
Journal of 
EMPIRICAL 
FINANCE 

ELSEVIER Journal of Empirical Finance 2 (1995) 253-264 

A note on the relationship between GARCH and 
symmetric stable processes 

Patrick A. Groenendijk, Andr4 Lucas, Casper G. de Vries *'1 
Tinbergen Institute and Erasmu.s Unit'ersity Rotterdam. Rotterdam, The Netherlands 

Abstract 

This note provides some explanations and extensions for the interesting results in Ghose 
and Kroner (1995). Specifically, we address the following points: (1) It is shown that the 
stable distribution and the stationary ARCH distributions are partially nested with respect to 
their tail shapes; (2) A novel interpretation of the McCulloch estimator is developed from 
the vantage point of extreme value theory; (3) This interpretation not only explains the 
apparent bias in some of the reported estimates, but it also helps in remedying the problem. 
Taken together, all three points reinforce the main conclusion of Ghose and Kroner. 
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1. Introduct ion 

The intriguing contribution by Ghose and Kroner (1995) in this issue compares 
the non-normal stable distributions to the class of GARCH stochastic processes as 

alternative models for speculative return data. Both models share the fact that the 
unconditional distribution has fat tails and that the tail shape is invariant under 
addition. The differences between the models are as follows: (i) The stable model 
is an independently and identically distributed (i.i.d.) process and hence unable to 
display the volatility clusters which are typical for the GARCH process. (ii) A 
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convolution of stable random variables with the same characteristic exponent is 
again stable, but GARCH variates are not self similar. Notice the difference 
between 'tail additivity', mentioned above, and the self similarity of the entire 
law. (iii) While both models are heavy tailed, the GARCH models allow for 
bounded second and higher order moments, but the non-normal stable laws 
necessarily display infinite variance. The authors use the differences (i) and (iii) to 
show that the GARCH or IGARCH model provides a better description of 
speculative return data. 

On a first reading the authors' conclusion may appear unsurprising given the 
prevalence of volatility clustering in financial data and the inability of an i.i.d. 
process to display such dependency. Ghose and Kroner rightly do not make too 
much out of the difference (i), however, because the stable model is often viewed 
as a model for the unconditional distribution. This leaves the difference (iii) as the 
main discriminatory device. The focus then is on the tail shape of the uncondi- 
tional distribution of the GARCH variates vis-?a-vis the tail shape of non-normal 
stable laws. 2 The larger part of the Ghose and Kroner paper is devoted to this 
issue. Their analysis involves a number of interesting intricacies which may not be 
apparent to every reader. Presumably with this in mind, the editors have asked us 
to write a note on the paper. 

Because the analysis is competent and well balanced, the nature of our note is 
merely to provide some clarifications and extensions on some of the points made 
by the authors. This may help the reader to better judge the significance of the 
Ghose and Kroner contribution. Specifically, we address the following three 
issues: 
(1) Even though the tail shapes of the GARCH class processes and the stable laws 

may differ, and hence can be used to discriminate between the competing 
models, this is not necessarily the case. In fact, the two models partially 
overlap. 

(2) In order to develop a better understanding of the McCulloch (1986) procedure 
for estimating the characteristic exponent o~ from a stable distribution, we 
provide a novel interpretation related to the tail shape of fat tailed distributions 
in general. This interpretation explains the spectacular failure of the & method 
under certain alternative distributional assumptions. 

(3) The new view of the ~ estimator is also used to clarify the puzzling 1.46 point 
estimates by the ~ procedure as reported in Fig. 1 and Tables 4 and 5 from 
Ghose and Kroner. The novel interpretation also shows how to fix this 
downward bias problem. This interpretation lends further credence to the main 
conclusion of the paper under review. 

We conclude by listing some open problems. 

2 The tail shape of  the condit ional  distribution of  the G A R C H  process  is not the critical issue. It can 
be either thin tailed or fat tailed. 
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2. The tail index of  the A R C H  process  when 13 o > 1 

The major discriminatory device exploited by Ghose and Kroner is the differ- 
ence in the number of bounded (raw) moments that exist under the two alternative 
models for the unconditional distribution of speculative return series. The authors 
correctly argue that the ARCH-cum-normal-innovations class allows for any 
maximal finite moment of the stationary distribution in the interval [2, w) by 
choosing 130 from [0,1] appropriately (the lower 130, the higher the number of 
finite moments). In contrast, the non-normal stable distributions necessarily have 
the maximal finite moment in the interval (0,2). The authors then set out to 
measure the maximal finite moment as a way of choosing between the alternative 
models. What is left aside, though, is that the apparent non-nestedness is only a 
one-way street. We show that the two models partially overlap. 

To do this we have to explain how the maximal finite moment is obtained. 
Consider the Pareto distribution 

F ( x )  = 1 - s ~ x  -'~ x ~ [ s , ~ c ) .  (1) 

It is easily shown that the exponent et > 0 determines the maximal finite moment, 
i.e. ~ [ x  k] is bounded if k < ct and unbounded if k_> ct. The unboundedness of 
the higher moments is caused by the power decline x-~ of the tail, rather than the 
exponential decline as in case of e.g. the normal distribution. Therefore the Pareto 
law is said to be fat tailed, while the normal is thin tailed. The following 
condition, called regular variation at infinity, is necessary and sufficient for a 
distribution to be fat tailed: l i m , ~ ( 1  - F ( t x ) ) / ( 1  - F ( t ) ) = x  ~,~ > 0. The con- 
dition characterizes the tail behaviour, i.e. it states that F ( x )  eventually displays 
the same behaviour in the tails as the Pareto model. The exponent ~ is called the 
tail index and is such that ~(Ixl ~) < ~ for all 0 < ~q < 4- The Pareto model (1) 
trivially satisfies the regular variation condition. For the stable model the regular 
variation property can be verified by using the Bergstr6m-Feller expansions, and 
in this case the ~ equals the characteristic exponent et. 

The verification of the regular variation property of the unconditional distribu- 
tion of ARCH variates is, however, not straightforward, because no closed form 
expression for this distribution is known. A different approach based on the theory 
of stochastic difference equations is needed. To this end we rewrite the ARCH- 
cum-normal-innovations process from Ghose and Kroner (1995, Eqs. (3) and (4)) 
with u, ~ N (0,1) and 131 = 0. Taking squares of Eq. (3) and combining with Eq. 
(4) from Ghose and Kroner yields 

"~ ~ 2 2 "+-AtE~ 1, ~7=°~u;  +f3oU,~ , l = B t  (2) 

say. This stochastic difference equation with i.i.d, pairs (Bt, A t) of chi-squared 
random variables is equivalent with the ARCH process up to a coin flip process 
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for the sign. As is discussed in de Haan et al. (1989), we have from Kesten (1973, 
Theorem 5) that under the conditions stated below: 

) 1 d 
~ - ~  = EBjHA, ,  

2-1 i-1 

i.e. Eq. (2) has a solution ~ which is unique in distribution. Moreover, ~ has a 
Pareto like tail 

lim x¢P{e,~ > x} = c, (3) 
x - - ) ~  

where c > 0 is some constant and ~ > 0. 
The conditions under which these results hold are as follows: 

('1 g ' [ l o g A , ] < 0 ¢ ~ l o g 2 1 3  o + q J  ~ < 0 ;  (4)  

there exists a K > 0 such that 

At] < ~;  

~ [ A ~ ]  = (5) 

~ [  A~ log + (6) 

0 < 2~[B~] <sc ,  (7)  

B , / (  1 - At )  is nondegenerate and the conditional distribution of log A~ given 

A t ~ 0 is nonlattice. (8)  

We discuss conditions (4) and (5); (6), (7) and the first part of (8) are easily 
checked using the fact that A~ and B, are ×2 distributed. From this it also follows 
that the distribution of log At, given A t ~ 0, has no atoms, thus excluding the 
possibility of a lattice distribution [see Feller (1971, p. 138)]. Condition (4) also 
appears in Vervaat (1979) and Nelson (1990), and guarantees stationarity. For the 
process at hand, (4) is equivalent with 130 < 3 ~ 3.56856, where 13 = 1 / 2  exp *~1/2), 
and where ~(.) is the Euler psi function. Also recall the fact that for 130 < 1, e~ 
has finite variance. Thus we can distinguish four regions. The ARCH process is 
i.i.d. N(0, to) if 130 = 0, is covariance stationary for 0 < [3 o < 1, is stationary when 
1 < [30 < 3, and nonstationary if [30 > [3 [for the borderline case 13o = 3, see 
Vervaat ( 1979)]. 

Condition (5) yields the tail index as a function of 13 o. The tail index of the 
ARCH process ~ is related to the tail index K of the squared process as follows: 

= 2K, where the factor 2 stems from squaring the ARCH process [see de Haan et 
al. (1989) for further details]. The dashed curve in Fig. 1 plots ~ as a function of 
130 (130 varies with a step_size of 0.05). Note that i~ = 2 at 13o = 1, ~ = ~ at 130 = 0, 
and at the upper limit 13 = 2 exp ( ~ ) =  3.56856 (where ~ is Euler 's  constant), 
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Fig. 1. Tail index estimator for ARCH. 

= 0.00279. It follows that the stable model and the stationary ARCH distribution 
exhibit the same tail behaviour in the sense of the tail index ¢ when ~ > 130 > 1 
and hence it is possible that 

0.00279 < ¢ = 2K = a < 2. (9)  

The interesting result is that the two models are only partially nested with respect 
to their tail behaviour: At 130 = 0 and c~ = 2 the two models have normal tails; for 
0 < 130 < 1, then ~ > 2 and there is no counterpart in the stable class; for 

> 130 > 1 the tail indices can be equal; for a < 0.00279 there is no counterpart in 
the ARCH class. It follows that the tail method as a discriminatory device only 
works in the regions where the two models do not overlap. 

The above arguments can be extended to the GARCH(1,1) case. This can be 
done by viewing the variance Eq. (4) from Ghose and Kroner as a stochastic 
difference equation in crf. It can be shown that this difference equation satisfies 
conditions (4) - (8)  above. Hence, again we can distinguish a region 1 < 130 + 131 < 
f(130, 13~ ), with f(., .) a real-valued function, where the tail index cannot be used as 
a discriminatory device. 3 This point is mainly theoretical, although empirical 
examples of 130 + 131 > 1 are found in, e.g., Engle et al. (1987), Hong (1988), and 
Pagan (1993). 

3 See Nelson (1990. Fig. 1) for the form of the function ]'(13 o, 13a). 
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Interestingly, Ghose and Kroner and others have found that ~ > 2. The way in 
which this conclusion is obtained is by means of  the semiparametric Hill estimator 

[Eq. (8) in Ghose and Kroner (1995)]. The motivation behind the Hill estimator 
is easy to obtain from the Pareto model. The log density from (1) reads 

l o g s  + c~log s -  ( a  + 1) logx.  

Differentiating this with respect to e~ yields 1 / a -  log ( x / s ) .  Summing over 
different observations and equating to zero then yields the Hill estimator 4- When 
applied to other distributions that only exhibit Pareto like behaviour in the tails, 
one takes s sufficiently high (low) and employs only the highest (lowest) order 
statistics. In Fig. 2 of Ghose and Kroner ~ is plotted as a function of 130 < 1. In 
our Fig. 1, and on basis of the analysis above, this plot is extended to the interval 

> 130 > 1, see the solid curve. The estimator performs well in the region 
2.5 > 130 > 0.5 say, but is downward biased for low [30 and upward biased for 
high 13 o. The same phenomenon is present in the right-hand side of Ghose and 
Kroner 's Fig. 3. Note that the figures are based on using a fixed percentage (1%) 
of  the extreme order statistics. What the plots indicate is that one should go deeper 
into the tails for low 130 (close to normality the percentage of extremes decreases), 
and vice versa for high 130- 

3. Estimation of the characteristic exponent 

The characteristic function of the symmetric stable distributions is e (-Itp°), 
0 < a _< 2, and where a is called the characteristic exponent. When c~ = 2, then 
the distribution is normal and has all moments bounded; if c~ < 2, then all 
moments greater than c~ are unbounded. As we noted in the previous section, the 
stable laws with oL < 2 are regularly varying at infinity, i.e. exhibit Pareto like 
tails. 4 The tail index equals i~ = o~. The characteristic exponent can thus be 
estimated by the Hill estimator that was discussed above. Alternatively, one can 
employ McCuUoch's (1986) procedure for estimating a ,  see Ghose and Kroner 
Eqs. (la,b). Unlike the Hill estimator, this latter procedure confines the estimator 
to the interval (0,2]. In addition, this procedure is only valid if the observations 
come from a stable law and not from any other distribution with ~ < 2. This is 
vividly illustrated in Fig. 1 in Ghose and Kroner. One clearly sees that the 
estimator ~ as an estimator for ~ from the IGARCH(1,1) process is downward 
biased to approximately 1.46. Note that the Hill estimator in Fig. 3, instead, 
correctly locates ~ at 2 (except when the normal distribution becomes a local 
alternative close to 130 --- 0). Also note that a very similar discrepancy between the 
Hill ~ estimator and the McCulloch c~ estimator arises from the real data (Tables 4 

In economics, the terminology 'stable Pareto distribution' is often used. 
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Table 1 
The ot and "7 estimators for alternative distributions 

259 

Symmetric stable Symmetric extremal Student-t Symmetric Pareto 
distribution type distribution distribution distribution 

Q = v,~ 1/'~ Q l/Z¢ Q 1/'~ Q 1/¢/ 

0.50 44.636 0.424 43.281 (I.427 26.475 0.491 33 0.460 
0.6(/ 23.612 0.509 23.098 0.513 16.016 0.580 20.883 0.530 
1.00 6.314 0.873 6.579 0.854 6.314 0.873 9 0.732 
1.50 3.15(I 1.403 3.511 1.281 4.246 1.113 6.199 0.882 
1.90 2.513 1.747 2.695 1.623 3.670 1.238 5.360 0.959 
2.00 2.439 1.805 2.565 1.709 3.576 1.263 5.220 0.974 
3.00 1.874 2.563 3.077 1.432 4.441 1.079 
5.00 1.458 4.272 2.773 1.578 3.933 1.175 
30.00 1.065 25.630 2.486 1.767 3.413 1.311 

Notes: The theoretical value of '7 is 
Q= x~j,~5/xl~75, i.e. the 95% to 75% 
estimate using Q. 

for each distribution the a value in the first column. The 
quantile ratio; and ~ is the theoretical de Haan and Resnick 

and 5 in Ghose  and Kroner).  We first obtain the intuit ion behind the McCul loch  ct 

estimator,  and then, in the next section, we turn to expla in ing the apparent 

downward  bias in Fig. 1. 

The McCul loch  est imator  & for symmet r ic  distr ibutions is based on comput ing  

the statistic v~ = X o . 9 5 / X o . 7 5  , i.e. the ratio o f  the 95% and 75% quanti les respec- 

t ively (cf. Eqs. ( l a )  and ( l b )  in Ghose  and Kroner,  which  also cover  the 

asymmetr ic  cases). The  convent ional  mot iva t ion  behind this es t imator  is the fact 

that x0.75 -- 1.00 when  0.50 < et < 2.00, whi le  x095 increases monoton ica l ly  when  
decreases f rom 2.00 to 0.50. 5 Thus v ,  also increases monotonica l ly  when  et 

decreases.  A s imple  convers ion  table in McCul loch  (1986) then maps  v,~ into ct. 

This  table is partly reproduced  in co lumns  1 and 2 o f  Table  1. 

The est imator  6t works  wel l  i f  one is ensured that the observat ions  come  from a 

stable distribution, or that a vers ion o f  the genera l ized  central l imit  theorem 

applies such that appropriately normed  sums are in the domain  o f  attraction o f  a 

stable law. But the procedure can fail spectacular ly if  these condi t ions  are not met.  

We  provide three examples .  

The first example  is based on the fo l lowing  symmet r ic  ext remal  type distribu- 

tion. 

F ( x ) =  5 - S e x p - ( - a / x  , x < O  (10)  

5 + s e x p  - ( a / x  , x >_ O 

and where  a > 0, ~ > 0. Let p = F ( X p )  when x _> 0 and write q = 2 p  - 1; here 

5 The constancy of the 75% quantile also motivated the earlier Fama and Roll (1971) estimator. 
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xf~ is the p-th quantile. It is easy to show that Q = Xo.9JXo.75 = 
[ log(0.50)/ log(0.90)]  1/'~ = [6.579] 1/". ~ Comparing these Q-values for the range 
0 < ot < 2, see column 4 in Table 1, with the v,~ values for the stable model, 
column 2 of  Table 1, it is clear that McCul loch 's  procedure performs well for this 
alternative distribution. 

Quite different in this respect is the second example which is based on the 
Student-t distribution, see column 6 of Table 1, where a equals the degrees of 
freedom. The stable and Student-t model coincide at a = 1, i.e. the Cauchy 
distribution, and et = % the normal case. Therefore the quantile ratio of the 
Student model ranges between [6.314, 2,439] as a increases from 1 to infinity, 
whereas the stable model covers the same range when et varies from 1 to 2. 
Hence, if the McCulloch estimator is employed for estimating the Student degrees 
of freedom in the range (2, oo), these are heavily downward biased to the range (1, 
2). 

Even more dramatic is the third example that is based on the ' symmetr ic  
Pareto'  law: 

~[1 x ]  ~ x <( I  
F ( : , )  = - 

1 - -  + x ] - "  x > 0  
½ [ 1  , _ (11) 

and where c~ > 0. Using the McCulloch &, one never gets & > 1.40; and the bias 
is reversed for e~ around 0.50, see Table 1, column 8. 

To get a better understanding of the McCulloch procedure and its applicability 
to non-stable distributions, we provide a novel interpretation of the estimator. For 
this purpose, we first discuss an alternative tail index and characteristic exponent 
estimator developed by de Haan et al. (1980). A heuristic derivation is as follows. 
Consider again the Pareto law (1). By the Glivenko-Cantell i  theorem we may 
replace the left hand side probabili ty F ( x )  by its empirical  counterpart (n  - m ) / n ,  
where m refers to the m-th descending order statistic, X(1) > ... >_ X(,,) > ... > X(,), 
in a sample from F ( X )  of size n. This yields m / n  = s ~ X(-~,  and in logarithms 
log m -  log n = ot log s - e t  log X(,,). Similarly, for the k-th order statistic, 
where 1 < k < m, we have log ( k / n )  = o~ log s - a log X(k ). Subtracting this 
latter equation from the former and rearranging yields the estimator "~ of l / e~  

logX<k)/X(:)  
+ - (12) 

l o g m / k  

De Haan and Resnick take k = 1, but this is not necessary. 
How is this estimator related to the & procedure? The McCulloch procedure 

relies on computing the statistic v~, which in case of symmetry can be achieved by 

If a - - log q, x; is constant, i.e. independent from a. This implies p = [1 +exp (a)]/2 exp (a). 
But this means that p can be anywhere in the interval (1/2, 1) by choosing a appropriately from (0,~). 
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Table 2 
McCulloch (~), de Haan and Resnick ((1/¢/)). and Hill (~) estimator of the tail index for ARCH(l) 

JAil ~ Q = x,, ~s / & 1 /  ~l ~ Q = xo 99s / 6~ 1 /  ~l 

X0 75 X0 975 

0.000 :c 2.438 1.984 1.807 4 .718  1.314 1.943 5.924 7.694 
0.476 5.00(I 2.600 1.811 1.686 3 .468  1.519 1.865 3.876 4.276 
0.900 2.304 3.070 1.532 1.436 2.131 2.069 1.685 2.244 2.334 
1.000 2.000 3.266 1.462 1.362 1.892 2.290 1.611 1.976 2.039 
1.038 1.900 3.355 1.435 1.331 1.816 2.388 1.581 1 .884 1.945 
2.000 0.620 14.660 0.715 0 .606 0.640 18.924 0.645 0.652 0.715 

Notes: The cntries are the Monte-Carlo means of the various estimates over 1,000 iterations using 
series of length 10,000. The & estimate in column 8 was computed by constructing an inversion table 
from ~ to a, as in McCulloch (1986). ~, was taken to be (x0995 - Xooos)/(Xo.g75 - x0.025). 130 is the 
parameter of the ARCH process, and ~ is the corresponding theoretical tail index, computed from (5). 

taking X(k) /X~m) ,  with k equal to the integer closest to 0.05 n and m equal to the 
integer closest to 0.25 n in a sample of  size n. Hence,  the map of  v~ into a ,  by 
going from co lumn 2 to 1 in Table  1, can be represented analyt ical ly by Eq. (12). 
Column 3 of  Table 1 shows that this representation of the convers ion  map is fairly 
decent,  albeit some downward  bias is present. The ¢/ statistic, however,  also 
explains  the failure of  the &-method under  non-s table  alternatives. Assuming  
either a Student-t  or a symmetr ic  Pareto with a ~ (2, ~) ,  one sees from co lumns  7 
and 9 in Table 1 that the 1/~/ est imates are approximately the same as the 6~ 
estimates from the McCul loch procedure. Apparent ly  the convers ion  procedure 
fails because 1 / ~  does not capture a correctly for non-s table  distributions.  The 
next section shows how this failure can be partially repaired. 7 

4. An explanation for & = 1.46 under  I A R C H  

Return to the puzzl ing & = 1.46 estimates for the IGARCH(1 ,1)  model  reported 
in Ghose and Kroner ' s  F i g .  1, and the empirical  est imates in their Tables  4 and 5 
of about the same value. In Table  2 co lumn 4, we show that this observat ion is 
also obtained under  the l A R C H  model. This  phenomenon  is now readily explained 
by analogy.  Return to Table  1 and consider  the Q-values  obtained under  the 
Student-t  and symmetr ic  Pareto distr ibution when  c~ = 2. Using the & procedure, 
i.e. us ing  the convers ion  from co lumn 2 to 1, yields a est imates of  say 1.38 in 
case of the Student-t  and 1.10 for the symmetr ic  Pareto law. Only  in case of  the 

7 One may wonder how -~ is related to ~. l~)osely speaking one may interpret ~ as a weighted 
average of "~ evaluated at different k. 
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Table 3 

Bias elimination 

Symmetric stable Symmetric extrcmal Student-t Symmetric Pareto 

distribution type distribution distribution distribution 

a Q - v ~  1 / ~  Q 1 / ~  Q 1/~l Q 1 / ~  

0.50 26.052 0.494 26.047 0.494 25.000 0.500 25.060 0.500 

0.60 15.104 0.593 15.129 0.592 14.621 0.600 14.713 0.599 
1.00 5.010 0.999 5.104 I).987 5.010 0.999 5.211 0.975 

1.51) 2.674 1.636 2.964 1.481 2.962 1.482 3.226 1.374 

1.90 1.489 4.043 2.358 1.876 2.397 1.841 2.680 1.633 
2.00 1.314 5.894 2.259 1.975 2.307 1.925 2.592 1.690 

3.00 1.722 2.961 1.835 2.649 2.124 2.137 
5.00 1.385 4.941 1.569 3.573 1.842 2.635 

30.00 1.056 29.537 1.347 5.403 1.580 3.518 

Notes: See explanatory note to Table 1. The quantile ratio in this case is Q = x0.995/X0.975. 

symmetric extremal type distribution is the Q-value close to the v~ of the stable 
model. ~ 

How can this downward bias be circumvented.'? Recall the alternative explana- 
tion of & through the ~ estimator. What this estimator does, is to exploit the shape 
of the Pareto law. By logarithmic transformation the Pareto curve becomes linear. 
Then taking two points on the line and using simple trigonometry yields ~/ as the 
size of the angle. At the 75% and 95% quantiles of the stable model this 
approximates 1/&. The ~-procedure should, however, also apply to the other 
distributions, because it is based on the shape of the Pareto distribution. All fat 
tailed distributions eventually display Pareto like behaviour as the quantiles are 
increased. Thus by going sufficiently far into the tails the ~/-procedure should 
work well. For this reason we have recomputed ~ for the different models by 
using the x(j.975 and x o 995 quantiles. Results are in Table 3 and the last 3 columns 
of Table 2. Clearly, by going deeper into the tails a significant improvement in the 
tail index estimates is achieved. Hence, the McCulloch & procedure can be 
robustified by going deeper into the tails and using the transformation (12). 

Even though going into the tails helps, the downward bias at a = 30 for the 
Student and symmetric Pareto model is still considerable. For the stable model, 
going into the tails also helps for the lower a-values. But the downward bias in 
for 1.50 < a_< 2.00 from Table 2, column 2, is reversed and worsens into a 
considerable upward bias. Should one conclude that going into the tails does not 
work in this case? The answer is that as a approaches 2 under the stable model, 

s These findings illustrate that the downward bias in the McCulloch estimator may be due to the 

non-stable behaviour of the distribution underlying the observations. It appears that the unconditional 
distribution of the lARCH model displays such non-stable behaviour. 
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the normal distribution becomes a local alternative and biases the ~, procedure. 
The same argument can be used to explain the "~ = 5.403 value under the Student-t 
model with 30 degrees of freedom. The remedy is to go still deeper into the tails. 9 
The stable model is just special in the sense that there happen to be two regions 
where ¢/ yields good estimates. 

5. Conclusions 

To summarize, we first showed that in contradiction with the presentation in 
Ghose and Kroner the stable laws and the unconditional distribution of the 
stationary ARCH models are partially nested with respect to their tail index. If 

> 2, then this can only be the case if the model is ARCH. In case [3 o > 2e v, then 
the model is necessarily stable. In the interval [3 o ~ [1, 2 exp (',/)] both models are 
candidates. Then we reviewed the two approaches for measuring the tail index 
value ~: McCulloch 's  method & which is conditional on the stable model, and the 
tail index estimators ~ and "~. It was shown how the & procedure can be viewed as 
a particular case of the ¢/ estimator. This view explains the downward bias in the 
& procedure if the innovations are not stable, but Student-t or lARCH. The reason 
is that & does not go deep enough in the tails, whereas this is possible with the ~, 
procedure. On the one hand, "~ and ~ are upward biased if the data are generated 
by a stable law with e~ close to 2. On the other hand if the true data exhibit a tail 
index ~ of about 2, the "~ and ~ have hardly any bias. When applied to real data as 
in Ghose and Kroner the & procedure yields values around 1.46, while ~ gives 
values slightly above 2. Combining these two findings with the above, it follows 
that our results give further credence to Ghose and Kroner ' s  main conclusion. 

For the interested researcher there are still some nagging questions in this area. 
It is known, see Diebold (1988), that appropriately normed sums of  covariance 
stationary ARCH variates adhere to the central limit law. An open issue, which 
was touched upon in an earlier version of the Ghose and Kroner paper, is whether 
appropriately normed sums of stationary ARCH variates with [30 > 1 are in the 
domain of  attraction of a non-normal stable distribution. The difficulty is that 
theorems like in Ibragimov and Linnik (1971) presuppose strong mixing. As of  
today this property has not been established for ARCH processes. An alternative 
route is to use the theory on the point process character of exceedances,  because 
only the highest realizations contribute to the sum as the sample gets large. But 
sofar this route has not been taken. 

'~ The selection of the optimal number of order statistics is pursued in Hall (1982), Goldie and Smith 
(1987), Dekkers and de Haan (1991), Dacorogna et al. (1994), and Danielsson and de Vries (1994). 
This work is relevant for simultaneously reducing the bias and variance of the estimators and for 
providing guidelines to select the number of ordcr statistics to be used in relatively small samples. 
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Another open problem is as follows. De Haan et al. (1989) obtained the limit 
law for the maximum order statistic from a sample of ARCH(l) realizations. 
Using this result, the tail index for a GARCH(1,1) process can be derived. 
However, Kesten's (1973) theory cannot be used for higher order ARCH and 
GARCH processes. 
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