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a b s t r a c t

The mutual and cross company exposures to fat-tail distributed risks determine the potential impact of a
financial crisis on banks and insurers. We examine the systemic interdependencies within and across the
European banking and insurance sectors during times of stress by means of extreme value analysis. While
insurers exhibit a slightly higher interdependency in comparison with banks, the interdependency across
the two sectors turns out to be considerably lower. This suggests that downside risk can be lowered
through financial conglomeration.
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1. Introduction

This paper investigates the systemic interdependencies within
and across the banking and insurance sectors in times of stress.
Banks and insurers are both exposed to fat-tail distributed shocks
through their assets and liabilities that create linkages and com-
mon exposures. Financial innovation improves the ways in which
risks can be spread and transferred from the banking sector to
the insurance sector and vice versa. Diversification lowers the risk
of isolated shocks for a financial entity, but may simultaneously in-
crease the systemic risk. The credit crisis shows how problems in
one part of the banking sector can easily spread to other parts of
the banking sector due to these risk transfers. At the start of the
credit crisis, EU banks had exposure to US sub-prime mortgages
of about equal size as US banks; a perfect example of international
risk diversification and contagion. Other parts of the financial sec-
tor can also be easily affected. During the burst of the internet
hype, banks came off lightly while insurers carried substantial
losses as a result of their equity and bond exposures. The credit
crisis shows that risks are moved between the banking sector

and the insurance industry by means of credit risk transfers,
warranting the bailout of large insurers as well as those of banks.

As we show, risk transfers between the banking and insurance
books are nevertheless a useful diversification device in times of
stress. This is so, because risks of banks and insurers differ, due
to the differences in their business models. Banks transform liquid
liabilities of depositors into illiquid assets (loans). The foremost
risk drivers of these assets are the business cycle and the interest
rate. A life insurance company per contrast has a better match be-
tween its asset and liability maturity structure, but a major risk is
the longevity risk. It can often hold assets until maturity when the
time to pay has come, covering a period that extends over business
cycles. Non-life insurance risk is again different. Claim risk is lar-
gely unrelated to the business cycle, while the investment risk
on the premium income is. As of today, these differences and their
interrelation in times of financial hardship have received little
attention.

Our main research question concerns how the downside risk in
the banking sector differs from the downside risk in the insurance
sector and how these are related in times of crisis. To investigate
these issues, we estimate the downside dependence between
combinations of financials, both within a sector and across sectors.
As the risk profile of both sectors is different, we find that there is
scope for diversification of worst outcomes. To understand the
possible differences in cross-sector risk, we develop an analytical
factor model to interpret the sources of systemic risk.
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Given the importance of the payment and clearing functions for
the real economy, academic research into systemic risk tradition-
ally focuses on the banking sector; see De Bandt and Hartmann
(2002) for a survey. The stability of the insurance sector is
therefore of a somewhat lesser public concern than the fragility
of the banking sector.1 The systemic importance of the insurance
industry is therefore more indirect by its influence on the banking
sector. AIG, for example, became a systemically important institu-
tion. It was saved because it had sold credit derivatives to the bank-
ing system on an unprecedented scale. This makes the assessment of
the downside risk of banks, insurers and financial conglomerates of
great interest.

Traditionally, research in the area has concentrated more on the
possible benefits of mergers across sectors. Early work discusses
the potential benefits from the abolishment of the Glass-Steagall
Act in the US for individual firms (which forbade bank holding
companies to perform insurance activities); see Laderman (2000),
Berger (2000), Estrella (2001) and Carow (2001). These earlier
studies conclude there are gains from diversification. But a more
recent US study by Stiroh and Rumble (2006) finds that the diver-
sification benefits are more than offset by the costs of the increased
exposure to new volatile activities. Moreover, Shaffer (1985)
showed that diversification may benefit individual institutions,
but often increases the systemic risk.

Moving to regulatory requirements, Kuritzkes et al. (2003)
argue that there is scope for a reduction of 5–10% in capital
requirements for a combined bank and insurance company.
Although, the regulatory framework during our sample period
(BCBS 2004), does not allow for cross-hedging between business
lines. The different entities of a conglomerate are supervised sepa-
rately according to sector specific regulation. On the one hand, due
to the two pillar system, the Basel II and Solvency II regulations fall
short in recognizing the potential benefits of cross-sector mergers
for containing the risks in the financial system. On the other hand,
the regulatory framework does not recognize explicitly the nega-
tive effects of diversification on systemic stability.

To analyze this issue we focus on the downside risk exclusively,
rather than using global risk measures, like the variance. Using
global risk measures such as the variance–covariance matrix is
appropriate if other aspects such as upside potential also play a
role (as in asset allocation questions). The downside risk-based
Value at Risk (VaR) methodology is mainstream in the banking
sector. In insurance, the study of ruin has traditionally put an
emphasis on downside risk issues. On the industry level and the
financial sector as a whole, the emphasis is on the systemic
stability. Systemic risk by its very nature is concerned with the
downside risk of the system.

The downside risk focus has another advantage, as it more eas-
ily enables capturing the stylized fact that the return series of
financial assets are fat-tail distributed; see Jansen and de Vries
(1991). The more common assumption that returns are normally
distributed considerably underestimates the downside risk. Hence,
given the focus on downside risk, we will not start from this
premise and allow for fat tails to capture the univariate risk
properties. For the multivariate question of downside risk diversi-
fication benefits and systemic risk issues, the normal distribution-
based correlation concept may also dramatically fail to capture the
degree of dependence. For example, one can have multivariate

Student-t distributed random variables that exhibit fat tails and
are dependent, but which are nevertheless uncorrelated; this is
impossible for normally distributed random variables. The down-
side risk measures that we consider are derived from Extreme Va-
lue Theory (EVT) and easily allow for the observed non-normality.

Except for Gully et al. (2001), Bikker and van Lelyveld (2002)
and van Lelyveld and Knot (2009), most studies focus on US data,
as in De Nicolo and Kwast (2002), and assume that the returns
are normally distributed. Our empirical research is focused on
European data and applies extreme value theory, allowing for
fat-tail risk and asymptotic dependence. In the empirical section,
we measure the downside risk and systemic dependence between
combinations of financials, both within a sector and across sectors.
The extreme value-based techniques avoid correlation based tech-
niques that focus primarily on the central order statistics, but
rather use the extreme order statistics as in Hartmann et al. (2004).

In the remainder of this paper, we first explain the use of the
downside risk measure instead of the correlation measure. Next,
we provide an economic rationale for the dependence between dif-
ferent financial institutions to exist, even in the limit. Thereafter,
we explain the methodology, give a description of the data and
present the results. Finally, we summarize our findings and draw
some policy conclusions.

2. Dependence

To understand the dependence between two random variables
that follow a normal distribution, it suffices to have the mean,
variance and correlation coefficient, as these completely character-
ize their joint behavior. The correlation measure itself, however, is
often not a very useful statistic for financial risk analysis for a
number of reasons.

As a first reason, recall that the correlation measure can be zero,
while there is nonetheless dependence in the data. Consider, for
example, the two portfolios X + Y and X � Y, where X and Y are
two asset returns. If the two assets are independently and identi-
cally distributed,2 then the two portfolios are uncorrelated. If X, Y
are normally distributed, the two portfolios are also independent.
But the two portfolios are dependent if the X, Y are fat-tail distrib-
uted, like in the case of a Student-t distribution (with degrees of free-
dom above 2), as the two portfolios have their largest realizations
along the two diagonals. In fact, one shows that in the Student-t case
for large s, the conditional probability P(X + Y > sjX � Y > s) tends to
1/2, whereas under independence the conditional probability equals
the unconditional probability P(X + Y > s), which tends to zero as s
increases.

A second reason is the empirical observation that the return ser-
ies do not follow a normal distribution. Fig. 1a displays the daily
stock returns of ABN AMRO Bank and AXA since 1992 until 2003.
The Fig. 1b shows randomly generated returns from a bivariate
normal distribution using the estimated means, variances and cor-
relation from the actual data. Comparing the two plots, one sees
that the outliers more or less align along the diagonal as in the
above portfolio example; which is a clear sign of systemic risk.
Looking univariately along the axes, moreover, note that the actual
returns exhibit many more outliers than the normal remakes. This
is the well known fat-tail phenomenon. If the tails are so fat that
the second moment is unbounded, the correlation measure is not
appropriate. For the non-life insurance industry, second moment
failure is considered an important issue. This is why such insurance
contracts are often capped.

A third reason is that, for our purposes, we are only interested in
downside dependence, while the correlation concept is a global

1 One of the first studies considering systemic risk of insurers was by the Group of
Thirty (1997). Swiss Re (2003) concludes that there is ample systemic risk in the
reinsurance sector. Plantin and Rochet (2007, Chapter 8), argue why there is less
concern for systemic risk in the insurance industry than in the banking sector, since
there are fewer feedback mechanisms. Nevertheless, they also reckon the systemic
dangers of fire sales by life insurance companies to satisfy capital requirements after a
stock market plunge. 2 This is for simplicity; the argument can also be made in a CAPM setting.
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measure. Empirically, the correlation coefficient is mainly driven
by the observations from the center and not by the infrequent tail
observations. Thus, while one would like to overweigh the tail
events, the correlation measure rather does the reverse. For all
these reasons, we turn to a measure that focuses directly on the
downside dependence and does justice to the fat-tail phenomenon.

2.1. Downside dependence

The above discussion of the correlation coefficient identifies a
number of reasons for turning to an alternative measure for iden-
tifying systemic risk. This measure preferably focuses on the inter-
dependence between downside losses and should be robust
towards fat tails. Our preferred systemic risk indicator is the ex-
pected number of failures, given that at least one firm is failing;
see Huang (1992). Let j be the number of firms that crash and
let A and B be the stochastic loss returns of two financials. Let t
be the loss level that triggers a failure. One can easily allow for dif-
ferent thresholds per firm, say s and z, but this reduces the clarity
of presentation.3 Thus, we focus on the diagonal.

With two firms, the conditional expected number of failures is

E½jjj P 1�

¼ 1 � PðA > t;B 6 tÞ þ 1 � PðA 6 t;B > tÞ þ 2 � PðA > t;B > tÞ
1� PðA 6 t;B 6 tÞ

¼ PðA > tÞ þ PðB > tÞ
1� PðA 6 t;B 6 tÞ

at the common high loss level t. Note that this conditional expecta-
tion can be readily extended to more than two firms. We will use
the conditional expected number of failures

E½jjj P 1� ¼ PðA > tÞ þ PðB > tÞ
1� PðA 6 t;B 6 tÞ ð1Þ

as our measure of downside dependence.
In a bivariate setting, the conditional failure expectation minus

one equals the conditional probability on a systemic crisis. Since,
given that at least one firm crashes, the joint failure probability is

PðA > t;B > tÞ
1� PðA 6 t;B 6 tÞ ¼ E½jjj P 1� � 1: ð2Þ

Hence, alternatively we refer to (1) as the measure of systemic risk.
Hartmann et al. (2004) provide further motivation for this measure.

Unless one is willing to make further assumptions, as in the op-
tions based distance to default literature, it is impossible to pin
down the exact level of t at which there will be a failure, or at
which supervisors declare the institution financially unsound. For
this reason, we do take limits in the theoretical analysis and
consider

SRðjÞ � lim
t!1

E½jjj P 1�: ð3Þ

Extreme value theory then shows that, even though the measure is
evaluated in the limit, it nevertheless provides a reliable benchmark
for the dependency at high but finite levels of t.4 Note that for the
introductory example where A = X + Y and B = X � Y and if the two
factors X and Y are i.i.d. Student-t distributed, then SR(j) = 4/3 > 1.
But in the case that X and Y are i.i.d. Normally distributed,
SR(j) = 1. Moreover, note that the measure does not require bounded
second moments and zooms in on the downside risk exposures.

Recently, the parametric approach to dependency by means of
copulas has gained some popularity. In the interest of robustness
we prefer not to choose a particular copula and follow the non-
parametric multivariate EVT approach. Note that the connection
between the two concepts in the limit is as follows

SRðjÞ ¼ lim
t!1

PðA > tÞ þ PðB > tÞ
1� PðA 6 t;B 6 tÞ ¼ lim

p"1

2ð1� pÞ
1� Cðp;pÞ ; ð4Þ

where P(A > t) = P(B > t) = 1 � p and C(p,p) is the limit copula. One
can calculate the failure measure if the copula is known. Kole
(2006) discusses the use of different copulas in this context. Other
alternative measures comprise the conditional probability of a spe-
cific failing institution, given the demise of another: P(A > tjB > t).
With the methods developed below, the limiting value of this mea-
sure are rather straightforward to compute as well. But the point is
that as the number of financials increases, the number of different
partial measures one has to report rapidly increases. The SR(j),
however, is good in any dimension, as it summarizes the systemic
risk in a single measure.

In case that the risk is thin-tail distributed, the so-called
Ledford–Tawn measure, provides more detailed information (by a
logarithmic transformation of the probabilities); see Ledford and

Fig. 1. The normal distributed remake underestimates the systemic risk.

3 In practice one scales the different thresholds towards a common failure factor t
by defining s = h t and z = ct. For the theoretical analysis this means that one can
redefine the loss returns A and B, by dividing these with the desired scales h and c
respectively. In the empirical analysis we look along the diagonal, i.e. take h = c = 1. 4 Recall that it is straightforward to allow for different failure levels across firms.

J.F. Slijkerman et al. / Journal of Banking & Finance 37 (2013) 773–785 775



Author's personal copy

Tawn (1997). In this case the SR(j) would just indicate asymptotic
independence. But for the application to financials, the Ledford–
Tawn measure is less informative than the SR(j) due to the fat-
tailed nature of the risks.

2.2. Economic rationale for downside dependence

To provide a rationale for the downside dependence between
banks and insurers, we start from an elementary factor model.
The factors are assumed to follow a distribution with non-normal
heavy tails. Firms and sectors partly differ with respect to their risk
factors and this determines the differences in downside depen-
dence within and between the sectors. The model is in the vein
of De Vries’ (2005) portfolio approach to downside risk for banks.

The investments of banks and insurers are to a certain degree
similar. Both invest in syndicated loans, have proprietary invest-
ments in equity and both hold mortgage portfolios. Moreover,
the costs arising from liabilities for banks and insurers are to some
degree similar. Both, for example, sell products with a guaranteed
interest rate. Financial instruments can transform insurance risk to
financial investments (e.g., catastrophe bonds), or can transform
default risk to insurance risk via credit default swaps. The securiti-
zation of bank loan portfolios widens the scope of investments for
insurers.

There are also differences. Banks live from the interest rate
spreads (intermediation margins), while life insurers receive pre-
miums and have to pay the long interest rate. The deposit contract
exposes the banks to the risk of immediate callability, while
insurers do not have such a liquidity risk. The semi-reduced form
approach of a factor model captures these similarities and differ-
ences through the factors (and their coefficients).

Suppose the risk of all firms in the financial sector consists of
three elements. Financials face a common risk component (macro
risk), F; an insurance or bank sector specific risk (sector risk), la-
belled A and B respectively; and firm specific idiosyncratic risk, de-
noted Yi and Zj for banks and insurers respectively. All these factors
are assumed to be fat-tail distributed. We take this to mean that
the tails of the distributions exhibit power like behavior, as in
the case of the Pareto distribution.5 For ease of presentation we as-
sume that the entire loss distribution is Pareto-distributed. But we
emphasize that the results carry over to all distributions that exhibit
regular varying tails, such as the Student-t distribution, see below.

Assume that the downside risk of the factors (A,B,F,Yi,Zj) are
(unit scale) Pareto-distributed on [1,1)

PðA > tÞ ¼ PðB > tÞ ¼ PðF > tÞ ¼ PðYi > tÞ ¼ PðZj > tÞ ¼ t�a; ð5Þ

and where a > 0. The shape parameter a in the power determines
the number of moments that are bounded; a finite variance for
example requires that a > 2. This is in contrast to distributions, like
the normal distribution, that have all moments bounded due to the
tails which are of exponential order. There is considerable evidence
that the shape parameters are equal across different firms; see Jan-
sen and de Vries (1991) and Hyung and de Vries (2002). Neverthe-
less, in the analysis below we briefly explain how the results must
be adjusted in case that the shape parameters differ.

The above framework applies generally to the entire class of fat-
tailed distributions that are characterized by the following tail
property of the symmetric distribution R(�)

lim
t!1

Rð�txÞ
Rð�tÞ ¼ lim

t!1

1� RðtxÞ
1� RðtÞ ¼ x�a

for some a > 0.6

For example, consider the case of the Student-t distribution
with v degrees of freedom. Invoking L’Hôpital’s rule, one can use
the density r(t) to show that

lim
t!1

rðtxÞx
rðtÞ ¼ xlim

t!1

1þ t2=v
1þ t2x2=v

� �ðvþ1Þ=2

¼ x�v

and hence a = v. Furthermore,

a ¼ lim
t!1

rðtÞ
vt�v�1

¼ 1
v lim

t!1
tvþ1 Cððv þ 1Þ=2Þ

Cðv=2Þ
1ffiffiffiffiffiffiffi
vp
p 1

tvþ1ð1=t2 þ 1=vÞðvþ1Þ=2

( )

¼ 1
v

Cððv þ 1Þ=2Þ
Cðv=2Þ

1ffiffiffiffiffiffiffi
vp
p v ðvþ1Þ=2 ¼ Cððv þ 1Þ=2Þ

Cðv=2Þ
1ffiffiffiffi
p
p vv=2�1:

Thus for large t

PðX > tÞ ’ at�a:

Define the re-scaled random variable Y = a1/aX, hence

PðY > tÞ ¼ Pða1=aX > tÞ ¼ PðX > a�1=atÞ ’ t�a:

This gives an expression that is analogous to the pure Pareto case in
(5), except for the fact that the Pareto expression is only good in the
tails, as it only holds exactly in the limit

lim
t!1

PðY > tÞ
t�a ¼ 1:

In the following, we investigate the downside dependence between
two financials within a sector and across sectors. To this end, define
the equity loss returns of a bank Gi and an insurer Hj as a portfolio of
risk factors consisting of the following elements:

Gi ¼ F þ Bþ Yi and Hj ¼ F þ Aþ Zj: ð6Þ

For brevity we assume unitary scale coefficients for each factor, but
this can be easily relaxed as we briefly discuss in the analysis that
follows. In practice, the evidence is that the scales are considerably
different across different companies, in contrast to the shape
parameter a; see Hyung and de Vries (2002).

2.2.1. Within-sector dependence
Consider first the dependency between two banks. The proba-

bility of a large loss t can be calculated with the help of Feller’s con-
volution theorem (1971, vol. II, Chapter VIII.8). Section A.1 of the
Theoretical Appendix provides a brief exposition of this theorem.
The Feller theorem holds that the probability of the sum in (6) con-
verges to the sum of the marginal probabilities as t gets large. In
other words, the probability mass along the axes above the portfo-
lio line F + B + Yi = t determines the convolution probability. Since
the bank portfolio consists of three independent risk factors, the
probability of a crash of a bank is

PðF þ Bþ Yi > tÞ ¼ 3t�a þ oðt�aÞ: ð7Þ

Note that in case the scale factors differ from unity and be equal to
f,b and yi say, the result would just be

PðF þ Bþ Yi > tÞ ¼ ðf þ bþ yiÞt�a þ oðt�aÞ:

Thus, differences in scale only imply a quantitative difference.
But in case that the shape parameter a differs across the factors,

this induces a qualitative difference. For example, suppose that the

5 These distributions are such that for a sample of n i.i.d. draws

lim
s!1

PfmaxðX1; . . . ;XnÞ > sg=P
Xn

i¼1

Xi > s

 !
¼ 1:

Thus, the sum is almost entirely driven by the maximum of the observations. 6 For simplicity of presentation we focus on symmetric distributions.
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idiosyncratic factor Yi has a higher shape parameter ai > a than the
other two factors. Then

PðF þ Bþ Yi > tÞ ¼ 2t�a þ oðt�aÞ;

since the idiosyncratic factor contributes terms which are of smaller
order (tend to zero faster). The rule of thumb is therefore that one
can ignore factors that have thinner tails (higher shape parameters).
The interested reader can easily adjust the analysis below for such
cases. The empirical analysis automatically takes care of this
possibility (since the extremes contributed by the other factors will
dominate in the data).

Next, we determine the probability that two banks crash
simultaneously

PðG1 > t;G2 > tÞ ¼ PðF þ Bþ Y1 > t; F þ Bþ Y2 > tÞ:

To determine this systemic failure probability, we can again make
use of Feller’s convolution theorem. Recall that the theorem holds
that only the probability mass along the axes counts. The intersec-
tion of the two sets determined by the portfolio inequali-
tiesF + B + Y1 > t and F + B + Y2 > t holding simultaneously. Thus,
the intersection only has points above t along the F + B axis in
common. Note that the sum F + B can be treated as a single random
variable Z. Points along the Y1 or the Y2 axes larger than t cannot
simultaneously satisfy both inequalities (e.g., in the three dimen-
sional space (Y1,Y2,Z), the point (0,2t, 0) satisfies Z + Y2 > t, but not
Z + Y1 > t). This implies that

lim
t!1

PðF þ Bþ Y1 > t; F þ Bþ Y2 > tÞ
PðF þ B > tÞ ¼ 1;

It follows that

PðG1 > t;G2 > tÞ ¼ PðF þ B > tÞ þ oðt�aÞ ¼ 2t�a þ oðt�aÞ: ð8Þ

The probability of a joint crash among two insurers is similar, thus
P(H1 > t,H2 > t) = 2t�a + o(t�a).

2.2.2. Cross-sector dependence
Since the sector risk for the two companies is different, there

are less common components in the portfolio of the two firms.
The probability of a joint crash of an insurer and a bank is entirely
determined by the single common factor F. If the portfolio inequal-
ities F + B + Y1 > t and F + A + Z1 > t hold simultaneously, there is
only probability mass of order t�a above t along the F axis in com-
mon, and no mass of this order along the B + Y1 and A + Z1 axes.
This implies that

PðG1[t;H1 > tÞ ¼ PðF þ Bþ Y1 > t; F þ Aþ Z1 > tÞ
¼ t�a þ oðt�aÞ: ð9Þ

2.2.3. Systemic risk
On the basis of (7)–(9) we can evaluate our measure for sys-

temic risk or downside dependence (1). To this end, recall

1� PðA 6 t;B 6 tÞ ¼ PðA > tÞ þ PðB > tÞ � PðA > t;B > tÞ: ð10Þ

Combining (7), (8) and (10) one obtains the within-sector systemic
risk (4) as

SRðjÞ ¼ lim
t!1

PðGi > tÞ þ PðGj > tÞ
1� PðGi 6 t;Gj 6 tÞ ¼

3t�a þ 3t�a

3t�a þ 3t�a � 2t�a ¼
6
4
: ð11Þ

In words, the SR(j) value indicates that in one out of the two cases
when there is a bank failure, the other bank fails as well. Note that
differences in scale would only qualitatively change this result, i.e.
SR(j) would still be higher than one. Different shape parameters,
however, may also have a qualitative effect (for example, if both
the idiosyncratic factors have larger shape parameters than F and

B, then SR(j) = 2, i.e. the case of maximal asymptotic dependence;
while in the opposite case that these are smaller, SR(j) = 1).

The cross-sector systemic risk is found analogously from (7), (9)
and (10)

SRðjÞ ¼ lim
t!1

PðGi > tÞ þ PðHj > tÞ
1� PðGi 6 t;Hj 6 tÞ ¼

6
5
: ð12Þ

The conditional expectation is higher in the case of within-sector
dependence than in the case of cross-sector dependence, since the
sectoral risks differ. In the empirical section, we estimate the sys-
temic risk measure and test for the predicted difference. If the with-
in-sector and cross-sector dependencies turn out to be equal, that
would indicate that the sector risks are similar or unimportant; if
these differ, that would vindicate the above sectoral factor
structure.

2.2.4. Dependence and the normal distribution
It is interesting to note that the dependence in the tail disap-

pears if we assume that the independent factors, A,B,F,Yi and Zj

are normally distributed. Note that normality immediately implies
that Gi,Gj,Hi and Hj are all correlated. If we assume that the returns
on the individual projects exhibit heavy tails as before, there is
dependence in the tails and the expected number of failures (1)
converges to a number larger than one as the failure level t in-
creases. Even though there is positive correlation if the returns of
both Gi and Hi follow a bivariate normal distribution, all depen-
dence between the firms disappears as t increases. Thus, under
normality

SRðjÞ ¼ lim
t!1

PðGi > tÞ þ PðGj > tÞ
1� PðGi 6 t;Gj 6 tÞ ¼ lim

t!1

PðGi > tÞ þ PðHj > tÞ
1� PðGi 6 t;Hj 6 tÞ ¼ 1:

The proof for this result is similar to the proof of Proposition 2 in de
Vries (2005) and follows directly from the general result by Sibuya
(1960). This explains why Fig. 1a differs so much from Fig. 1b, espe-
cially in the northeast and southwest corners. The disappearance of
the dependency in the tail area is not unique for the normal distri-
bution. The same holds for exponentially distributed factors; see de
Vries (2005). In the empirical section, we compare the semi-
parametric estimate of (1), which allows for heavy tails, with the
parametric estimates based on the bivariate normal model for the
returns.

2.3. Effects of mergers

Lastly, we investigate how mergers affect the systemic failure
probability. We consider a bilateral merger within a sector and
across sectors. First, we consider an economy comprised of just
two financial firms. Then, we consider an economy comprised of
two banks and two insurers respectively.

In an economy with just two banks or two insurers, we have
from (8) the systemic failure probability of order 2t�a. Suppose
that the threshold failure level for a merged firm increases
commensurably with its portfolio size. In that case, the systemic
failure probability increases to7

PðG1 þ G2 > 2tÞ ¼ Pð2F þ 2Bþ Y1 þ Y1 > 2tÞ

¼ P F þ Bþ 1
2

Y1 þ
1
2

Y1 > t
� �

¼ ð2þ 21�aÞt�a þ oðt�aÞ: ð13Þ

In a two firm economy, the systemic risk due to a merger is equal to
the risk of failure of the new firm. Thus, (13) exceeds (8), specifically

7 Use that P 1
2 Y1 > t
� �

¼ PðY1 > 2tÞ ¼ 2�at�a and apply Feller’s convolution
theorem.
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lim
t!1

PðG1 þ G2 > 2tÞ
PðG1 > t;G2 > tÞ ¼ 1þ 2�a > 1; ð14Þ

as noted by Shaffer (1985) in a non-parametric setting. But (13) is
also lower than (7) due to the diversification effect if a > 1. Thus,
a merger increases systemic risk, while at the same time it lowers
the risk that an individual bank goes bust.

In case the financial sector consists of just one bank and one
insurer, the systemic failure probability is of order t�a by (9). A
merger increases the systemic risk to

PðG1 þ H1 > 2tÞ ¼ ð1þ 22�aÞt�a þ oðt�aÞ;

so that

lim
t!1

PðG1 þ H1 > 2tÞ
PðG1 > t;H1 > tÞ ¼ 1þ 21�a > 1: ð15Þ

Note that if a > 1 then 1 + 21�a > 1 + 2�a, so that a within-sector
merger increases systemic risk by less than a cross-sector merger,
due to the fact that the systemic risk among a separate bank and in-
surer is lower than among two separate banks (or insurers). How-
ever, also note that

lim
t!1

PðG1 þ G2 > 2tÞ
PðG1 þ H1 > 2tÞ ¼

2þ 21�a

1þ 22�a > 1

if a > 1. Thus, a cross-sector merger carries less risk than a within-
sector merger.

A two firm financial sector is a bit of an awkward framework for
the evaluation of the effect of mergers on the systemic risk.
Therefore, we also consider a ‘larger two banks and two insurers’
economy, where two out of the four firms may merge. We compare
the systemic risk in the four firm economy with that of a three firm
economy in which two of the four firms have merged. In the four
firm economy, as well as in the three firm economy, the only com-
mon factor is the market factor. Moreover, the double weight on
the market factor for the merged firm cancels against the expanded
threshold 2t. Hence,

lim
t!1

PðG1 þ G2 > 2t;H1 > t;H2 > tÞ
PðG1 > t;G2 > t;H1 > t;H2 > tÞ ¼ 1 ð16Þ

and

lim
t!1

PðG1 > t;G2 þ H1 > 2t;H2 > tÞ
PðG1 > t;G2 > t;H1 > t;H2 > tÞ ¼ 1:

To a first order the probabilities in the numerators and denomina-
tors are of the same size t�a. Thus, in the enlarged economy, a mer-
ger between a subset of the firms has no first order effects on the
systemic risk; in contrast with the two firm cases (14) and (15).
But there are first order individual firm benefits from a merger
through the diversification effect.

3. Estimators

The basis for estimation of the systemic risk measure (1) is a
simple non-parametric count measure. From elementary probabil-
ity theory, we have that
PðA 6 t;B 6 tÞ ¼ 1� Pðmax½A;B� > tÞ

and by using (10)

PðA > tÞ þ PðB > tÞ ¼ 1� PðA 6 t;B 6 tÞ þ PðA > t;B > tÞ
¼ Pðmax½A;B� > tÞ þ Pðmin½A;B� > tÞ:

One can therefore re-write the conditional expectation (1) as
follows

E½jjj P 1� ¼ 1þ Pðmin½A;B� > tÞ
Pðmax½A; B� > tÞ : ð17Þ

The estimation of (1) can thus be reduced to the estimation of two
univariate probabilities. The probabilities in the numerator and
denominator can be easily estimated by counting the number of
minima and maxima that exceed the threshold t. Our count estima-
tor thus reads

bE½jjj P 1� ¼ 1þ #ðmin½A;B� > tÞ
#ðmax½A;B� > tÞ : ð18Þ

In the applications, we take t = 0.075 (i.e. a 7.5% loss return on a sin-
gle day) in (18), close to the boundary of the sample, and we count
the number of realizations of the min and max series that are above
this threshold.8 The 7.5% loss return is close to the fifth highest loss
return; see Table B.2. with summary statistics in the Empirical
Appendix.

Next, we discuss the asymptotic properties of the appropriately
scaled estimator. Divide both the numerator and denominator in
(18) by the sample size n. This turns the numerator and denomina-
tor into correlated U-statistics; see Serfling (1980, Chapter 5), since
in this way one averages the excesses of the maxima and minima
series. A Cramér delta argument applied to the ratio then yields
the asymptotic normality as n ?1 for fixed thresholds t.

Subsequently, from statistical EVT it follows that one may let
t ?1, provided that this happens not too fast, i.e. such that M/
n ? 0 and where M = #(max[A,B] > t), cf. De Haan and Ferreira
(2006, p.260), or Huang (1992). Alternatively, one can apply the
asymptotically normally distributed tail probability estimator from
De Haan and Ferreira (2006, th. 4.4.7) for the numerator and the
denominator in (18) and again invoke the Cramér delta method
to establish asymptotic normality for the ratio as t ?1.

To gain insight into the estimator (18), we conduct a small sim-
ulation experiment. To this end, we generate two series with 3120
draws (the number of observations in the real data) of pseudo-ran-
dom variables from the standard normal and Student-t distribution
with 3 degrees of freedom. Both series are re-scaled to give these
the same means, variances and correlation pattern as in the ABN
AMRO and AXA series from Fig. 1a.9

In Fig. 2, we plot the ratio of the number min[A,B] > t to max
[A,B] > t by varying the threshold t. The thresholds are the order
statistics from the two series; the x-axis gives the indices from
the descending order statistics. The y-axis gives dE½jjj P 1� � 1
from (2), plotted against the increasing rank order of the descend-
ing ordered statistics. As the rank along the x-axis increases, we
move into the center of the sample and obtain more pairs with
maxima and minima that exceed the threshold order statistic.
For any finite sample, eventually dE½jjj P 1� � 1 equals 1 at the
lowest threshold t, when t equals the smallest order statistic. But
this is not the relevant area, since SR(j) = limt?1E[jjj P 1] should
be judged from using a low number of order statistics only. Hence,
the plots are based only on the first 750 descending order statistics
from the combined series (where the choice for 750 is somewhat
arbitrary).

The right-hand panel in Fig. 2 shows the result for the normal
distribution. The plot first lingers at zero and then gradually moves
upward. Since the normal distribution implies that all dependency
vanishes asymptotically, the plot first remains close to zero and
only then gradually increases.

The left-hand panel in Fig. 2 displays the result for the corre-
lated Student-t series. This plot differs markedly from the corre-
lated normal-based plot. Almost immediately, the series jumps to
a level around 0.2 at which it stabilizes after some gyrations. Since
far out in the tail areas there are just a few observations for which

8 Note that the loss returns are positive numbers, after multiplying the returns with
�1, appearing in the first quadrant.

9 The standard deviations are 0.019 and 0.023 for ABN AMRO and AXA respectively.
The correlation coefficient is 0.575. The means are less than 10�3 in absolute value.
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min [A,B] > t, the estimator (18) is initially unstable. But it rapidly
settles around 0.2. This is indeed the level that one expects to see
on the basis of calculations analogous to the calculations used to
derive (11) and (12). In particular, for the Student-t series with 3
degrees of freedom (ignoring the means), one derives10

SRðjÞ � 1 ¼ q3

ð1� q2Þ3=2 þ ðr1=r2Þ3
¼ 0:17106:

Next, we turn to actual data. Using the same data as in the crossplot
of the stock returns of AXA and ABN–AMRO in Fig. 1, Fig. 3 gives the
results for the estimate of systemic risk (2). The results are very
similar to those of the Student-t simulation in Fig. 2. On the left side
of the graph, the plot is initially quite variable due to a lack of obser-
vations in the tail area, but it quickly stabilizes around a level of
0.28. Since, in our simulation, we choose the degrees of freedom
equal to the power a that is observed in the real data and set the
correlation equal to the correlation that is observed between the
AXA and ABN–AMRO returns, it is not so surprising that the estima-
tor (18) stabilizes at a similar level as in the simulation experiment
for the Student-t. The more important feature, though, is the fact
that the plot immediately jumps to this level and does not gradually
increase from zero, as it would if the data are asymptotically inde-
pendent, like in the case of the normal distribution.

Below, we also investigate the robustness of our procedure by
varying the threshold t. It is shown that the estimates do not
change much, which is the force of statistical EVT. Moreover, in
the Empirical Appendix, we construct confidence bands by the
Jackknife re-sampling procedure.

4. Empirical results

We present the estimates of the systemic risk within and across
the banking and insurance sectors.

4.1. Data

Our sample consists of the 10 largest European banks and the
10 largest European insurers. These firms are selected on the basis
of balance sheet criteria, such as the amount of customer deposits
and life and non-life premium income. Insurers can provide both
life insurance and non-life insurance (e.g., property and casualty
insurance). We use daily data from January 1992 until December
2003. The Appendix provides a precise description of the dataset.
From the daily price quotes we construct the daily loss returns that
are the empirical counterparts of Gi and Hj from the theory section.
Table B.1 summarizes our classification of a financial intermediary
as a bank or insurer and Table B.2 gives summary statistics of the
loss returns.

4.2. Systemic risk estimates

We estimate the within-sector and cross-sector downside
dependencies by means of (18), using t = 0.075. In other words,
the threshold for the systemic risk is a 7.5% loss return on a single
day. Since we have 10 banks and 10 insurers in our dataset, we
have results for 45 possible combinations of banks, 45 possible
combinations of insurers and 100 possible combinations between
banks and insurers. Table 1 summarizes the estimation results
for the 190 different combinations in total. The results for all 190
pairwise combinations are reported in Tables B.3, B.4 and B.5 in
the Empirical Appendix, as well as confidence bands based on
the Jackknife re-sampling procedure.

The summary results in Table 1 give the average and the med-
ian of all the SR(j) � 1 estimates. Recall that SR(j) � 1 is an esti-
mate of the conditional joint failure probability (2). These results
clearly indicate that the cross-sector dependence between banks
and insurers is lower than the dependence between two firms from
within the same sector. The average probability that two banks
crash, given that one crashes is 10.4%. For insurers, this probability
is similar and equals 11.7%. The probability that an insurer crashes,
given that a bank crashes or that a bank crashes, given that an

Fig. 2. Conditional expected number of failures.

10 See footnote 9 for the numerical values used.
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insurer crashes is only 7.4%, however. In other words, while two
banks on average jointly fail one out of every 9.5 times that there
is a bank failing, a bank and an insurer fail jointly only one out of
every 13.5 times that an insurer or a bank fails. It appears that the
dependence is lower across the sectors.

To investigate the robustness of these conclusions and to show
that this is not the result of sampling inaccuracy, we re-estimate
(18) at the lower threshold t = 0.07. The results are collected in
Table 2. While the averages and medians are somewhat different,
the qualitative ranking is the same. Again, the cross-sectoral
dependence is lower than the within-sector dependence. Moving
into the sample by lowering the threshold t to 0.07 of course
produces somewhat higher estimates. But, as we show below, un-
der the presumption of normality, the estimates are much lower.

We formally test whether the cross-sector dependence is dis-
similar from the dependence within the same sector by applying
the Wilcoxon–Mann–Whitney signed ranks test to the Tables
B.3,B.4,B.5.11 The null hypothesis is that estimates from two of the
three tables are coming from the same distribution. The alternative
hypothesis is that the values differ.

We find that the probability that the banking sector dependen-
cies are similar to the cross-sectoral dependencies is only 0.004%.
We conclude that the risk profile of the two groups differs
significantly. Using the same test procedure, we also find that the
probability that the downside risk for combinations of insurers is
equal to combinations of banks and insurers is only 0.003%. Thus,
the dependence between banks and insurers is also significantly
lower than the dependence among insurers. Moreover, the same
test indicates that equality between the sectoral medians of banks
and insurers is also not supported. But the rejection is less strong,
as the difference between the sectoral medians is smaller than the
difference with the cross-sectoral median.

On the firm level, there are sizable deviations from the average
risk within the sector. Results for specific combinations of firms are
given in Tables B.3, B.4 and B.5 in the Empirical Appendix. The
largest conditional probability of a crash of two firms is 37.5%
and involves two Spanish banks (Table B.3). The 37.5% is way
above the sector average of 10.3%. A possible explanation for this
high probability are the common exposures of the two Spanish
banks (housing exposures, government bond investments) to risks
in Spain and Latin America.

We also estimate (17), assuming a bivariate normal distribution
for the returns. Tables B.7, B.8 and B.9 present the results, while
Table 3 provides a summary. The results indicate again that the
dependence between banks and insurers is also lower than the
dependence among other combinations, lending robustness to
our main conclusion. The order of magnitudes, though, are quite
different. The assumption of normally distributed returns consid-
erably underestimates the downside risk, both for the marginal
and the multivariate risks. The average cross-sector systemic risk
on basis of the normality presumption is so low that only in one
out of every 158 times that there is a failure, both the insurer
and the bank are expected to fail jointly. While the count measure
says that this joint failure happens approximately once per 13
instances of a failure. A comparable huge difference regards the

Fig. 3. dE½jjj P 1� for ABN AMRO Bank and AXA.

Table 1
Summary non-parametric estimation results for t = 0.075.

Mean Median

Bank Insurer Bank Insurer

Bank 0.1038 0.0744 0.095 0.069
Insurer 0.0744 0.1170 0.069 0.107

Table 2
Summary non-parametric estimation results for t = 0.07.

Mean Median

Bank Insurer Bank Insurer

Bank 0.1150 0.0884 0.0968 0.0842
Insurer 0.0884 0.1314 0.0842 0.1190

Table 3
Estimation results (bivariate normal model).

Mean

Bank Insurer

Bank 0.0082 0.0063
Insurer 0.0063 0.0133

11 We opt for this comprehensive test statistic given the limited amount of data.
Alternatively, one can base oneself on the asymptotic normality of the individual
pairwise estimates and use a Bonferroni bound. This approach is, however, overly
conservative.
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within insurance sector joint failure probability. The normal based
estimate shows this happens once per 75 times there is an insurer
that crashes, which is way below the count measure estimate of
once per 8.5 times. These huge differences are caused by the fact
that under the assumption of joint normality, all dependence in
the tail area eventually disappears. The non-parametric based esti-
mator (18), though, shows that this is not the case.

For specific combinations of firms we find similar considerable
differences between the normal based results and the frequency
based count measure. The conditional probability of a double crash
for the combination of HSBC and RBS for example is 0.083, while
the normal distribution based estimate is only 0.0044. Our mea-
sure therefore predicts that the conditional probability of a double
crash is approximately 20 times higher for this combination than
the normal based measure would make believe. For the pair, AVIVA
and AEGON, the estimate based on normality gives 0.0134. This is a
factor 8 lower than the non-parametric based estimate of 0.111.
Thus, the normal based measure gives a completely different view
of the tail dependence. It essentially rules out the possibility of a
joint crash. Estimates that are not predisposed and can allow for
the fat-tail feature of the data are of an entirely different order.
The estimates based on (18) appear to be more in line with the
facts, since we do observe joint large losses repeatedly.

5. Conclusion

The paper investigates the downside risk interdependencies
within and between European insurers and banks. Banks and
insurers hold numerous cross exposures and are heavily exposed
to the real economy. A simple analytical factor model, in combina-
tion with the assumption that these factors are fat-tail distributed,
provides an explanation for the downside dependence structures
between banks and insurers. It gives an expression for the likeli-
hood of joint crashes, whereas the normal distribution based mod-
el would indicate that this is essentially a zero probability event.

The empirical section investigates the dependence between
combinations of financials, both within a sector and across sectors.
We find that downside dependence between a bank and an insurer
is significantly different from the dependence structure between
two banks or between two insurers. The average probability that
two banks crash, given that one crashes is 10.3%. For insurers this
probability is 11.7%. The probability that an insurer crashes given
that a bank crashes, or that a bank crashes given that an insurer
crashes, is only 7.4%. The latter figure is in line with the empirical
evidence reported in van Lelyveld and Knot (2009) for European
financial conglomerates. Moreover, it indicates that, in general,
downside dependence is lower for cross-sector combinations.
The theoretical model explains this by the fact that there are fewer
common factors. But while such cross-sectoral mergers may re-
duce the risk of individual financial institutions if cross hedging
at the holding level were allowed, mergers can at the same time in-
crease the systemic risk. We showed, though, that a merger of a
subset of the firms embedded in a larger economy may, to a first
order, have no impact on the systemic risk, while there are first or-
der individual firm benefits from the formation of a conglomerate.

The current drive to unwind bancassurance conglomerates
must therefore be due to motives other than risk, such as manage-
rial complexity and the separate pillar structure of the regulatory
frameworks for bank and insurance activities. Schmid and Walter
(2009) generally find that scope is not value enhancing, but also
show that combinations of commercial banking and insurance
are on balance positive. This time, due to the economy wide char-
acter of the 2007–2009 credit crisis, banks and insurance compa-
nies are both severely affected. This was different at the time of
the bursting of the internet bubble, when insurers were hard hit,

while banks came off lightly. Dissolving conglomerates now may
therefore be a myopic error. The next crisis will surely be different.

The recent financial crisis has shown once again that fat tails
and strong dependency are real. Thus, higher capital requirements
and full recognition of off-balance commitments in risk-weighted
capital calculations are a necessity. Moreover, proper systemic risk
evaluation requires aggregation across institutions and sectors,
rather than the micro-based approach that only looks at individual
institutions as in the Value at Risk methodology. Our conditional
failure index is a measure that goes into the direction of making
the much needed macro approach to the financial stability issue
operational.
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Appendix A. Theoretical appendix

In this appendix, we review the Feller convolution result and
the case of the normal distribution for the SR(j) measure.

A.1. Feller’s theorem

We briefly introduce Feller’s convolution theorem (1971, VIII.8).
This is needed to calculate convolutions of fat-tailed random vari-
ables. The convolution result is also used to determine the down-
side interdependence (systemic risk). The Feller theorem holds
that if two independent random variables A and B satisfy (5)

PðA > tÞ ¼ PðB > tÞ ¼ t�a;

then their convolution satisfies

lim
t!1

PðAþ B > tÞ
2t�aLðtÞ ¼ 1;

and where L(t) is slowly varying (i.e. limt?1 L(at)/L(t) = 1, for any
a > 0). In other words, the theorem implies that for large failure lev-
els t, the convolution of A and B can be approximated by the sum of
the marginal distributions of A and B. All that counts for the proba-
bility of the sum is the (marginal) probability mass that is located
along the two axes above the points where the line A + B = t cuts
the two axes.

To show this, first note that since A and B are independently
Pareto distributed

1� PðA 6 t;B 6 tÞ ¼ 1� ½1� t�a�2 ¼ 2t�a � t�2a � 2t�a

as limt?1(2t�a � t�2a)/t�a = 2. Since (for positive random variables)

PðAþ B > tÞP 1� PðA 6 t;B 6 tÞ;

we have the bound P(A + B > t) P 2t�a. The Feller theorem main-
tains that P(A + B > t) is in fact approximately 2t�a as t becomes
large, i.e. is also the lower bound. To verify this, consider the
probability

PðAþ B > tÞ � 1� PðA 6 t;B 6 tÞ½ �;

which comprises the probability mass in the triangle above the line
A + B = t (with vertices (0, t), (t, 0) and (t, t)). We argue that the prob-
ability mass in the triangle is of an order smaller than t�a. Note that
by independence, for k�(0,1)
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PðA > kt;B > ð1� kÞtÞ ¼ 1
kð1� kÞ

� �a

t�2a:

Thus, for any slab above the line A + B = t and with vertex at
(k, 1 � k) on the line A + B = t, the probability mass is of an order
smaller than t�a (i.e. limt?1t�2a/t�a = 0). This specific slab partly
covers the triangle. By varying k, this shows that the entire triangle
carries probability mass of an order smaller than t�a.

A.2. Normal case

Assume all factors A,B,F,Yi follow a standard normal distribu-
tion. From the additivity properties of the normal distribution
and using Laplace’s asymptotic expansion, we have that

PðGi > tÞ ¼ PðF þ Bþ Yi > tÞ ¼ Pð
ffiffiffi
3
p

F > tÞ

� 1ffiffiffiffiffiffiffi
2p
p

ffiffiffi
3
p

t
exp �1

2
t2

3

� �
as t ?1. Analogously,

PðGi þ Gj > tÞ ¼ Pð2F þ 2Bþ Yi þ Yj > tÞ ¼ Pð
ffiffiffiffiffiffi
10
p

F > tÞ

� 1ffiffiffiffiffiffiffi
2p
p

ffiffiffiffiffiffi
10
p

t
exp �1

2
t2

10

� �
:

Furthermore

1
2

PðGi þ Gj > 2tÞ
PðGi > tÞ � 1

2

ffiffiffiffi
10
p

2t exp � 1
2

4t2

10

� �
ffiffi
3
p

t exp � 1
2

t2

3

� � ¼ ffiffiffiffiffiffi
10
p

4
ffiffiffi
3
p exp � 1

30
t2

� �
! 0

as t ?1. The following bound

PðGi > tÞ þ PðGj > tÞ
1� PðGi 6 t;Gj 6 tÞ ¼

1

1� PðGi>t;Gj>tÞ
PðGi>tÞþPðGj>tÞ

6
1

1� PðGiþGj>2tÞ
2PðGi>tÞ

;

therefore implies that

lim
t!1

PðGi > tÞ þ PðGj > tÞ
1� PðGi 6 t;Gj 6 tÞ ¼ 1:

Appendix B. Empirical appendix

In this appendix, we discuss the selection of the data and we
give the detailed results for the pairwise downside risk estimates
for the count measure SR(j) and under the assumption of
normality.

B.1. Data selection

Since it is common for financial companies in Europe to exploit
a broad portfolio of activities in banking and insurance, it is diffi-
cult to construct a dataset of companies pursuing pure banking
or insurance strategies. Moreover, some activities as, for example,
the provision of mortgages, are common for all companies in both
banking and insurance. In this section we will explain when we de-
fine a company being a bank or an insurer.

We distinguish three different categories: banks, insurers (com-
bining property & casualty and life insurance business) and finan-
cial conglomerates. The dataset contains companies from Europe
(the EU and Switzerland). First, we take the largest firms by market
capitalization in the following sectors from Datastream: banking,
life insurance, insurance and other financial services. We classify
these companies based on their annual accounts over 2002.

To be able to make a distinction between insurers and banks,
we collect the following balance sheet items: ‘customer deposits’,
‘technical provisions’ and ‘life-insurance risk born by the policy

holder’. We assume that these broad items are unique for specific
sectors. The item ‘customer deposits’ is typical for banks, since they
borrow money from the public. The item ‘technical provisions’ is
typical for insurers, since it represents the size of provisions for fu-
ture insurance claims. Another item typical for life insurance is
‘life-insurance risk born by the policy holder’, which represents
provisions for future claims of life insurance policies. The three
items are added up and we represent the customer deposits as a
percentage of this sum of balance sheet items. When the percent-
age of deposits is larger than 90% we define a financial firm as a
bank. When the sum of ‘technical provisions’ and ‘life-insurance
risk born by the policy holder’ represented as a percentage of the
sum of all three items is larger than 90%, we define the firm as
an insurer. Table B.1 summarizes our classification for the different
financial intermediaries.

We make a distinction between property and casualty insurers
and life insurers and collect data on the net premium income of
insurers. The net premiums are the gross premiums written minus
reinsurance cover. Since an insurer may choose to buy reinsurance
cover for some lines of business, we argue that the net premium
income gives the best information as to whether an insurer is ac-
tive in life insurance or in property and casualty insurance. The
life-insurance premium income is represented as a percentage of
the total premium income.

We use data from 1992 to 2003, since Basel I came into effect in
1992. Data is on a daily basis.12 Firms that are part of a larger con-
glomerate, like Winterthur which is a holding of Credit Suisse, are
excluded. Some firms are omitted because the available data series
is too short. Summary statistics of the loss returns are provided in
Table B.2. For HSBC we lack a few observations at the start of the
sample. But we prefer to keep the starting date in 1992 when Basel
I came into effect. The missing data for HSBC do not hamper the
empirical analysis.

Table B.1
Selected data (%).

Bank Insurer Life Non-life

Bank
HSBC 0.98 0.02
RBS 0.96 0.04
UBS 1.00 0.00
BARCLAYS 0.95 0.05
BSCH 1.00 0.00
BBVA 1.00 0.00
DEUTSCHE BANK 0.98 0.02
ABN AMRO 0.97 0.03 0.78 0.22
UNICREDITO 1.00 0.00
STD CHARTERED 1.00 0.00

Insurer
GENERALI 0.00 1.00 0.65 0.35
AXA 0.00 1.00 0.70 0.30
AEGON 0.03 0.97 0.96 0.04
AVIVA 0.00 1.00 0.75 0.25
PRUDENTIAL 0.06 0.94 0.98 0.02
ZFS 0.00 1.00 0.30 0.70
LEGAL&GENERAL 0.00 1.00 0.94 0.06
ALLEANZA 0.00 1.00 1.00 0.00
ROYAL&SUN 0.00 1.00 0.82 0.18
SKANDIA 0.08 0.92 0.99 0.01

12 For BBVA Datastream reported a value of 28,757 on December 26 1995, while the
prices on the surrounding days hoover between 172 and 173. For this day, which is
second Christmas day in Europe, Datastream does not report quotes different from
the last active trading day, Friday 22nd for any of the other companies that we use.
The corresponding quotes on Bloomberg do not have differences until the second
digit. For this reason we imputed a corrected price equal to the record on the first day
of Christmas, as is done in Datastream for the other companies. Datastream has now
imputed the corrected value after this was brought to their attention.
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The largest realized daily loss of 24.6% is for Skandia, close to
the largest loss of 24.3% realized by Royal & Sun. The 5th largest
losses are already quite a bit smaller, respectively 12.9% for
Skandia and 12.6% for Royal & Sun; but the 5th largest loss of
ZFS is larger. The mean returns are positive, except for Royal &
Sun. Standard deviations of the returns are very similar. Under
the assumption of normality, the 5th largest loss returns are still
close to their theoretical values of respectively 9.3% and 7.7% for
Skandia and Royal & Sun. But the normal model fails for the largest
losses, where it predicts respectively 10.7% and 8.8% for Skandia
and Royal & Sun, which is less than 50% of the actual largest losses.
This is the fat-tail effect. For the other companies, similar observa-
tions apply. The threshold of 7.5% loss in the empirical application
is chosen on the basis of the fact that, at this level, the fat-tail prop-
erty starts to kick in. At this level there are also still sufficient
observations available in the joint loss area to enable estimation.

B.2. Pairwise multivariate results

In this subsection, we present the results of the estimator (18)
of SR(j) for all bank and insurance combinations. The first
Table B.3 contains the results for all bank combinations. The sec-
ond Table B.4 contains the results for the insurers and the third
Table B.5 gives the cross-sectoral results. In the latter table, the
banks are listed on the rows and the insurers per column.

At the end of this subsection, we do a robustness check and
report confidence bands for our estimates. To start with the
observation on robustness, note that in theory the SR(j) measure

evaluates E[jjj P 1] at the limiting failure levels. In practice, the
estimate of SR(j) is evaluated at finite failure levels. Thus, in prac-
tice one estimates E[jjj P 1], but at high failure levels. One may
wonder how much this matters. Under independence, for example,
SR(j) = 1, but at finite failure levels nevertheless E[jjj P 1] > 1.13

The same observation holds for jointly normal distributed returns.
To investigate this issue, we also estimate E[jjj P 1] under the
assumption of independence for one pair of banks. We use the two
Spanish banks singled out for discussion in the main text. From
Table B.3, we have that BSCH and BBVA have a conditional joint fail-
ure probability of 37.5%. For these two banks the conditional ex-
pected number of failures j in (1) under the assumption of
independence reads

E½jjj P 1� ¼ PðF1 > tÞ þ PðF2 > tÞ
1� PðF1 6 tÞ � PðF2 6 tÞ ¼ 1þ 1

1
0:0038þ 1

0:0035� 1

¼ 1:0018:

The number 1.0018 is very close to one and considerably smaller
than 1.375 from (18). Under the assumption of normally distributed
returns, we find from Table B.7 in the next subsection an estimate
for E[jjj P 1] of 1.0793, also considerably lower than the count-

Table B.2
Summary data.

Mean Std Min Max 5th Largest Num. of obs. Codes Currency

HSBC �0.0009 0.0191 �0.1126 0.1433 0.0746 2994 507534(RI) GBP
RBS �0.0009 0.0215 �0.1063 0.1526 0.0844 3120 901450(RI) GBP
UBS �0.0005 0.0179 �0.1053 0.1542 0.0878 3120 936458(RI) SF
BARCLAYS �0.0007 0.0209 �0.1438 0.0995 0.0856 3120 901443(RI) GBP
BSCH �0.0006 0.0210 �0.1393 0.1604 0.1039 3120 702853(RI) E
BBVA �0.0007 0.0199 �0.1326 0.1454 0.0911 3120 779090(RI) E
DEUTSCHE BANK �0.0003 0.0195 �0.1277 0.1235 0.0934 3120 905076(RI) E
ABN AMRO �0.0006 0.0197 �0.1109 0.1256 0.0913 3120 505972(RI) E
UNICREDITO �0.0006 0.0233 �0.2616 0.1099 0.0967 3120 929395(RI) E
STD CHARTERED �0.0008 0.0235 �0.1515 0.1665 0.1072 3120 901459(RI) GBP
ROYAL&SUN 0.0001 0.0262 �0.1853 0.2426 0.1256 3120 901514(RI) GBP
AEGON �0.0006 0.0230 �0.1602 0.1959 0.1115 3120 922956(RI) E
AVIVA �0.0002 0.0217 �0.1202 0.1121 0.1025 3120 901503(RI) GBP
PRUDENTIAL �0.0004 0.0219 �0.1115 0.1938 0.1111 3120 901521(RI) GBP
LEGAL&GENERAL �0.0005 0.0214 �0.1181 0.1286 0.0876 3120 901518(RI) GBP
ALLEANZA �0.0003 0.0220 �0.2054 0.1879 0.0808 3120 933271(RI) E
SKANDIA �0.0002 0.0318 �0.2232 0.2464 0.1291 3120 702980(RI) SK
GENERALI �0.0002 0.0180 �0.1739 0.1612 0.0739 3120 923375(RI) E
AXA �0.0004 0.0231 �0.1577 0.1427 0.1017 3120 936732(RI) E
ZFS �0.0001 0.0235 �0.1921 0.2257 0.1464 3120 929733(RI) SF

Note: Data are from Datastream with respective codes in the one to last column. Reported are properties of the daily logarithmic loss returns.

Table B.3
Banks vs banks, t = 0.075, real data.

1 2 3 4 5 6 7 8 9 10

HSBC 1 2.000 1.083 1.083 1.077 1.000 1.000 1.083 1.071 1.000 1.056
RBS 2 1.083 2.000 1.125 1.188 1.056 1.050 1.125 1.053 1.059 1.091
UBS 3 1.083 1.125 2.000 1.118 1.118 1.167 1.125 1.111 1.059 1.091
BARCLAYS 4 1.077 1.188 1.118 2.000 1.111 1.100 1.056 1.167 1.118 1.042
BSCH 5 1.000 1.056 1.118 1.111 2.000 1.375 1.056 1.167 1.267 1.136
BBVA 6 1.000 1.050 1.167 1.100 1.375 2.000 1.050 1.095 1.235 1.125
DEUTSCHE BANK 7 1.083 1.125 1.125 1.056 1.056 1.050 2.000 1.111 1.000 1.091
ABN AMRO 8 1.071 1.053 1.111 1.167 1.167 1.095 1.111 2.000 1.111 1.130
UNICREDITO 9 1.000 1.059 1.059 1.118 1.267 1.235 1.000 1.111 2.000 1.143
STD CHARTERED 10 1.056 1.091 1.091 1.042 1.136 1.125 1.091 1.130 1.143 2.000

13 If P(A > t) = P(B > t) = 1 � p and A and B are independent, then

SRðjÞ ¼ PðA > tÞ þ PðB > tÞ
1� PðA 6 t; B 6 tÞ ¼

2ð1� pÞ
1� p2 ¼

2
1þ p

> 1:

This tends to one as p is lowered to zero.
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based measure 1.375. Both results therefore indicate that the way in
which we measure SR(j) gives answers that considerably differ
from the cases of asymptotic independence.

B.3. Confidence bands

In the applications we take t = 0.075 in (18) close to the bound-
ary of the sample. The choice of the threshold is driven by the de-
sire to take it relatively large, since this is the failure and systemic
risk area, but this desire is tempered by the need to have sufficient
data for estimation purposes. To establish confidence bands, we
opt for the robust non-parametric Jackknife method, rather than
relying on asymptotic theory with t ?1, given that in our sample
size there are relatively few realizations that exceed t. Above, we
point out that the estimator (18) at fixed t may be viewed as the

ratio of two U-statistics. By Arvesen (1969, th. 8), relying again
on Cremér’s delta argument, it immediately follows that the Jack-
knifed estimate is asymptotically mean zero normally distributed.

Thus, we can obtain a confidence band by the Jackknife re-
sampling procedure. To this end the data are divided in 20 blocks
of 156 observations. We then apply estimator (18) 20 times, each
time leaving one block of 156 observations out of the time series.
To obtain the confidence band, the highest and lowest estimation
results are removed and the interval between the next highest
and lowest statistics then provides the 90% confidence interval.
The point estimate is estimated using the full sample. As a by-
product, it becomes clear that the point estimates do not change
much if we omit a sequence of observations.

Finally, Table B.6 reports some of the Jackknife confidence
bands for a number of SR(j) estimates. A selection of the results
is compiled in this table for considerations of space. The bounds
of the confidence interval do not deviate considerably from the
point estimates and are of the same order. The central column
gives the point estimate from (18). In the left and right column
one finds the 90% confidence interval. In the case of the combina-
tion of BSCH and Legal and General, the point estimate of (18) hits
the lower bound. This is the result of the quite limited sample, of
only 12 years of daily data, which is small if one studies bivariate
dependence.

Table B.4
Insurers vs insurers, t = 0.075, real data.

11 12 13 14 15 16 17 18 19 20

ROYAL&SUN 11 2.000 1.225 1.182 1.143 1.107 1.074 1.106 1.037 1.229 1.125
AEGON 12 1.225 2.000 1.111 1.242 1.032 1.034 1.138 1.036 1.333 1.196
AVIVA 13 1.182 1.111 2.000 1.192 1.100 1.111 1.143 1.056 1.097 1.154
PRUDENTIAL 14 1.143 1.242 1.192 2.000 1.150 1.105 1.140 1.053 1.207 1.122
LEGAL&GENERAL 15 1.107 1.032 1.100 1.150 2.000 1.000 1.018 1.000 1.040 1.057
ALLEANZA 16 1.074 1.034 1.111 1.105 1.000 2.000 1.038 1.286 1.091 1.061
SKANDIA 17 1.106 1.138 1.143 1.140 1.018 1.038 2.000 1.019 1.172 1.179
GENERALI 18 1.037 1.036 1.056 1.053 1.000 1.286 1.019 2.000 1.095 1.030
AXA 19 1.229 1.333 1.097 1.207 1.040 1.091 1.172 1.095 2.000 1.195
ZFS 20 1.125 1.196 1.154 1.122 1.057 1.061 1.179 1.030 1.195 2.000

Table B.5
Banks vs insurers, t = 0.075, real data.

11 12 13 14 15 16 17 18 19 20

HSBC 1 1.037 1.036 1.056 1.053 1.000 1.125 1.019 1.143 1.045 1.030
RBS 2 1.100 1.097 1.043 1.087 1.000 1.077 1.055 1.083 1.167 1.147
UBS 3 1.100 1.063 1.143 1.087 1.000 1.077 1.074 1.083 1.167 1.083
BARCLAYS 4 1.097 1.094 1.190 1.130 1.000 1.154 1.113 1.077 1.160 1.111
BSCH 5 1.063 1.061 1.042 1.040 1.063 1.000 1.035 1.000 1.074 1.081
BBVA 6 1.091 1.028 1.038 1.037 1.000 1.063 1.034 1.067 1.069 1.050
DEUTSCHE BANK 7 1.138 1.063 1.091 1.087 1.000 1.077 1.074 1.083 1.077 1.083
ABN AMRO 8 1.167 1.161 1.238 1.227 1.059 1.067 1.071 1.071 1.111 1.108
UNICREDITO 9 1.065 1.030 1.043 1.042 1.067 1.077 1.036 1.000 1.037 1.054
STD CHARTERED 10 1.083 1.053 1.034 1.069 1.048 1.111 1.016 1.056 1.063 1.071

Table B.7
Banks vs banks, t = 0.075, bivariate normal.

1 2 3 4 5 6 7 8 9 10

HSBC 1 2.0000 1.0044 1.0032 1.0074 1.0039 1.0051 1.0036 1.0064 1.0012 1.0096
RBS 2 1.0044 2.0000 1.0016 1.0241 1.0061 1.0045 1.0044 1.0069 1.0036 1.0088
UBS 3 1.0032 1.0016 2.0000 1.0026 1.0033 1.0054 1.0086 1.0097 1.0010 1.0011
BARCLAYS 4 1.0074 1.0241 1.0026 2.0000 1.0057 1.0054 1.0045 1.0083 1.0039 1.0105
BSCH 5 1.0039 1.0061 1.0033 1.0057 2.0000 1.0793 1.0098 1.0181 1.0057 1.0059
BBVA 6 1.0051 1.0045 1.0054 1.0054 1.0793 2.0000 1.0104 1.0188 1.0046 1.0037
DEUTSCHE BANK 7 1.0036 1.0044 1.0086 1.0045 1.0098 1.0104 2.0000 1.0178 1.0032 1.0033
ABN AMRO 8 1.0064 1.0069 1.0097 1.0083 1.0181 1.0188 1.0178 2.0000 1.0049 1.0042
UNICREDITO 9 1.0012 1.0036 1.0010 1.0039 1.0057 1.0046 1.0032 1.0049 2.0000 1.0049
STD CHARTERED 10 1.0096 1.0088 1.0011 1.0105 1.0059 1.0037 1.0033 1.0042 1.0049 2.0000

Table B.6
Multivariate results and 90% confidence bands.

Combinations Lower bound Point estimate Upper bound

ROYAL&SUN–AEGON 1.194 1.225 1.257
AEGON–AVIVA 1.097 1.111 1.125
RBS–STD CHARTERED 1.056 1.091 1.100
BSCH–BBVA 1.357 1.375 1.400
BSCH–LEGAL&GENERAL 1.063 1.063 1.071
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B.4. Multivariate normal results

To put the count-based measure into perspective, we also
calculate the systemic risk estimates under the assumption of joint
normality. We start with the results for the banking sector in
Table B.7. The next table, Table B.8, is the normal based systemic
risk table for the insurers. The cross-sectoral results under the
presumption of joint normality follow in Table B.9.
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Table B.8
Insurers vs insurers, t = 0.075, bivariate normal.

11 12 13 14 15 16 17 18 19 20

ROYAL&SUN 11 2.0000 1.0175 1.0200 1.0175 1.0112 1.0047 1.0158 1.0007 1.0190 1.0249
AEGON 12 1.0175 2.0000 1.0134 1.0184 1.0095 1.0092 1.0117 1.0022 1.0465 1.0399
AVIVA 13 1.0200 1.0134 2.0000 1.0317 1.0221 1.0050 1.0041 1.0016 1.0147 1.0128
PRUDENTIAL 14 1.0175 1.0184 1.0317 2.0000 1.0321 1.0063 1.0048 1.0019 1.0214 1.0131
LEGAL&GENERAL 15 1.0112 1.0095 1.0221 1.0321 2.0000 1.0030 1.0024 1.0012 1.0114 1.0091
ALLEANZA 16 1.0047 1.0092 1.0050 1.0063 1.0030 2.0000 1.0033 1.0166 1.0119 1.0088
SKANDIA 17 1.0158 1.0117 1.0041 1.0048 1.0024 1.0033 2.0000 1.0004 1.0128 1.0146
GENERALI 18 1.0007 1.0022 1.0016 1.0019 1.0012 1.0166 1.0004 2.0000 1.0027 1.0019
AXA 19 1.0190 1.0465 1.0147 1.0214 1.0114 1.0119 1.0128 1.0027 2.0000 1.0442
ZFS 20 1.0249 1.0399 1.0128 1.0131 1.0091 1.0088 1.0146 1.0019 1.0442 2.0000

Table B.9
Banks vs insurers, t = 0.075, bivariate normal.

11 12 13 14 15 16 17 18 19 20

HSBC 1 1.0013 1.0023 1.0032 1.0033 1.0030 1.0014 1.0007 1.0013 1.0026 1.0024
RBS 2 1.0075 1.0073 1.0131 1.0100 1.0091 1.0033 1.0024 1.0012 1.0094 1.0093
UBS 3 1.0007 1.0025 1.0016 1.0019 1.0014 1.0012 1.0005 1.0024 1.0031 1.0038
BARCLAYS 4 1.0081 1.0079 1.0140 1.0139 1.0126 1.0032 1.0020 1.0017 1.0105 1.0082
BSCH 5 1.0044 1.0130 1.0077 1.0072 1.0054 1.0063 1.0038 1.0024 1.0187 1.0126
BBVA 6 1.0028 1.0100 1.0051 1.0052 1.0040 1.0051 1.0021 1.0046 1.0126 1.0083
DEUTSCHE BANK 7 1.0022 1.0081 1.0040 1.0049 1.0035 1.0036 1.0020 1.0028 1.0092 1.0073
ABN AMRO 8 1.0034 1.0204 1.0088 1.0087 1.0060 1.0053 1.0027 1.0045 1.0158 1.0105
UNICREDITO 9 1.0063 1.0081 1.0049 1.0052 1.0034 1.0183 1.0061 1.0036 1.0112 1.0095
STD CHARTERED 10 1.0120 1.0084 1.0090 1.0098 1.0073 1.0034 1.0065 1.0007 1.0114 1.0096
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