = 0 implies w = −V/η. But since −V/η < 0, this is a contradiction.

Finally, suppose β > 0 and η < 0. Then

f (w) = K (V + ηw)
β−η

η (V + ηm)
− β

η β

= β
F (w)

V + ηw

and hence w < −V/η. By Lemma 3, any mass point must be above the upper bound
of the absolutely continuous part of F. Setting F (w) = 0 in Eq. (16) implies the lower
bound of the distribution must be −V/η. But this is a contradiction, since by Lemma
3, the mass point must be located at this point. �
Case 2: α = β; η �= 0

Lemma 12 Suppose α = β > 0 and η �= 0. Then there exists a unique symmetric
equilibrium and it is in non-degenerate mixed strategies as identified in Proposition 2.

Proof Note first that the conditions of the Lemma imply θ �= δ. Since α > 0, Lemma
3 implies there are no mass points. Moreover, by Lemma 4, α > 0 implies m = 0.
Hence the differential equation in (3) implies

f (w) = α

V + ηw
(17)

which together with F (m) = 0, implies that the unique F is

F (x) =
x∫

0

α

V + ηw
dw = α

θ − δ
ln

(
V + (θ − δ)x

V

)

(18)
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on
[
0, V

θ−δ

(
exp

(
θ−δ
α

)− 1
)]

, where we have used the fact η = θ − δ under the con-

ditions stated. The expected payoff of a player that bids w = 0 is

EU (0) =
u∫

0

(−γ − θx)
α

V + ηx
dx

= θv + δγ

θ − δ
+ αθ

(θ − δ)2

(
1 − e

θ−δ
α

)
V

and hence EU (w) = EU (0) for all w ∈
[
0, V

θ−δ

(
exp

(
θ−δ
α

)− 1
)]

. Since β > 0, a

player cannot gain by bidding above the upper bound of the support. �
Lemma 13 Suppose α = β < 0 and η �= 0. Then there does not exist a symmetric
mixed-strategy equilibrium.

Proof Lemma 3 implies there are no mass points, and hence Eq. (17) implies that, if
an equilibrium exists, it must have the form

F(x) =
x∫

m

α

V + ηw
dw

= α

θ − δ
ln

(
V + (θ − δ)x

V + (θ − δ)m

)

,

where we have used the fact that η = θ−δ under the conditions stated. Since F (u) = 1
implies u < ∞, the support of F is bounded. But then F cannot be part of a Nash
equilibrium since a player can increase his expected payoff by bidding above u, as
β < 0. �
Lemma 14 Suppose α = β = 0 and η �= 0. Then there does not exist a symmetric
mixed-strategy equilibrium.

Proof Under the conditions stated, differential equation (3) implies

(V + ηw) f (w) = 0,

which contradicts the hypothesis that there is a non-degenerate mixed-strategy. �
Case 3: α − β �= 0; η = 0

Lemma 15 Suppose η = 0, α − β �= 0, and α < 0. Then there does not exist a
symmetric equilibrium.

Proof First, note that since η = 0, there can be no mass point by Lemma 3. Under the
conditions stated, differential equation (3) implies

V f (w) − α + (α − β)F(w) = 0
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and hence the unique solution is

F(x) = α

α − β

[

1 − exp

(
β − α

V
(x − m)

)]

(19)

with density

f (x) = α

V
exp

(
β − α

V
(x − m)

)

.

If α < 0, this is not a valid density and hence an equilibrium does not exist. �
Lemma 16 Suppose η = 0, α − β �= 0, and α > 0. Then if a symmetric equilibrium
exists, m = 0 and the distribution function is of the form in Eq. (19) with m = 0.

Proof First, note that since η = 0, there can be no mass point by Lemma 3. Moreover,
the solution to the differential equation takes on the form in Eq. (19). Since α > 0,

Lemma 4 implies m = 0. �
Lemma 17 Suppose η = 0, α − β �= 0, α > 0 and β < 0. Then there does not exist
a symmetric mixed-strategy equilibrium.

Proof By Lemma 16, under this parameter configuration F (x) ≤ α/ (α − β) < 1 for
all x ≥ 0. Hence, F is not a valid distribution function. �
Lemma 18 Suppose η = 0, α−β �= 0, α > 0 and β = 0. Then there exists a unique
symmetric equilibrium and it is in non-degenerate mixed strategies as characterized
in Proposition 2.

Proof First, note that since η = 0, there can be no mass point by Lemma 3. Using
Lemma 16 and setting β = 0, yields

F(x) = 1 − exp
(
− α

V
x
)

on [0,∞).

Since this is an exponential distribution, with mean V/α, the expected payoff to a
player that bids w = 0 against F is

EU (0) = −γ − θ

∞∫

0

xdF (x)

= −γ − θ
V

α

and hence, EU (w) = EU (0) for all w ∈ [0,∞). Thus, a player cannot profitably
deviate. �
Lemma 19 Suppose η = 0, α −β �= 0, α > 0 and β > 0. Then there exists a unique
symmetric equilibrium and it is in non-degenerate mixed strategies as characterized
in Proposition 2.
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Proof First, note that since η = 0, there can be no mass point by Lemma 3. By Lemma
16, the distribution must have the form in Eq. (19) with m = 0. Since β > 0, this is

a well-defined distribution function on
[
0, V

α−β
ln α

β

]
regardless of the sign of α − β.

A player that bids w = 0 against F earns an expected payoff of

EU (0) = −γ − θ

v+γ
α−β

ln α
β∫

0

w
α

v + γ
e− α−β

v+γ
wdw

= θv + δγ

θ − δ
+ β

θ

(θ − δ)2

[

ln

(
α

β

)]

V (20)

where we have used the fact that η = 0 implies α − β = δ − θ. Since β > 0, a player
cannot gain by bidding above the upper bound of the support of F . �
Lemma 20 Suppose η = 0, α − β �= 0, and α = 0. Then there does not exist a
symmetric equilibrium.

Proof Under the conditions stated, differential equation (3) implies

V f (w) − βF(w) = 0.

If β < 0, we have a contradiction, so suppose β > 0. The unique solution to this
differential equation is

F(w) = exp

(
β

V
w − Q

)

.

Since η = 0, Lemma 3 implies there are no mass points. This contradicts the fact
that F (w) > 0 for all w ∈ [0,∞). Thus, if α = 0 and η = 0, there does not exist a
non-degenerate symmetric mixed-strategy equilibrium when β > 0 or β < 0. �
Case 4: α − β = 0; η = 0

Lemma 21 Suppose η = 0 and α = β < 0. Then there does not exist a symmetric
equilibrium.

Proof First, note that since η = 0, there can be no mass point by Lemma 3. Under the
conditions stated, differential equation (3) implies

V f (w) − α = 0

or

f (w) = α

V

But since α < 0, this is not a well-defined density, a contradiction. �
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Lemma 22 Suppose η = 0 and α = β > 0. Then there exists a unique symmetric
equilibrium and it is in non-degenerate mixed-strategies as characterized in Proposi-
tion 2.

Proof First, note that since η = 0, there can be no mass point by Lemma 3. Under the
conditions stated, differential equation (3) implies

V f (w) − α = 0

or

f (w) = α

V
.

Furthermore, since α > 0, Lemma 4 implies that m = 0. Hence, the unique solution
to the differential equation is

F (x) =
x∫

0

α

V
dw = α

V
x on

[

0,
V

α

]

.

The expected payoff to a player that bids w = 0 against F is

EU (0) = −γ − θ
V

2α

and hence, EU (w) = EU (0) for all w ∈ [
0, V

α

]
. Since β > 0, it does not pay

to bid above the upper bound of the support, as doing so increases costs but not the
probability of winning. �
Lemma 23 Suppose η = 0, α = β = 0, and θ = δ �= 0. Then there does not exist a
symmetric equilibrium.

Proof First, note that since η = 0, there can be no mass point by Lemma 3. Under the
conditions stated, differential equation (3) implies

V f (w) = 0

or f (w) = 0 for all w. This is a contradiction. �
Taken together, the above lemmas exhaustively describe all mixed-strategy equi-

libria (and non-existence) as summarized in Proposition 2.

A3. Proof of Proposition 3

Follows directly from refining the partitions of the parameter space derived in
Propositions 1 and 2.
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